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The semi-analytical model (based on the averaging technique) for long-term
orbital evolution has proven to be useful in both astrophysical and astrodynamical
contexts. In this secular approximation, orbits exhibit rich evolutionary behaviors
under the effects of various perturbations. For example, in the hierarchical three-
body systems, the Lidov-Kozai mechanism based on the quadrupole-level third-
body perturbation model can produce large-amplitude oscillations of the
eccentricity and inclination. In recent years, the octupole order has been
found to induce dramatically new features when the perturbing body’s orbit is
eccentric, including extremely high eccentricities and orbit flips between
prograde and retrograde. Motivated by the striking effects of the octupole-
order terms, we intend to derive a more general dynamical model by
incorporating J2 of the central body and the inclined eccentric third-body
perturbation to the hexadecapole order with its non-spherical gravity also
included. This issue can be relevant for astrophysical and astrodynamical
systems such as planets in stellar binaries, irregular satellites in planetary
systems, and artificial probes about binary asteroid systems. Applications to the
binary asteroid system 4951 Iwamoto and a fictitious exoplanetary system are
illustrated as examples to validate our secular model. From these numerical
results, we show the high accuracy of our secular model. Also, we show the
important role of these high-order terms and the effects of the third-body’s
inclination and eccentricity. Besides, we have found several different secular
effects that could drive large eccentricities.
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1 Introduction

The secular perturbation theory was initially motivated by studying planetary and planetary
satellite motions in the Solar system. The launch of artificial satellites in the 1960s, which brought
new challenges and requirements, has sparked modern analyses of this problem. In complex
perturbed environments, the semi-analytical model based on the averaging approach is widely
employed as the standard technique in studying secular evolution, providing analytical insights
into these perturbing effects, which is quite helpful for mission design. For example, orbital
stability analysis (Scheeres et al., 2001; Lara and Juan, 2005; Fu and Wang, 2021), frozen orbit
solutions (Delsate et al., 2010; Ulivieri et al., 2013; Condoleo et al., 2016; Circi et al., 2017), and
orbits with specific evolution performances (Kamel and Tibbitts, 1973; Liu et al., 2010) have been
extensively studied, and relevant results have been applied to a wide range of space missions, as
well as lifetime reduction of space debris (Wang and Gurfil, 2016; Wang et al., 2020).
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The motion of the hierarchical three-body system, in which the
inner two bodies are orbited by an outer body in a wider orbit, is one of
the most common problems in astrophysical and astrodynamical
contexts. In astrodynamical settings, one of the inner bodies
(generally, the spacecraft) can be considered massless, and its
motion is dominated by the gravity of the central body and
perturbed by the outer body (i.e., the third body or the perturbing
body). Considering a highly hierarchical three-body system, the
quadrupole level of approximation (also known as the Hill
approximation, truncated to the second order of the semimajor axis
ratio) is generally retained. In this approximation, based on the
framework of the circular restricted-three body problem, both Lidov
(1963); Kozai (1962) found that the system is axisymmetric after the
double averaging over the inner and outer orbits, leading to the
conservation of the z-component of the angular momentum of the
inner orbit and, thereby, the integrability of this system. In particular,
when the orbit inclination is above the critical inclination (~39.2°), the
eccentricity and inclination undergo long-periodic, large-amplitude
oscillations. In the following decades, many studies have been
devoted to this problem. Allan and Cook (1963) studied the orbital
plane precession of circular orbits. The secular effect of the lunisolar
perturbation on high-altitude earth satellites was analyzed (Broucke,
2003; De Moraes et al., 2008). The analytical solutions expressed in
terms of Jacobi elliptic functions (Šidlichovskyý, 1983; Kinoshita and
Nakai, 1991; Kinoshita and Nakai, 1999; Kinoshita and Nakai, 2007) or
only simple trigonometric and hyperbolic functions (Lubow, 2021)
were derived. By using the vectorial approach, Lara et al. (2020)
developed the formulas for the expansion of the third-body
disturbing function up to an arbitrary order, as well as long-term
equations of motion by single averaging over the inner orbit.

We note that there are other two subcases in which the system
exhibitsmore complex evolutionary behaviors but is still integrable based
on a similar mechanism as the Lidov-Kozai ones (i.e., axisymmetry).

1) When the oblateness of the central body is further included but
assuming a coplanar geometry (i.e., the perturbing body lies in
the central body’s equator) (Kozai, 1969; Scheeres et al., 2001;
Delsate et al., 2010; Fu and Wang, 2021). It has been found that
the oblateness has changed the phase structures of the orbital
dynamics by introducing new equilibrium points, and the critical
inclination of the orbital stability changes as a function of the
ratio between the perturbing forces of the oblateness and the
third-body gravity (namely, the oblateness-related coefficient, κ,
defined later) (Scheeres et al., 2001; Delsate et al., 2010).

2) The quadrupole-order approximation of the eccentric third-body
perturbation (Lidov, 1963; Delsate et al., 2010; Naoz et al., 2013).
That is, in the quadrupole-level model, even though the perturbing
body is eccentric, the system is integrable. The eccentricity of the
perturbing body only induces a small modification in the period of
the eccentricity oscillation (De Moraes et al., 2008). However, this is
an erroneous conclusion because the quadrupole level
approximations have covered up the asymmetry of the system by
the exclusion of the argument of perigee of the perturbing body’s
orbit (which can be corrected by the octupole order). It has been
found that the octupole order can cause a slow, cyclic modulation of
the Lidov-Kozai cycles, resulting in orbitflips of the inner orbit (Katz
et al., 2011; Lithwick and Naoz, 2011; Naoz, 2016), as well as chaotic
motions (Li et al., 2014).

