Check for updates

OPEN ACCESS

EDITED BY Joseph E. Borovsky, Space Science Institute, United States

REVIEWED BY Dhani Herdiwijaya, Bandung Institute of Technology, Indonesia Emre Eroglu, Kırklareli University, Türkiye Helen Mavromichalaki, National and Kapodistrian University of Athens, Greece

*CORRESPONDENCE Syun-Ichi Akasofu, ⊠ sakasofu@alaska.edu

SPECIALTY SECTION This article was submitted to Space Physics, a section of the journal Frontiers in Astronomy and Space Sciences

RECEIVED 22 December 2022 ACCEPTED 27 March 2023 PUBLISHED 13 April 2023

CITATION

Akasofu S-I and Lee L-C (2023), The basic solar wind speed distribution and its sunspot cycle variations. *Front. Astron. Space Sci.* 10:1129596. doi: 10.3389/fspas.2023.1129596

COPYRIGHT

© 2023 Akasofu and Lee. This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The basic solar wind speed distribution and its sunspot cycle variations

Syun-Ichi Akasofu¹* and Lou-Chuang Lee²

¹International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK, United States, ²Institute of Earth Science, Academia Sinica, Taipei, Taiwan

In this paper, it is suggested that the latitudinal solar wind speed observed by the Ulysses spacecraft during the *lowest* solar activity (when both the ecliptic and magnetic equators coincide) may be identified as the basic speed distribution throughout the solar cycle. We demonstrate this suggestion by rotating this particular Ulysses distribution counterclockwise up to 70° in accordance with the rotation of the equivalent dipole axis during active periods of the cycle. The corresponding magnetic equator in the Carrington map latitude-longitude (27 days) becomes quasi-sinusoidal with respect to the ecliptic equator. The quasi-sinusoidal magnetic equator on the Carrington map and its modification associated with the degree of sunspot activities can explain the two high speed peaks (750-800 km/s) and the two lowest speed (350 km/s) during 27-day solar rotation periods, most clearly recognizable after the sunspot peak period. Thus, it may be not necessary to consider coronal holes or open regions as the source of high speed streams. In fact, this particular (lowest solar activity) Ulysses distribution may represent the speed distribution pattern by the basic generation process of the solar wind itself.

KEYWORDS

solar wind, Ulysses, solar cycle, geomagnetic storm, solar magnetic field

1 Introduction: The Ulysses observation during the sunspot minimum

The solar wind speed has been discussed by a large number of researchers in terms of the speed, the source locations, density, temperature and others; cf. Sheeley et al. (1997), Wu et al. (2000); Schwenn (2006); Cranmer (2009), Shugai et al. (2009), Wang (2012), Verscharen et a. (2019) and others.

In this paper, we study the solar wind on the basis of the Ulysses observation by McCormas et al. (2013). Figure 1 shows the latitudinal speed distribution. The significance of this particular observation is that it was made during the lowest activity during the sunspot cycle, when the ecliptic and magnetic equators coincide.

Figure 1 shows that the speed is *remarkably uniform* with a speed of about 750 km/s over the whole latitude range between 20° and 80° . In this paper, this remarkable uniform part of the solar wind is called the *Uniform flow (UF flow)* in this paper. This uniform flow is cut off below the latitude of 20° . In this gap, the equatorial streamer takes its place. Since the observation was made when the solar activity was the lowest, the magnetic equator and the

ecliptic equator almost coincide; see the tilt angle of the heliospheric current sheet [HCS] in Figure 2 and also Figure 3.

The basic distribution (Figure 1) may be graphically represented on the Carrington map [Latitude-longitude (27 days)] without the equatorial streamer. In this map, one can consider that the Earth scans the map from left to right during one solar rotation. In this situation, since the Earth is located within the gap, it is not possible to observe the UF flow of 750 km/s; the change of ecliptic latitude of $\pm 7^{\circ}$ is partially responsible for higher speeds during equinox months; this change of the Earth's location causes the equinox maximum of auroral activities.

2 Magnetic equator on the source surface

Figure 2 shows the solar wind distribution during active periods of the Sun, including Figure 1 as Figure 2A; McComas et al. (2013). In order to study the wind speed distribution during active periods, it is necessary to know how the magnetic equator varies during the sunspot cycle.