In fact, relaxing either one of the two assumptions (coplanarity or
quadrupole-order approximation) will break the integrability of the
system and thus lead to qualitatively different evolution behaviors.
First, consider an inclined third-body perturbation. Different from
the eccentric third-body perturbation problem, there is no special
integral of motion in the quadrupole-level model compared to the
higher-level models. Actually, only two integrals exist: the semi-major
axis and the double-averaged perturbing potential (or the double-
averaged Hamiltonian). There are only a few studies contributing to
studying the secular evolution including the inclination of the perturbing
body, and most of them were based on the quadrupole-order
approximation (Yokoyama, 1999; Liu et al., 2012; Circi et al., 2017;
Nie et al., 2019;Nie andGurfil, 2021). Yokoyama (1999) pointed out that
the high third-body inclination, with J2 of the central body included, can
produce strong chaotic motions and large eccentricities. Liu et al. (2012)
and Nie et al. (2019) have developed a double-averaged model with the
perturbing body in an eccentric and inclined orbit. However, although
they assume an inclined eccentric perturbing body, the central body’s
oblateness is not included, which, actually, can be related to the classical
Lidov-Kozai mechanism via a coordinate transformation. Moreover,
since the secularmodel is based on the quadrupole-order approximation,
the critical features of the third-body eccentricity induced by the octupole
order are not really included in their models. Then, consider a
moderately hierarchical three-body system with an eccentric
perturbing body. As stated above, when the perturbing boy’s orbit is
eccentric, the quadrupole-order approximation is not enough to describe
the secular dynamics and the octupole order is required. In the octupole-
level model, the system can be very chaotic and extremely high
eccentricities can be excited. In particular, the inner orbit can flip its
orientation between prograde and retrograde periodically, accompanied
by the eccentricity extremely approaching unity. This secularmechanism
is also referred as the eccentric Lidov-Kozai effect (Naoz et al., 2011;
Naoz, 2016). Beyond the octupole order, Naoz et al. (2013) point out that
higher orders are expected to induce no more dramatic qualitative new
features since the integrals of motion remain the same as the octupole
order when moving to the higher orders. However, important
modifications are possible. Carvalho et al. (2016) extended the
perturbing potential to the hexadecapole and dotriocontupole orders
and showed the importance of these high-order terms in changing the
inversion times of the flip. Will (2017) presented the complete secular
equations for both the inner and outer orbits to the hexadecapole order
in classical orbit elements. He found that if the system has an equal-mass
inner binary, the hexadecapole terms can alone generate orbit flips.

As a consequence, both the inclination and eccentricity of the
perturbing body can break the integrability of the classical Lidov-Kozai
mechanism. To the best of our knowledge, the two effects have been
studied separately, but their joint effects have never been focused.
Although several studies considered the eccentricity and inclination
of the perturbing body simultaneously, they either focused on the
quadrupole level of approximation, actually neglecting the critical
effects of the third-body’s eccentricity, or they did not consider the
central body’s oblateness, where the third-body’s inclination is actually a
problem of coordinate selection.

On the other hand, in the astrophysical context, the discoveries of
exoplanetary systems recently have promoted research into this
problem (Tokovinin, 2014; Wang et al., 2015; Naoz, 2016; Moe and
Kratter, 2021). Compared to the planets in the Solar system with nearly
circular and coplanar configurations, the exoplanet systems are found to
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possess rich geometric architectures, such as eccentric and/or inclined
planetary orbits as well as significant stellar oblateness and obliquity
(Winn and Fabrycky, 2015). In recent years, dynamical behaviors
involving highly eccentric orbits have been invoked to explain a
wide range of astrophysical phenomena. For example, at the
octupole order (i.e., third order of the semi-major axis ratio), the
eccentric outer orbit can drive the inner orbit into extremely high
eccentricities, and the sequent tidal dissipation near the pericenter
rapidly circularizes that orbit, forming short-period even retrograde
planets (Naoz et al., 2011; Naoz et al., 2013; Naoz, 2016). It has also been
recently found that the oblateness of a rapidly rotating host star may be
responsible for the largemutual inclinations of the exoplanetary systems
(Li et al., 2020; Spalding and Millholland, 2020).

Therefore, we see that in a wide array of astrophysical and
astrodynamical systems, the two effects can be simultaneously
significant and strongly coupled. Concerning this, in this paper, we
intend to develop a secular model including the perturbations of the
central body’s oblateness and the gravity of an inclined eccentric
perturbing body to the hexadecapole order (i.e., the fourth order of
the semi-major axis ratio). In particular, the non-spherical gravity of the
perturbing body is also incorporated to be applicable for asteroid
systems. In order to simplify expressions, we formulate the equations
of motion in terms of vectorial elements.

In what follows, we show the applications of our secular model to
the binary asteroid system 4951 Iwamoto and a fictitious astrophysical
system with assumed parameters to demonstrate its validity and to
present some numerical results. Binary asteroid systems are pretty
common in the solar asteroid population. About 16 per cent of near-
Earth asteroids andmain-belt asteroids with diameters below 10 km are
binary systems. In recent years, many studies have been devoted to
studying the orbital dynamics about these systems, including
equilibrium and stability, as well as periodic orbits and invariant
manifolds based on the restricted full three-body problem (Bellerose
and Scheeres, 2008; Chappaz & Howell, 2015; Dell’Elce et al., 2017; Shi
et al., 2019; Shi et al., 2020; Zhang et al., 2020; Li et al., 2021). Recently,
Wang and Fu (2020) and Fu andWang (2021) have extended the semi-
analytical orbital theory to an orbiter of a binary asteroid system,
assuming a coplanar and circular configuration, by retaining the third-
body gravity to the hexadecapole order and including the non-spherical
third-body gravity.

This paper is organized as follows. In Section 2, we present the exact
Newtonian equations and the double-averaged equations to the
hexadecapole order. The process of performing the double
averaging, in the form of the vectorial elements, over the inner and
outer orbits is elaborated. Next, we extend the hexadecapole-level model
to include the non-spherical terms of the third-body gravity in Section
3. Then, we discuss a few applications in Section 4. We compare the
different levels of approximation equations with the full equations to
validate our semi-analytical model and to show some secular
evolutionary behaviors. Finally, we conclude the paper in Section 5.

2 Double-averaged model to the
hexadecapole order

In this Section, we derive the secular model of the hierarchical
restricted three-body system beginning with the full Newtonian
equations of motion. By using Legendre polynomials, the

disturbing function of the perturbing body is truncated to the
hexadecapole order. Then, the average over the inner and outer
orbits is performed to filter out the high-frequency variations,
arriving at equations that capture the secular orbital evolutions.
The averaging results and the final equations are given in terms of
the vectorial elements, where the mutual inclination between the
central body’s equator and the perturbing body’s orbit is implied
in the directions of these vectors.

2.1 Full equations of motion

The considered three-body system consists of a massless particle
in a close orbit around the central body orbited by a perturbing body
in a wider inclined and eccentric orbit (see Figure 1). In this part, the
perturbing and the perturbed bodies are assumed to be point masses
(the perturbing body in Figure 1 is depicted as an ellipsoid for later
purposes), and the central body is an oblate spheroid. We choose the
central body’s equatorial plane as the reference plane (the mutual
orbit plane of the two massive bodies undergoes secular evolution
when their non-spherical gravity is included and is therefore not
suitable for the reference plane). The inertial reference frame x, y, z{ }
is established with the origin located at the mass center of the central
body and with the x − y plane lying in the reference plane, the x
-axis initially along the nodal line of the perturbing body’s orbit, and
the z-axis along the pole of the central body. For convenient, we
represent the perturbing body’s orbital coordinate system as
êB, ê⊥B, ĥB{ } (the superscript denotes unit vector) where eB is the
orbit eccenrticity vector pointing to the periapse, hB is the
normalized orbit angular momentum vector, and ê⊥B complete
the righ-hand coordinate system. If we ignore the evolution of
the perturbing body’s orbit, this frame is also inertially fixed.
Similarly, the particle’s orbital coordinate system can be denoted
as ê, ê⊥, ĥ{ }.

The perturbation effects of the perturbing body’s gravity on the
particle can be stated in the potential form (called the disturbing
function) as

RPB � μB
1

r − rB| | −
rB · r
r3B

( ) (1)

where μB � GmB is the perturbing body’s gravitational parameter; rB
and r are the position vectors of the perturbing body and the particle
with respect to the central body’s mass center, respectively.

In hierarchical systems, the disturbing function can be expanded
into an infinite series in the form of Legendre polynomials as

RPB � μB
rB

∑∞
n�2

r

rB
( )n

Pn r̂ · r̂B( ) (2)

where Pn(x) are the Legendre polynomials about x. According to
this formula, the disturbing function can be approximated by
truncating the expansion to an arbitrary order, among which the
lowest-order approximation, i.e., the quadrupole order, is most
widely used in previous studies. However, if the three-body
system is not highly hierarchical, especially when considering an
eccentric perturbing body, the next several higher orders may be
surprisingly important. To this end, here, we truncate the expansion
to the hexadecapole order as
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RPB � − μB
2rB

{ r

rB
( )2

3 r̂B · r̂( )2 − 1[ ] + r

rB
( )3

5 r̂B · r̂( )3 − 3 r̂B · r̂( )[ ] + r

rB
( )4

35 r̂B · r̂( )4 − 30 r̂B · r̂( )2 + 3[ ]}
(3)

The disturbing function of the oblateness of the central body can
be represented by the gravitational coefficient J2 as

RJ2 �
μAJ2r

2
E

2r3
1 − 3 r̂ · z( )2[ ] (4)

where μA � GmA is the gravitational parameter of the central body
and rE is its mean radius.

Then, the full Newtonian equations of motion, including
perturbations of the central body’s oblateness and the third-body
gravity, written in the inertial reference frame, are given as

€r � −μA
r3

r + zRJ2

zr
+ zRPB

zr
(5)

where the disturbing functions RPB and RJ2 are given in Eqs. 1 and 4.
If we replace the RPB in Eq. 5 with that in Eq. 3, we can obtain the
hexadecapole-order (non-averaged) equations.

2.2 Semi-analytical model

In order to reduce the degrees of the system and provide
analytical insight into the perturbation effects, the averaging
method is proposed to eliminate the short-period terms and
derive the equations that capture the long-term evolution of the
system. According to the Krylov–Bogoliubov–Mitropolski
method of averaging (Bogoliubov and Mitropolsky 1961;
Rosengren, 2014), the averaging of the disturbing function is
defined as

�R α( ) � 1
2π

∫2π
0

R α,M( )dM (6)

where α denotes the orbital elements except the mean anomaly M,
which is proportional to time.

The validity of the averaging requires that α is nearly constant in
the integration process. Physically, it requires the perturbation
forces to be sufficiently small so that it follows a Keplerian orbit

within one orbital period. In addition, in the current system, there
are two frequencies related to the inner and outer orbital motion
respectively. Then, it also requires that the two frequencies are away
from each other and there is no resonance between them (the
averaged model is not applicable when mean motion resonance
occurs). The mean motions of the inner and outer orbits are given as

n �
�����
μA/a3√

(7)
NB �

������
μAB/a3B√

(8)

where a is the inner orbit semimajor axis; μAB � G(mA +mB); aB is
the perturbing body’s semimajor axis. In the previous studies
treating highly hierarchical systems, the conditions of the
averaging are rarely discussed in detail. However, considering a
stronger perturbed system with moderate hierarchy, these will be no
longer negligible. In dealing with secular dynamics of a orbiter of an
binary asteroid system, Wang and Fu (2020) have investigated the
specific conditions of the averaging for systems with combined
effects of the central body’s oblateness and third-body gravity.
They concluded that, approximately, the perturbing forces should
not exceed 1 per cent of the dominated central body’s gravity, and
n/NB should be less than 0.4. Therefore, for a given three-body
system possessing the geometry in Figure 1, one can easily determine
the range of the orbital altitude that ensures the reliability of the
averaging. In the following calculations, we assume the averaging is
performed within the valid range of the orbital altitude.

By the averaging theory, the secular Lagrange planetary
equations in terms of vector elements, taking the compact and
symmetrical form, are given by

_h � h ×
z�R′
zh

+ e ×
z�R′
ze

_e � e ×
z�R′
zh

+ h ×
z�R′
ze

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (9)

where �R′ is the averaged disturbing function scaled by
����
μAa

√
(where

a is constant in the averaged dynamics); h � H/
����
μAa

√
is the scaled

orbit angular momentum; e is the eccentricity vector. h and e in Eq. 9
denote mean elements (we drop the over bar for simplicity).

FIGURE 1
Geometry of the three-body system.
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In the hierarchical three-body systems, as stated above, there are
two timescales associated with the orbital motion n and NB

respectively. Under certain conditions, averaging over the two
timescales is feasible. We perform the first averaging over the
mean anomaly of the inner orbit. The quadrupole order in Eq. 3
is averaged as

�RQua � − μB
2r3B

3r̂B · rr( ) · r̂B − r2[ ] (10)

where the product of arbitrary two vectors ab is called a dyad and, in
the language of the matrix algebra, is equivalent to [a][b]T. The
related terms are averaged as (Rosengren and Scheeres, 2013)

r2 � a2 1 + 3
2
e2( ) (11)

rr � 1
2
a2 1 + 4e2( )êê + 1 − e2( )ê⊥ê⊥[ ] (12)

Substituting Eqs. 11–12 into Eq. 10, disregarding the irrelevant
constant terms and scaling to

����
μAa

√
, we have

�RQua
′ � 3μB

4nr3B
5 r̂B · e( )2 − r̂B · h( )2 − 2e2[ ] (13)

by virtue of the dyadic identity êê + ê⊥ê⊥ � I − ĥĥ in which I
denotes the identity matrix.