The Wilcox Solar Observatory (WSO) publishes the *neutral line* on the source surface (a spherical surface of three solar raii) and presents it on the Carrington map. During active periods, it is often difficult to uniquely determine the magnetic equator on the phosphoric and also the source surface, so that they call it the neutral line, in stead of the magnetic equator; the neutral line in the Carrington map shows roughly the dividing line between the northern and southern magnetic hemispheres on the source surface. In this paper, however, their neutral line is called the magnetic equator.

Based on the WSO magnetic equator, (Hoeksema, 1984); Saito et al. (1989) presented the magnetic equator thus determined in a 3-D format for the sunspot cycle 21, which is shown in Figure 3; they determined also the equivalent dipole

FIGURE 2

The latitudinal solar wind speed distribution: from the left during the minimum solar activity. (A) is same as Figure 1, (B) a high activity and (C) a weak activity; the Figure shows also the sunspot number and inclination of the heliospheric current sheet (McComas et al., 2013).

From the left: The neutral line dividing the positive and negative magnetic hemispheres on the source surface of the Carrington (2-D) map (WSO); Middle, the magnetic equator on the source surface (a 3-D format), together with the equivalent dipole axis based on the magnetic equator. Right: the sunspot number: Saito et al. (1989).

axis based on the magnetic equator thus determined. They examined also that the neutral line for the cycle 22 and 23 and found it similar to the cycle 21, so that the pattern in Figure 3 is the general trend. However, this presentation during a very high active period is obviously tentative, because of complex distribution of sunspots. Many studies related to the magnetic equator on the source surface are summarized by Akasofu et al. (2005).

The magnetic equator thus determined is close to the ecliptic equator during the beginning and the end of the solar cycle, but deviates from the ecliptic equator considerably during active periods. This trend is also seen as the rotation of the equivalent dipole axis by 180° during one sunspot cycle; see also the tilt angle HCS in Figure 2 (bottom).

The magnetic equator thus determined can be represented approximately by a sinusoidal curve on the Carrington map on

the source surface, except extremely active periods. Figure 4 compares the magnetic equator of CR 1720 in 1982 with a pure sine wave case. It can be seen that the magnetic equator of CR 1720 (soon after the peak period, Figure 3) can approximately be represented by a quasi-sinusoidal curve on the Carrington map.

3 Reproduction of Ulysses observations

We demonstrate here that the basic speed distribution pattern represented by Figure 1 (same as Figure 2A) may be present throughout the solar cycle, and that Figure 2C (a low sunspot number period) and Figure 2B (a very high sunspot number) can be reproduced approximately by rotating counterclockwise Figure 1 (same as Figure 2A) according to the rotation of the magnetic equator and the equivalent dipole axis during the solar cycle.

(a) Weak activities

The magnetic equator deviates a little during the beginning and later periods of the cycle as shown in Figure 3. For a weakly active period of the cycle, Figure 1 is rotated about 20° counterclockwise and added the equatorial streamer at three positions along the magnetic equator (three red dots in Figure 4A) and by rotating the Sun once (by considering that the Ulysses observation took at least one rotation period (the observed distribution is not an instant scan along a single meridian line). Note also that the equatorial streamer may be

absent on one side in Figure 1, indicating that the equatorial streamer is perhaps intermittently present along the magnetic equator.

Figure 4C thus constructed may be compared with the observed one (Figure 4B, reproduced from Figure 2C). One can see some resemblance between them. In particular, the UF flow can be seen over a wide latitude range in higher latitudes, and the wider gap is replaced by the streamers.

(ii) Active periods

The magnetic equator deviates considerably from the ecliptic equator during active periods, as shown in Figure 3. We choose the magnetic equator of CR 1720 shown in Figure 3 [or Figure 5 (left)] for the reproduction. Figure 1 is rotated counterclockwise by about 70° by adding the four equatorial streamers at the locations along the magnetic equator (red dots in Figure 6A); further, the Sun is rotated once. The results are shown in Figure 6C, which may be compared with the observed case of Figure 6B (the same as Figure 2B).

Comparing observed one (Figure 6B) and the constructed one (Figure 6C), one can see:

- (i) The observed equatorial streamer is present at 70° in latitude. This location of the equatorial streamer is difficult to explain, unless the magnetic equator is located at the latitude of 70° as shown in Figure 6A (even if other streamers are present).
- (ii) There are a few small parts of the UF flow in the mid-latitude. Thus, if the distribution during active periods is entirely

FIGURE 7

The speed distribution of the solar wind during the solar minimum period in the Carrington map. This is an approximate graphic representation of Figure 1, except the equatorial streamer. The Earth's location is projected on the ecliptic plane.

The wind speed distribution for an average active period on the Carrington map, by making the magnetic equator quasi-sinusoidal. The gap may be wider during active periods.

different from the lowest solar condition (Figure 1), parts of the UF flow should not appear there. Thus, there is an indication that the distribution of Figure 1 is present even during some active periods, but it is difficult to recognize because of the distorted magnetic equator.

- (iii) The observed equatorial streamer appears at a few more locations than Figure 6C.
- (iv) The UF flow in the polar cap region is clearly present.
- (v) There is not much UF flow at the locations where the streamers are present.

From these results, it is possible to consider that the speed distribution in Figure 1 (the UF flow with the equatorial streamer) is present even during active periods, but is obscured by the rotated magnetic equator and the equatorial streamers.

4 Quasi-sinusoidal speed distribution

Based on the above findings, we modify the Carrington map in Figure 7 and construct a new one for fairly active periods in

Figure 8, in which the magnetic equator is approximately representative by a sinusoidal curve of amplitude of 45° by considering an average active period; the width of the gap region is left as the same in Figure 7 for simplicity.

As the Earth scans the ecliptic equator from the left to right in the Carrington map, the Earth observes two long periods of the UF flow (750 km/s) and two lowest speed (350 km/s) between. These features are clearly observed particularly during the declining period of the sunspot cycle. Figure 9 showed such an example of the two peak periods and two minimum periods during one rotation period. This trend continued more than a year in 1974; see Figure 10.

The quasi-sinusoidal curve can also be inferred from the C9 geomagnetic index. The C9 index is a daily geomagnetic index and thus can be considered a smoothed version of the AE index as one can see in Figure 9 (except perhaps during major magnetic storms), so that it can be used to infer the *general trend* of solar wind speed variations. In fact, it has been available from about 1930 *without interruption*; for the C9 index, see Akasofu and Chapman (1972)).

Figure 10 shows the C9 index for several years. One can see two high geomagnetic activities lasting and two very low activities during 27 days for many months, corresponding the quasisinusoidal curve corresponding to Figure 8, namely, two UF flows, together with a very low speed between. Thus, from the C9 index we can infer the quasi-sinusoidal curve on the Carrington map; in some cases, one is weaker than the other, suggesting a distorted quasi-sinusoidal curve of Figure 8 or Figure 9. There are a large number study on the relationship between the solar wind and geomagnetic of storms. Most recently, Gerontidou et al. (2021) worked on this problem.

Figure 9 case can also be recognized in Figure 10 (Carrington Rotation 1928; July 22- August 17), indicating the usefulness of the C9 index in a study of the general trend of the solar wind speed from about 1930. Obviously. A sinusoidal magnetic equator is a simplest case. The magnetic equator takes more complex shapes during active periods.

Note that in one of the high speed flows comes from the northern hemisphere and the other from the southern hemisphere, as one can see in the PHI angle switch in Figure 9.

However, during the period of 1979–1980, it is known that the solar wind speed was abnormally low, only 350 km/s (NASA OMNI 50-day average solar wind data). During this period, there were hardly recognizable intense geomagnetic storms (C9 = 9), in spite of the fact that the sunspot number was very large, as can be seen in Figure 11 (right). The C9 index was generally small during this period (except a few Carrington days at the beginning of 1979), indicating also that the solar wind speed was also low.