Averaging of the octupole-order terms in Eq. 3 requires
(Rosengren, 2014)

�r � −3
2
ae (14)

r2r � −5
8
a3 4 + 3e2( )e (15)

rrr � −5
8
a3e 3 + 4e2( )êêê + 1 − e2( ) ê⊥ê⊥ê + êê⊥ê⊥ + ê⊥êê⊥[ ]{ } (16)

where the product of three vectors abc is called a triad. To illustrate
how it is calculated with other vectors, considering the averaging of
(r̂B · r)3 and by Eq. 16, we have

r̂B · r( )3 � −5
8
a3 7 r̂B · e( )3 + 3 r̂B · e( ) h2 − r̂B · h( )2[ ]{ } (17)

by dotting r̂B with each of the vector elements in each triad on the
right-hand side of Eq. 16. Through Eqs. 14–17, the octupole order is
averaged as

�ROct
′ � − 5μBa

16nr4B
35 r̂B · e( )3 + 3 1 − 8e2( ) r̂B · e( ) − 15 r̂B · e( ) r̂B · h( )2[ ]

(18)
The averaging of the hexadecapole order follows a similar

procedure and is elaborated in Appendix B. Then, combining
Eqs. 10 and 18, and (B5), the single-averaged third-body
disturbing function to the hexadecapole order is given as

�RPB
′ � �RQua

′ + �ROct
′ + �RHex

′ (19)
Performing the averaging over the disturbing function of the

central body’s oblateness, Eq. 4, gives

�RJ2 �
μAJ2r

2
E

2
3z · r̂r̂

r3
( ) · z − 1

r3
( )⎡⎣ ⎤⎦ (20)

in which, we note

1
r3

� 1
a3h3

(21)
r̂r̂
r3

( ) � 1
2a3h3

I − ĥĥ( ) (22)

Then, yields

�RJ2
′ � nJ2r2E

4a2h3
3 z · ĥ( )2 − 1[ ] (23)

Finally, by substituting Eqs. 19–23 into the secular Lagrange
planetary equations, Eq. 9, the single-averaged equations of
motion in terms of h and e, with the combined effects of the
third-body gravity and the central body’s oblateness, can be
obtained (we do not show the explicit expressions here and
please refer to Wang and Fu (2020) if necessary). The single-
averaged dynamical model is derived by only averaging over the
orbital motion of the inner orbit. That is, this model provides
chance to study the resonance between the secular precession of
the inner orbit and the mean motion of the outer body. On the
other hand, the single-averaged model may be significantly more
accurate than the double-averaged model in certain conditions
(Wang and Gurfil, 2016; Nie et al., 2019; Carvalho et al., 2022).

Here, we do not discuss the applications of the single-averaged
model and directly perform the second averaging over the outer
orbit. Since the inclination and eccentricity of the perturbing body
are included, the second-averaged disturbing functions would be
different from previous studies that assuming a coplanar and
circular configuration (Rosengren and Scheeres, 2013; Fu and
Wang, 2021). The eccentricity eB and inclination iB are implied
in the vectorial elements eB and hB.

The second averaging of the quadrupole-order approximation,
Eq. 13, is given as

R
�
Qua
′ � 3μB

4n
5e · r̂Br̂B

r3B
( ) · e − h · r̂Br̂B

r3B
( ) · h − 2e2

1
r3B

( )⎡⎣ ⎤⎦ (24)

in which we note

1
r3B

� 1

aB3hB
3 (25)

r̂Br̂B
r3B

( ) � 1

2aB3hB
3 I − ĥBĥB( ) (26)

and thus, we have

R
�
Qua
′ � 3μB

8n
1

a3Bh
3
B

e2 − 5 e · ĥB( )2 − h2 + h · ĥB( )2[ ] (27)

This is the classical double-averaged third-body disturbing
function in the Hill approximation in vectorial elements.
Substituting it into the Lagrange planetary equations, Eq. 9, the
quadrupole-level equations of motion are derived as

_hQua � 3μB
4n

1
a3Bh

3
B

5 e · ĥB( )ĥB × e − h · ĥB( )ĥB × h[ ] (28)

_eQua � 3μB
4n

1
a3Bh

3
B

2h × e + 5 e · ĥB( )ĥB × h − h · ĥB( )ĥB × e[ ] (29)

Note that, although we have included the eccentricity of perturbing
body’s orbit, there is no components along êB or ê⊥B, which yields a
dynamical axisymmetry about the pole of the perturbing body’s
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orbital plane (i.e., ĥB), leading to the conservation of the z-
component of the inner orbit’s angular momentum.

The second averaging over the octupole order, Eq. 18, requires

r̂B
r4B

( ) � eB
aB4hB

5 (30)

r̂Br̂Br̂B
r4B

( ) � eB
4aB4hB

5 3êBêBêB + ê⊥Bê⊥BêB + êBê⊥Bê⊥B{ +ê⊥BêBê⊥B}
(31)

and through which, we have

R
�
Oct
′ � −5μBa

64n
eB

a4Bh
5
B

105 e · êB( ) e2 − e · ĥB( )2[ ] + 12 1 − 8e2( ) e · êB( ){ + 30 e · ĥB( ) h · êB( ) h · ĥB( )
−15 e · êB( ) h2 − h · ĥB( )2[ ]}

(32)

The secular equations of motion in the octupole order are thus
given as

_hOct � −15μBa
64n

eB
a4Bh

5
B

−10 e · ĥB( ) h · ĥB( )êB × h{ − 10 e · ĥB( ) h · êB( ) + e · êB( ) h · ĥB( )[ ]ĥB × h

+ 35 e · ĥB( )2 − 5 h · ĥB( )2 − 8e2 + 1[ ]êB × e+10 7 e · êB( ) e · ĥB( ) − h · êB( ) h · ĥB( )[ ]ĥB × e}
(33)

_eOct � −15μBa
64n

eB
a4Bh

5
B

−10 e · ĥB( ) h · ĥB( )êB × e − 10 e · ĥB( ) h · êB( ) + e · êB( ) h · ĥB( )[ ]ĥB × e{
+ 35 e · ĥB( )2 − 5 h · ĥB( )2 − 8e2 + 1[ ]êB × h + 10 7 e · êB( ) e · ĥB( )[ − h · êB( ) h · ĥB( )]ĥB × h

+16 e · êB( )h × e}
(34)

Note that if eB � 0, the octupole order vanishes. When eB > 0, the
components along êB violate the axisymmetry of the third-body
perturbation predicted by the quadrupole-level model. As a
result, the system is no longer integrable and the octupole
order qualitatively changes the secular evolutionary behaviors
of the system.

The second averaging and the corresponding secular equations
of the hexadecapole order are presented in Supplementary Appendix
B. As we can see, they also contain components in the êB direction,
but when eB � 0, these terms disappear and the axisymmetry is
retrieved. It turns out that the axisymmetry only holds in the limit of
a massless particle perturbed by a third body on a circular orbit
(Naoz et al., 2013).