On the other hand, during the period of 1957–1958 (the IGY period) of Figure 11 (left), there was *two* recurrent geomagnetic storms; an active sunspot group can cause recurrent geomagnetic storms, but last at most three solar rotation periods, not 8 rotation periods. Thus, it shows that the quasi-sinusoidal curve survived even during a high sunspot activity period; In Figure 2B, we can recognize the UF flow, but there is no clear UF flow in the location where the streamers are present.

Based on Figures 2B, 11, we interpret thus that the very low speed during a very active period is due to the fact that the solar wind generation mechanism producing the UF flow in Figure 1 is disturbed by the equatorial streamer and sunspot associate helmet streamers and others; for the helmet streamers, see Linker et al. (2001) and Guo and Wu (1998). On the other hand, it seems that equatorial streamer and helmet streamers associated with sunspots may not be able to produce a high speed UF flow (750 km/s); this is also based on Figure 2B in which there is no clear UF flow where the equatorial streamer is present. This interpretation of the solar wind speed seems to be more reasonable than supposing an entirely different processes during very active periods.

These results provide hints on the long-held problem:

It has been the long-time problem why coronal holes can produce a very high speed flow or "stream" (750–800 km/s), in spite of the fact that there is not any particular activity there (no generally acceptable theory either), even if they are open regions; Cranmer (2009).

	19 128 4 26 2 26 544 .56 2.6 45674 , 234 45	563 557 653 19 120 563 17 653 556 20
34 105 52.	2 422 2 45 565 537	2.2 223 432 30 516 755 443 . 45 643 666 43
33 222		33: 332 222 M15 665 652 253 632 565 324 32. 67767.666 255
. 2 2 2 2 7 1.		43. 232 34: 1329 A 11 666 655 636 767 656 633 567 .35 777 566 355
		223 234 43 2 1330 MB 564 255 237 765 555 3.4 3 267 666 623 654
2		326 22
	26 1 1 22	312 222 . 22 32 32 37 265 22 . 6 111 626 652 2 5 762 256 222
		22, 222, 123 33 128 254 222 4 111 166 656 522 52 565. 522 2.2
	20 A30 442 . 22 . 30 103 324 032 32. 03	136 633 37, 36 A26 533 3, 236 575 564 353 37, 36 ,5, 34,
	20 0 22 11 1 1 1 1 6 6 6 6 5 6 1 1 2 1 2 . 6	33 33 343 35 360 353 367 5 775 676 563 637 7. 166 637
	20 U23 .44 .32 242 000 3	1.5 cc1 5, 30 017 722 032 770 000 342 07
	23 1 13	1228 010 15
	230 010	······································
432 23. 235 1	9 111 22	Sec. 1401/18/19/16/19 7665555 (2010) 1/665
636 366 573	pF 7 3. 22. 1.4 32. 23 266 4. 2 687 747 556 743	19 50 16652 22 25 176 666 655 5 5 5 1 666 11
357744 4	M 6 556743,663,24545432,62.4322,6673.	74 10 666 11 7. 5767 665 556 551 166 555 116
3 2 3 456 655 14	191 A 2 667 3. 62. 7.56.5764 2. 62. 35 33 324	
622 236 321	92 A29 . 33 326 5 5 226 2 64	
	93 M26 . 44 2	25 5 4 2 25 M20 16 655
221 .33	94 122	
222 2	95 119 .44 .22 526 423 2 2 34 62 3 265 564	1122221 121 28 122 77 556 52 5655 557 112
3 332 22.	96 415 265 566 237 553 3 23 6.2 263 2.2 675 665	22
. 2 . 222	97 511 615 665 666 665 22	55, 14 167 1930 54 77 56 576 166 661 156 631 12 263 17 577
222. 236	98 0 8 2 366 665 456 52 3 227 766 342 3. 2 24.	64
327 2 336	99 N 4 3, 2 24, 343 363 , 3, 42, 41 664 642 , 3.	1. 117 17 N7 156 .77 663 662 355566 562 166 2 247
623 221 . 22 1	500 0 1 3 345 543 .2. 2 36 465 46	1973 14 1973 14 1 14 7 555 514 256 655 444 235 22. 42. 266
	01 020	
	10/2/12/12/22/22/22/22/22/22/22/22/22/22/2	22 10 116 3 662 223 576 665 6 433 3 362
563.363	F20	F12 3 342 . 3. 367 777 654 762 225 665 343
4 1 1 1 1 1 1 1 4	3 M19 16, 16, 66 54 656 65. 66	
, 3 3 3 1	505 415 262 52 6 575 202	3 2 443 1640 A 7 2 464 5.3 643 566 552 342 223 36 665
. 23	06 M12 343 636 65. 265, 463 2.2 23 655 25	41 M4 . 36 665 321 7764 643 421 5 2 2.7655
	07 1 8 655 335 4 3 555 554 5	233 212 221 42 M31 2.7655 321 32 432 1.2 1.4 32. 11
	08 1 5 774 565 544 23 354 244 . 22. 541566 654	43 127 . 7 666 453 354 3 333 4
2 3 6	09 A 1 566 654 577 765 666 665 5 55. 767 66	
	510 428 767 66 765 326 666 565 433 232 552 . 26 677	21 222 45 420 776 676 676 456 754 432 243 3.5 445 766
	11 524 . 36 677 777 752 . 46 753 3	32. 2 45 516 445 766 676 425 2.2 4 332 32 7767
	12 021 153 767 676 666 . 364 332 4 .7766	21
222 22.	13 N17 277667677766225654	48 N 9 176 665 166 3.5 44. 2 12 2.6
333 2	14 014 1.66576554134. 2.45. 4 LECCLE	49 0 5 2.6 52 22 5 5