Finally, applying the averaged disturbing function of the
oblateness to the secular equations, we obtain

_hJ2 � −3nJ2r
2
E

2a2h5
z · h( )z × h (35)

_eJ2 �
3nJ2r2E
4a2h5

1 − 5
h2

z · h( )2[ ]h × e + 2 z · h( )z × e{ } (36)
So far, we have obtained the complete double-averaged equations of
motion, including the secular effects of the central body’s oblateness
and the third-body gravity (to the hexadecapole order), in the form
of vector elements, as

_h � _hJ2 + _hQua + _hOct + _hHex

_e � _eJ2 + _eQua + _eOct + _hHex
{ (37)

In order to simplify the analysis of the perturbing effects of different
perturbing forces, we rewrite the resultant double-averaged
disturbing function as

R
�
′ � εJ2 �RJ2

* + εPB R
�
Qua
* + εOctR

�
Oct
* + εHexR

�
Hex
*[ ] (38)

where εJ2 and εPB are the coefficients of the oblateness and the
quadrupole-level third-body gravity respectively, defined as

εJ2 �
nJ2r2E
a2

(39)

εPB � μB
n

1
a3Bh

3
B

(40)

εOct and εHex are the octupole and hexadecapole order coefficients
respectively, defined as ratio of the octupole and hexadecapole order
to the quadrupole order

εOct � εOct
εPB

� a

aB

eB
h2B

(41)

εHex � εHex

εPB
� a2

a2B

1

1 − e2B( )2 (42)

To eliminate an extra parameter, we divide the disturbing function
by the coefficient εPB,

R
� � κ�RJ2

* + R
�
Qua
* + εOctR

�
Oct
* + εHexR

�
Hex
* (43)

where κ is defined as the ratio of the oblateness perturbation to the
third-body perturbation

κ � εJ2
εPB

� mA

mB

J2r2E
a2

a3Bh
3
B

a3
(44)

The equations of motion for the disturbing function Eq. 43 is
equivalent to apply a new rescaled time to Eq. 37. The rescaled
time is defined as

τ � t × εPB (45)
where t is the true time. As a consequence, the double-averaged
equations of motion with respect to the rescaled time τ are written as

_h � κ _hJ2
* + _hQua

* + εOct _hOct
* + εHex

_hHex
*

_e � κ _eJ2
* + _eQua

* + εOct _eOct
* + εHex _eHex

*{ (46)

The coefficients κ and εOct and the parameter iB can be used to
characterize the secular evolution of the system (the
hexadecapole order εHex typically has smaller effects). (1) For
the special cases with iB � 0, if we take κ � 0 (εJ2 � 0, namely, only
the third-body perturbation included), it degenerates into the
classical Lidov-kozai mechanism (εOct ~ 0) or the eccentric
Lidov-Kozai effects (εOct > 0); if we take κ → ∞ (εPB � 0,
i.e., only the oblateness effects considered), we have the well-
known J2 -perturbed problem. Delsate et al. (2010) has
conducted a global analysis on the phase structures of the
secular dynamics of the integrable case where J2 and the
third-body perturbation are included but assuming
iB ~ εOct ~ 0. On the other hand, it indicates that, when
εOct > 0.01, the octupole order is non-negligible and typically
leads to qualitatively new features such as orbit flips (Lithwick
and Naoz, 2011). (2) When iB > 0, the misalignment between the
central body’s pole and the perturbing body’s orbit angular
momentum also induces new behaviors, but in a much
different way (Yokoyama, 1999). That is, both εOct and iB
qualitatively change the global behavior of the mentioned
integrable case, and it would be interesting to view their
combined secular effects.
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3 Secular dynamics with the non-
spherical third-body gravity

In this part, we perform an extension of the dynamical model to
include the non-spherical gravity of the perturbing body. In the
moderately hierarchical three-body systems, such as orbits around
one member of a binary asteroid system, the perturbing body’s non-
spherical gravity may become important, especially when the
eccentricities of the inner and outer orbits bring two of the
bodies to close approaches.

3.1 The massive two-body model

Observations indicate that small binary asteroid systems typically
contain a fast-spinning, flattened primary and a synchronously rotating,
elongated secondary (Ćuk and Nesvorný, 2010). This is the natural
outcome of the rotation-fission formation theory based on the
Yarkovsky-Radzievskii-Paddack effect (YORP) and the evolution
mechanism due to the mutual body tides (Jacobson, 2011).
Therefore, it is feasible to make some assumptions about these
systems so as to provide analytical insights into the secular
dynamics: (1) modeling the primary as an oblate spheroid and the
secondary as a triaxial ellipsoid, both rotating around their maximum
inertial axis; (2) assuming the secondary is in a 1:1 spin-orbit resonance
and the primary lying along its minimum inertial axis, i.e., the long-axis
configuration (Scheeres, 2013); and (3) considering the secondary in an
inclined and eccentric orbit around the primary (Figure 1). This similar
model has been employed in many previous studies in investigating the
general dynamics of a binary asteroid system as well as an artificial
orbiter, with the massive two bodies restricted to planar motion
(Bellerose and Scheeres, 2008; Chappaz and Howell, 2015; Dell’Elce
et al., 2017; Wang and Hou, 2020; Wang and Fu, 2020; Fu and Wang,
2021). However, the non-planar oblate spheroid-ellipsoid
configuration, i.e., including the inclination of the mutual orbit
relative to the primary’s equator, has seldom been focused.

One remark is that when the synchronously rotating secondary is in
an eccentric orbit, there is a critical orbit eccentricity and a libration
amplitude of the secondary beyond which the 1:1 spin-orbit resonance
is unstable (Wang andHou, 2020). In the present paper, we consider the
mutual orbit eccentricity lower than the critical value but ignore the
libration angle. This is feasible because, as we will show later, the non-
spherical gravity terms of the secondary appear as “hexadecapole order”
(Eq. 57), and the effect of the libration angle is believed to be even higher
order and thus can be neglected.

On the other hand, although evidence implies that synchronous
secondary generally has a small orbit eccentricity (Pravec et al., 2016;
Wang and Hou, 2020), the lower hierarchy of these systems causes
the octupole order to be significant. That is, the effects of the
secondary’s eccentricity are amplified in the binary asteroid
systems compared to those in highly hierarchical systems (such
as the Orbiter-Mercury-Sun system).

Considering the two massive bodies in an arbitrary
configuration (Figure 2), with the axes of their body-fixed
frames along their principle axes of inertial, the second
degree and order mutual potential is written as (Wang and
Fu (2020))

U rB,C( ) � −GmAmB

rB
+ GmAmB

2r3B
τ0A − 3τ0A r̂B · z( )2 + τ0B{

−3τ0B r̂B · γ( )2 − 6τ2B r̂B · α( )2 − r̂B · β( )2[ ]} (47)

where τ0A � C20,AR2
A (J2 � −C20), τ0B � C20,BR2

B, and τ2B � C22,BR2
B,

in which RA and RB are the mean equatorial radius, and C20 and C22

are the coefficients of the second degree and order gravity; C �
[α, β, γ] is the secondary’s attitude matrix relative to the primary, or,
since the rotation of the primary is trivial, we define C as the
transform matrix from the secondary’s body-fixed reference frame
u, v,w{ } to the primary centered inertial reference frame x, y, z{ }
(see Supplementary Appendix A).