FIGURE 10

The C9 index during each Carrington day. From the left, the sunspot number index, Carrington number, year/beginning date, the C9 index (a part of the next cycle is repeated in the last part in order to see the two high speed periods).

It is likely that the high speed flow or "stream" may be identified as the *two* UF flow resulting from the quasi-sinusoidal curve, rather than from coronal hole. The fact that *two* UF flow and *two* lowest flow exist in one solar rotation period are present supports this suggestion. This is particularly the case, because there is no activity to suggest a high speed flow; open field conditions Rotter et al. (2012) would not help without some activities.

Thus, it is suggested that the flow pattern represented in Figure 1 is actually the flow driven by the basic solar wind driving process itself.

Another point to examine is the fact that the solar wind speed was unusually low during very active sunspot periods. It was only 350 km/s for a long period in 1980. We suggest that the low speed (350 km/s) during the periods of very high spot numbers is due to the fact that the solar wind generation mechanism is disturbed by equatorial streamers and other solar activities. Parker (1991) suggested that heating the corona by Alfven waves and turbulence at a distance of 10 solar radii drives the solar wind; Lee and Akasofu (2021) suggested that a heliosphric-scale $(J \times B)$ force resulting from the solar unipolar induction current at a distance of about 10 solar radii is a part of the driving force of the solar wind. Thus, one possibility is that equatorial streamer could disrupt such a suggested origin at 10 solar radii (as shown in Figure 2B, in which there is no clear UF flow where the equatorial streamers are present). On the other hand, the streamers may not be able to produce the UF flow.

5 Concluding remarks

The present study suggests that the UF flow (Figure 1) observed by the Ulysses during the lowest sunspot represents the solar wind pattern driven by the basic solar wind generation process itself, instead of considering high speed flows from the open regions or from the polar coronal hole.

An extensive review by Viall and Borovsky (2020) showed that there is no generally acceptable theory of the driving process

77 12778 10 13	222 222 221 10 028 456 525 575 562 4 212 432 352 346 566 534
\$78 778 111 F 9 1. 17. 202 454 656 7 1 864 447 447 127	123 723 222 70 124 566 536 43: 225 26. 22. 26 2 54 .76 644
121 178 111 D/ M 8 417 111 . 36 412 455 536 477 755 545 .566 .36	176 111 111 /9 F20 .76 644 564 353 646 4 75, 2. 2 35. 3 734
227 2 M M 1694 A 4 566 . 26 742 2.5 477 744 . 26 255 542 4 22 22 2	227 727 557 1991 M18 2 726 565 676 566 777 222 . 2. 626 562
778 M S 95 M 1 422 222 325 32. 2	765 677728 92 415 542 575 482 667 654224.5 222 2
222 222 mg 96 M28 . 6 666 612 12. 5.4 561 447 477 45.	TT 777 781 33 M12 222 2. 352 363 666 436 2 66 444 2.2
1697 124 477 45 . 177 637 422 2 42 262 .62 2.	TTTTT 94 18 444 3, 2 224 4, 246 522 53. 122 42 256 2.
98 J21 62 3 2.2	TT 772 222 95 15 56 34 443 443 52 453 61. 433 435
547 54 99 A 17 . 23 25 252 666 618 56 3 . 6 2. 7 6 6 323	TTT 6TT 96 A1 422 425 22. 225 72. 222 675 2.2 542 276 22.
	111 1 1 1 97 A28 174 12. 124 4 24 122 142 7.55. 1455 444
	28 52 455 444 52, 22, 666 542 22, 22, 21, 24, 24,
	12 11 19 99 021 24. 24. 23 22 2 45. 2. 6 4. 2 2.
	111 77 2000 NT7
17 111 111 10 128 433 433 33 446 445 5 7 55 464 446 455	17 778 3 2001 014
117 11 111 - F22 65,, L., 566 665 555 775 546 676 655 666	10 10
1 1 1 17 58 M21 655 666 117 655 656 651 77. 7. 566 776 11.	FE \$777 E 00 F6 624 2 566. 221 146 42 1.2
2 M M E22 1708 A 17 776 44. 143 336 665 3. 2 32. 335 246.664 453	\$75 517 500 ML
778 KIL 09 M14 664 452 665 7 37 76 746 654 245	111 M1 171 2005 M31 5 654 556 65, 533
177 7 171 1710 J 10 651 , 15 3 7 615 1 78, 1. 1 52. 117 115	TTT TTT TIL 05 AZ7 322 526544
11 17 40 445 44 46 657 5.5 526 222 442 2	HI 111 111 07 M24 261 14546 546 766 7
12 A 3 2 , 2. , 24 22. , 27 52 64 754 722 2 75	766 662 08 120
	1 775 563 09 117 64 24 7 644 25 2.5 2.2 222 625
	273 28 2010 AB 635 622 3 35 22. 323 222 3 542
	776 228 227 11 59 2. 542 224
	THE BIS 788 12 06 422 456 2. 2 4. , 52. 257 452 264 2. 2
/**	777 778 13 N2 2 24 52 . 254 244 422 . 24 555 455 25.
	237 7 2 2014 N29 455 25 23 44. 224 . 47 562 2 . 2. 224

FIGURE 11

The C9 index during very active periods of the sun. The format is the same as that of this Figure. Left: In the middle period, *two* recurrent geomagnetic storms occurred, indicating that the quasi-sinusoidal curve was present. Right: There were hardly any intense geomagnetic storms during the later part of 1979 and 1980, suggesting also a low speed flow.

of the solar wind. It is hoped that the study presented here is useful in the search of the driving mechanism of the solar wind. *Thus, our future work is to search for the driving process, which can reproduce* Figure 1.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.

Author contributions

Data collaboratively analyzed by both authors. S-IA wrote the document with contributions from L-CL.

Funding

SEISA—funds received for publication fees G0759, 360903-66918.

Acknowledgments

We would like thank both Dr. K. Hakamada and Dr. T. Saito for their work on the solar magneticfield. Without their work, it is not possible to complete the results reported in our paper. No new data set is used in this paper.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Akasofu, S.-I., and Chapman, S. (1972). Solar terrestrial relationship. Oxford, UK: Oxford University Press.

Akasofu, S.-I., Olmstead, C., Saito, T., and Oki, T. (1988). Quantitative forecasting of the 27-day recurrent magnetic activity. *Planet. Space Sci.* 36, 1133–1147. doi:10.1016/0032-0633(88)90068-2

Akasofu, S.-I., Watanabe, H., and Saito, T. (2005). A new morphology of solar activity and recurrent geomagnetic disturbances: The late-declining phase of the sunspot cycle. *Space Sci. Rev.* 120, 27–65. doi:10.1007/s11214-005-8052-3

Akasofu, S. I. (2023). A new understanding of why the aurora has explosive characteristics. *Mon. Not. Roy. Astron.* 518, 3286–3300. doi:10.1093/mnras/stac3187

Cranmer, S. R. (2009). Coronal holes, living rev. Solar Phys.,6, 3. Speed Dur. Minim. between Cycles 23 24 Sol. phys 274, 195–217. https://www.livingrviews.org/lrsp-2009-3.