Then, in the synchronous configuration where rB and u are
aligned (see Figure 1), the mutual potential is reduced to

U rB( ) � −GmAmB

rB
+ GmAmB

2r3B
τ0A − 3τ0A r̂B · z( )2 + τ0B − 6τ2B[ ]

(48)
Since the relative attitude of the two bodies is fixed (we assume
that the slow precession of the mutual orbit does not break this
equilibrium configuration), the relative motion of the two
bodies, under their mutual gravitation, can be modeled as the
perturbed Keplerian two-body problem, in which the
perturbation is their non-spherical mutual gravity. The
relative motion is governed by

€rB � −μAB
r2B

r̂B

+3μAB
2r4B

τ0A 1 − 5 r̂B · z( )2( )r̂B + 2 r̂B · z( )z[ ] + τ0B − 6τ2B( )r̂B{ }
(49)

where μAB � G(mA +mB). Then, we perform averaging over the
mutual orbit, and by the Lagrange planetary equations in terms of
classical elements, the secular equations of motion are given as

_aB � _iB � _eB � 0 (50)
_ΩB � 3nBτ0A

2a2B 1 − e2B( )2 cos iB (51)

_ωB � 3nB
4a2B 1 − e2B( )2τ0A 1 − 5cos iB( ) − 2

τ0B − 6τ2B
τ0A

[ ] (52)

FIGURE 2
Spheroid-ellipsoid two-body configuration.
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As we can see, the shape of the secondary’s orbit is unchanged but its
orientation undergoes precession due to the secular evolution of the
argument of perigee ωB and longitude of the ascending node ΩB.
Note that the precession ofΩB is caused by the primary’s oblateness,
while the evolution of ωB is a joint effect of the primary’s and
secondary’s non-spherical gravity. Given the initial orbital
conditions, ΩB and ωB vary linearly with time, and we can easily
add them into the particle’s orbital motion equations.

3.2 Equations with the non-spherical third-
body gravity

We consider the orbital dynamics around the primary (an oblate
spheroid) with the secondary (an ellipsoid) as the perturbing body.
As is known, the third-body perturbing acceleration is the difference
between the absolute acceleration that the particle feels and the
absolute acceleration that the central body feels

aPB � aB − aB−A (53)
where aB is given as

aB � −μB
ρ2
ρ̂ + 3μBτ0B

2ρ4
1 − 5 ρ̂ · w( )2[ ]ρ̂ + 2 ρ̂ · w( )w{ }

−3μBτ2B
ρ4

5 ρ̂ · u( )2 − ρ̂ · v( )2[ ]ρ̂ − 2 ρ̂ · u( )u − ρ̂ · v( )v[ ]{ }
(54)

in which ρ � r − rB; from Eq. 48, aB−A is given as

aB−A � μB
r2B
r̂B − 3μB

2r4B
τ0A 1 − 5 r̂B · z( )2[ ]r̂B + 2 r̂B · z( )z{ }

−3μB
2r4B

τ0B − 6τ2B( )r̂B (55)

For use in perturbation analysis, it is convenient to recast aPB as a
disturbing function

RPB � μB
r − rB| | −

μBτ0B
2 r − rB| |3 1 − 3

r · γ( )2
r − rB| |2[ ] + 3μBτ2B

r − rB| |5 r − rB( ) · α( )2 − r · β( )2[ ]
−μB
r2B

r̂B · r( ) + 3μBτ0A
2r4B

1 − 5 r̂B · z( )2[ ] r̂B · r( ) + 2 r̂B · z( ) z · r( ){ }
+3μB
2r4B

τ0B − 6τ2B( ) r̂B · r( ) (56)

Substituting RPB in Eq. 56 into Eq. 5, we obtain the extended full
equations of motion including the non-spherical third-body gravity.

Then, by using Taylor expansion in terms of (r/rB) and truncated to
the hexadecapole order, the disturbing function is approximated as

RPB � − μB
8rB

4 r/rB( )2 3 r̂B · r̂( )2 − 1[ ]{ + 4 r/rB( )3 5 r̂B · r̂( )3 − 3 r̂B · r̂( )[ ]
+ r/rB( )4 35 r̂B · r̂( )4 − 30 r̂B · r̂( )2 + 3[ ]}
−3μB
2rB

τ0Ar

r3B
1 − 5 r̂B · z( )2[ ] r̂B · r̂( ) + 2 r̂B · z( ) r̂ · z( ){ }

+ 3μB
4rB

τ0Br
2

r4B
5 r̂B · r̂( )2 − 2 r̂ · γ( )2 − 1[ ]

−3μB
2rB

τ2Br
2

r4B
17 r̂B · r̂( )2 − 2 r̂ · β( )2 − 5[ ]

(57)

The terms in the first curly brace correspond to the point mass
gravity, which is also given in Eq. 3. The other terms are the

contributions of the non-spherical gravity of the two massive
bodies. As is clear, if the two massive bodies are fairly oblate or
elongated, the strength of the primary’s oblateness, represented by
τ0A, may be comparable to the point mass’s octupole order, while the
secondary’s second degree and order gravity, τ0B and τ2B, is
comparable to the hexadecapole order. However, in general cases,
these non-spherical terms are smaller than other terms of the same
corresponding order.

Calculating the averaging of these non-spherical terms is similar
to those in Section 2.2, and for brevity, we illustrate them in
Supplementary Appendix C. Finally, we obtain the extended
double-averaged equations of motion as

_h � κ _hJ2
* + _hQua

* + εOct _hOct
* + εNOct

_h
N

Oct( ) + εHex
_hHex
* + εNHex,0

_h
Np

Hex,0 + εNHex,2
_h
Np

Hex,2( )
_e � κ _eJ2

* + _eQua
* + εOct _eOct

* + εNOct _e
Np
Oct( ) + εHex _eHex

* + εNHex,0 _e
Np
Hex,0 + εNHex,2 _e

Np
Hex,2( )

⎧⎪⎨⎪⎩
(58)

where εNOct � −τ0A/a2 × εOct, εNHex,0 � −τ0B/a2 × εHex, and εNHex,2 �
τ2B/a2 × εHex are the coefficients of the non-spherical effects of
the third-body perturbation.

4 Numerical results

We discuss two typical applications in this Section to
demonstrate the obtained secular models and compare their
performances at different levels of approximation. First, we apply
the secular model to a small-scale binary system, the binary asteroid
system, where the system is not highly hierarchical, and the high-
order terms and the non-spherical gravity of the perturbing body
may be significant. Then, we turn to the large-scale astrophysical
systems, where the inclination and eccentricity of the perturbing
body may have more critical effects than the hexadecapole terms. By
the way, a systematic study of the secular dynamics of such systems
is complicated and will be the focus of our future work.