Gerontidou, M., Mavromichalaki, H., and Daglis, T. (2018). High-speed solar wind streams and geomagnetic storms during solar cycle 24. *Sol. Phys.* 293 (9)–131. doi:10. 1007/s11207-018-1348-8

Guo, W. P., and Wu, S. T. (1998). A magnetohydrodynamic description of coronal helmet streamers containing cavity. *ApJ*. 494, 419–429.

Hoeksema, J. T. (1984). "Structure and evolution of the large scale solar and heliospheric magnetic fields,". Ph.D Thesis (Cambridge, MS, USA: Harvard University).

Kumar, A., and Badruddin, 2002. Study of the evolution of geomagnetic disturbances during the passage of high coronal holes in the solar cycles 2009-2018. *Astrophysics and Space Sci.*, 366 (2) art. No. 21.

Lee, L. C., and Akasofu, S. I. (2021). On the causes of the solar wind: Part 1. Unipolar solar induction currents. *J. Geophys. Space Phys.* 126, 1–8. doi:10.1029/2021JA029358

Linker, J. A., Lionell, R., and Mikic, Z. (2001). Magnetodydrodynamic modeling of prpminence formation within a helmet streamer. J. Geophys. Res. 106, 23165–25175.

McComas, D. J., Angold, N., Eliott, H. A., Livadiotis, G., Schwadron, N. A., et al. (2013). Weakest solar wind of the space age and the current "mini" solar maximum. *ApJ* 779 (10), 2. doi:10.1088/0004-637x/779/1/2

Parker, E. N. (1991). The phase mixing of Alfven waves, coordinated modes and coronal heating. ApJ 376, 355-363. doi:10.1086/170285

Rotter, T., Verrong, A. M., Vrsnk, B., and Vrsnak, B. (2012). Relation between coronal hole areas on the sun and the solar wind parameters at 1 AU. *Sol. Phys.* 281, 793–813. doi:10.1007/s11207-012-0101-y

Saito, T., Oki, T., Akasofu, S.-I., and Olmsted, C. (1989). The sunspot cycle variations of the neutral line on the source surface. *J. Geophys. Res.* 94, 5453–5455. doi:10.1029/ja094ia05p05453

Schwenn, R. (2006). Space weather: The solar perspective. *Living Rev. Sol. Phys.* 3, 2. doi:10.12942/lrsp-2006-2

Sheeley, N. R., Wang, Y.-M., Hawley, S. H., Brueckner, G. E., Dere, K. P., Howard, R. A., et al. (1997). Measurements of flow speeds in the corona between 2 and 30 R_{\odot} . *ApJ*. 484, 472.

Shugai,Yu. S., Veselovsky, I. S., and Trichtchenko, L. D. (2009). Studying correlations between the coronal hole area, solar wind velocity, and local magnetic indices in Canadian region during the decline phase of cycle 23. *Geomagn. Aeron.* 49, 415-424.

Verscharen, D., KristopherKlein, K. G., and Maruca, B. A. (2019). The multi-scale nature of the solar wind. *Living Rev. Sol. Phys.* 165. doi:10.1007/s1116-018-0021-0

Viall, N. M., and Borovsky, J. E. (2020). Nine outstanding questions of solar wind physics. J. Geophys. Res. Space Phys. 125. doi:10.1029/2018JA026005

Wang, Y. M. (2012). Semiempirical models of the slow and fast solar wind. *Space Sci. Rev.* 172, 123–143. doi:10.1007/s11214-010-9733-0

Wu, S. T., Wang, A. H., Plunkett, S. P., and Michels, D. J. (2000). Evolution of global-scale coronal magnetic field due to magnetic reconnection: The formation of the observed blob motion in the coronal streamer belt. *ApJ* 545, 1101–1115. doi:10.1086/317826