4.1 Applications to the binary asteroid
systems

The applications to the binary asteroid system 4951 Iwamoto
are illustrated as an example to validate our double-averaged
model and to present numerical results. Observations indicate
that 4951 Iwamoto is a doubly synchronous binary asteroid
system with a period of 118 h (Pravec et al., 2016). The
diameters of the primary and secondary are inferred to be
5.52 km and 3.34 km, respectively, and the secondary is about
31 km from the primary. Since further information is still
unknown, some assumptions are made on the physical and
orbital characteristics of the binary system, as shown in
Table 1. First, we assume the primary is shaped like an oblate
spheroid and the secondary is nearly a tri-axial ellipsoid. Second,
the two massive bodies have the equilibrium long-axis
configuration, i.e., the secondary is synchronously rotating
with the primary lies on its long axis. The secondary is
assumed to be in an inclined and eccentric orbit around the
primary with eB � 0.2 and iB � 10°.
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The second degree and order gravity coefficients in Table 1 are
calculated by (Wang and Fu, 2020)

C20 � 1
5R2

e

s2 − p2 + q2

2
( ) (59)

C22 � 1
20R2

e

p2 − q2( ) (60)

where s, q, and p are the semi-major axes of an ellipsoid, satisfying
s≤ q≤p.

As stated above, strong perturbations may invalidate the
averaging process. It means, for the combined effects of the
oblateness of the central body and the gravity of the third body,
there are lower and upper limits on the orbit altitude that ensure
reliability of the averaging. According to Wang and Fu (2020), for
the system parameters given in Table 1, the valid range of the orbit
semimajor axis around the primary is about 5.0 km–8.0 km,
corresponding to the coefficient κ varying from 3.57 to 0.34, as
shown in Figure 3. Note that the magnitudes of the octupole order
coefficient εOct and the hexadecapole order coefficient εHex are about
the same order (varying between 0.02 and 0.08), due to the octupole
order coefficient having a factor of the perturbing body’s eccentricity
eB. Therefore, it is necessary to take both of them into the secular
model for the purpose of propagating long-term orbital motion.

Comparisons aremade among the numerical integrations of the four
dynamical models: the full, the quadrupole-level, the octupole-level, and
the hexadecapole-level models. The full model (non-averaged) given by
Eq. 5 is considered to be exact. The other three models are all double
averaged but retained to different levels of approximation.

In Figures 4, 5, the orbital evolution over scaled time is
depicted, with the semimajor axes set as 5.3 km and 7.8 km
respectively (both within the range where the averaging is
reliable). The other initial orbital elements are explicitly given
in the caption of Figure 4. Actually, they can be chosen arbitrarily
for the purpose of demonstrations of the different models. For
comparisons of the performance of these models at different

orbital altitudes, the initial conditions in Figure 4; Figure 5,;
Figure 6 are kept the same except for the semimajor axis. Note
that the true time t is related to the scaled time τ via t � τ/εPB (Eq.
45). The scaled time of 10 in Figures 4, 5 corresponds to the true
time of 330.3 days and 188.6 days, respectively. The precession of
the secondary’s orbit is incorporated in the numerical
integrations of our full and double-averaged models by
including the evolution of ΩB and ωB described in Eqs. 51, 52
respectively. Since the semimajor axis is constant in the averaged
dynamics, only four remaining orbital elements: eccentricity e,
inclination i, argument of perigee ω, and longitude of ascending
node Ω, need to be considered.

From Figures 4, 5, we find that within the valid range of orbital
altitude, the hexadecapole-level model could well track the secular orbital
evolution, while the quadrupole-level and octupole-level models may
have significant deviations. However, beyond this range, for example, as
shown in Figure 6, when a � 9.0 km, orbits are strongly perturbed by the
third-body gravity and, as a consequence, the large-amplitude short-
period oscillation invalidates the averaging processes.

Remember that in the classical Lidov-Kozai mechanism or the
extended “J2 included Lidov-Kozai mechanism”, the conservation of
vertical-component orbit angular momentum, hz , leads to regular,
anti-correlated oscillation of the eccentricity and inclination. In the
current model, there is a similar anti-correlation behavior between e
and i, but not regular. In particular, there is a secular effect, as
illustrated in Figure 4A, that may force hz to undergo (chaotic)
secular changes, resulting in high eccentricities. Recall that in the
eccentric Lidov-Kozai effects, the octupole order can modulate
the Lidov-Kozai cycles (the secular change of hz can be
considered as the Lidov-Kozai cycles undergo secular drift),
and thus excite the extremely high eccentricities and even
orbit flips (Katz et al., 2011; Lithwick and Naoz, 2011).
However, as shown in Figure 7, our results may be a different
secular dynamical effect because they are a joint effort of the
third-body eccentricity and inclination. It seems that the large
eccentricity increases should be attributed to iB, while eB changes
the phase of this secular variation.

TABLE 1 Parameters of the binary asteroid system 4951 Iwamoto.

Parameter (units) Primary Secondary

Mass (kg) 7.08 × 1013 2.68 × 1013

Mean radius (km) 2.76 1.67

Semi-major axis (km) – 31.0

Eccentricity – 0.2

Inclination (deg) – 10

Orbital period (h) – 118.0

Radius of semi-major (km) p 2.76 1.95

q 2.76 1.34

s 2.62 1.18

Harmonic coefficients of gravity fields C20 −0.0198 −0.1009

C22 0 0.0360

FIGURE 3
Coefficients of κ (left y-axis), and εOct; εHex (right y-axis) with
semimajor axis.
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FIGURE 4
Long-term orbital evolution for a � 5.3 km over 10 scaled time, obtained bymodels of different approximation levels. The panels (A–D) are the temporal
evolution of the eccentricity, inclination, longitude of ascending node, and argument of perigee, respectively. The full model is given by Eq. 5 with RPB given in
Eq. 56. The other three double-averaged models are given in Eq. 58 (by retaining their corresponding order). The curves of different models are marked by
colors (the legend is only given in oneof the plots for simplicity). The initial conditions are set as e0 � 0.05; i0 � Ω0 � 60°;ω0 � 90°;Ω0 � 60°,; f0 � 0° (the
initial true anomaly). The secondary’s orbit has aB � 31 km, eB � 0.2 , iB � 10°, andΩB � ΩB � fB � 0. Theprecessionof the secondary’s orbit is governed byEqs.
51 and 52. The dashed line in the eccentricity figure denotes the critical eccentricity that will cause impact on the surface of the primary.

FIGURE 5
Long-term orbital evolution for a � 7.8 km over 10 scaled time with the other conditions set the same as Figure 4. The panels (A–D) exhibit the
temporal evolution of the eccentricity, inclination, longitude of ascending node, and argument of perigee, respectively.
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In Figure 8, we depict the long-term orbital evolution with
different inclinations at a � 5.5 km. For simplicity, only the
eccentricity evolution is displayed. First, we show that the
hexadecapole-level model is highly accurate, while the quadrupole-
level and octupole-level models have moderate deviations. As we have
mentioned above, the system is integrable in the coplanar configuration
in the quadrupole-level model, even if the perturbing body is eccentric.
For comparisons, we integrate these integrable equations which are
obtained by substituting iB � 0 into the quadrupole-level model with
other parameters remaining unchanged. From Figure 8, we can see the

significant differences between the full dynamics and the integrable
approximation. In addition, in these integrable cases, the equilibrium
points (i.e., frozen orbits) and their stabilities are well-defined.
According to Delsate et al. (2010), by using the current system
parameters, the analytical unstable inclination interval at a � 5.5 km
is calculated as 55.3°< i< 81.9° and 100.0°< i< 124.4°, which is
symmetric about i � 90°. However, in the inclined third-body
problem, the inclination is different with respect to the central
body’s equator and with respect to the third-body orbit plane,
especially when the perturbing body’s orbital plane is in precession,
as shown in Figure 8. Thus, if we use the solutions of the integrable cases
as initial guesses, the unstable inclination regions should be revised
according to the specific geometric configuration of the system.

Then, we show comparisons among these different levels of
approximation models for the special cases in which the perturbing
body has zero inclination or eccentricity. The corresponding double-
averaged equations of motion can be obtained by substituting eB � 0
or iB � 0 into Eq. 58.

Figure 9 illustrates the case when iB � 0 and eB � 0.2. For the
given initial conditions, the orbit is initially located near a stable
Lidov-Kozai equilibrium (ω � 90°) solved by the quadrupole-level
model. However, in the full and octupole-level (or higher-level)
models, the amplitude of the Lidov-Kozai oscillation gradually
increases and finally causes an impact on the primary. In addition,
although the octupole order and hexadecapole order have similar
magnitudes εOct ~ εHex � 0.04, the dramatic, qualitative changes in
dynamics only happen when moving from quadrupole-level to
octupole-level models. This is because the octupole order recovers
the geometric non-axisymmetry of the system, thus eliminating hz
as a constant, leaving only two integrals of motion: the semi-major
axis and the double-averaged perturbing potential. That is, there
are no other integrals of motion to be eliminated in the higher-level
models, and thus no more qualitative changes are expected (Naoz
et al., 2013).

By using the same initial conditions, we set eB � 0 and iB � 10° in
Figure 10. In contrast to the eccentric third-body perturbation problem
in Figure 9, when iB ≠ 0, there are no special integrals of motion in the
lowest-order (quadrupole-level) model compared to the higher-level
models. Thus, the high order terms may contribute no qualitative
changes but quantitatively affect the orbit evolutionary behavior, as
shown in Figure 10.

FIGURE 6
Long-term orbital evolution for a � 9.0 km over 10 scaled time with the other conditions set the same as Figure 4. The panels (A,B) show the
temporal evolution of the eccentricity and inclination, respectively.

FIGURE 7
Comparisons of the orbital evolution among different
combinations of iB and eB. The full model is integrated to 20 scaled
time with eB � 0.2 and iB � 10°. The other three integrations are all
based on the hexadecapole-level model with the scaled
integration time: 50 for eB � 0.2, iB � 10°, and 30 for eB � 0.2, iB � 0
and eB � 0, iB � 10°.
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FIGURE 8
Long-term eccentricity evolution at different inclinations for a � 5.5 km with the other initial conditions set the same as Figure 4. The initial
inclinations are set as 55°, 65°, 75°, and 80° in panels (A–D), respectively. The integrable case corresponds to the quadrupole-level model with zero third-
body inclination (remaining eB unchanged).

FIGURE 9
Long-term orbital evolution over 14 scaled time with eB � 0.2 and iB � 0. The initial orbital elements are set as a0 � 6.0 km, e0 � 0.4, i0 � 56°,
Ω0 � 50°, ω0 � 90°, and f0 � 300°. The coefficients κ � 1.44 and εOct ~ εHex � 0.04. Note that the initial orbit is located at the nearby of a Lidov-Kozai
equilibrium point. The panels (A–C) show the temporal evolution of the eccentricity, inclination, and argument of perigee, respectively. The evolution of
the longitude of node is not shown here. Instead, the variation of the z-component of the orbit angular momentum, hz , is depicted in panel (D).
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4.2 Applications to other physical systems

The derived semi-analytical model can also be applied to
astrophysical systems covering a wide range of physical scales, such
as the exoplanet around an oblate host star with a distant stellar mass or
giant planet perturber, where the inner planet can be regarded as
massless. Similar dynamical settings have been extensively considered in

the eccentric Lidov-Kozai mechanism (Katz et al., 2011; Lithwick and
Naoz, 2011; Naoz et al., 2013; Naoz, 2016).

In the scaled dynamical model, Eq. 46, the orbital dynamics can be
characterized by three parameters: the oblateness coefficient κ, the
octupole-order coefficient εOct, and the inclination of the third-body
orbit iB. Here, we consider two cases: (1) κ � 0.1; εOct � 0.01,; iB � 10°
in Figure 11, where εOct is much smaller than κ; and (2) κ � 0.1,
εOct � 0.1, and iB � 10° in Figure 12 where εOct is comparable to κ.

FIGURE 10
Long-term orbital evolution over 14 scaled time with eB � 0 and iB � 10°. The other initial conditions are set the same as Figure 9. The coefficients
κ � 1.53, εOct � 0, and εHex � 0.04. Since the octupole order coefficient εOct � 0, the quadrupole- and octupole-level models are identical. The panels
(A–D) show the temporal evolution of the eccentricity, inclination, argument of perigee, and z-component of the orbit angular momentum, respectively.

FIGURE 11
Eccentricity and inclination evolution over 100 scaled time for
εOct � 0.01 by using the quadrupole-level and octupole-level models.
The initial orbital elements are e0 � 0.05, i0 � 50°, Ω0 � 60° and
ω0 � 0. The perturbing body’s orbit is assumed to be fixed at ωB �
ΩB � 0°.

FIGURE 12
Eccentricity and inclination evolution over 100 scaled time for
εOct � 0.1 by using the quadrupole-level and octupole-level models.
The other conditions are set the same as Figure 11.
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From Figures 11, 12, we show the important role of the octupole-
order terms, especially when the octupole-order coefficient εOct is
comparable to the oblateness-related coefficient κ (Figure 12), which
may lead to the dramatic, qualitatively different evolutionary behaviors.
We note that the secular effect shown in Figure 12 is different from that
in Figure 7 because the orbit inclination oscillates in a small range even
when the orbit reaches high eccentricities in Figure 7, while in Figure 12,
the large increases in eccentricities are accompanied by wide excursions
of inclination. We suppose that these two secular effects may be the
mechanism of forming close-in exoplanets of different inclination types.
However, the detailed analysis is beyond the scope of our current work,
which will be focused on in our future work.

5 Conclusion

Previous studies have revealed the striking features induced by the
octupole-order approximation of the third-body perturbation (Katz et al.,
2011; Lithwick and Naoz, 2011; Naoz, 2016) and the notable effects
caused by the third-body inclination (Yokoyama, 1999; Liu et al., 2012;
Nie and Gurfil, 2021), separately, in the hierarchical restricted three-body
problem. We find that in some astrophysical and astrodynamical
systems, the two factors may be simultaneously significant (Winn and
Fabrycky, 2015). Concerning this, in this paper, we have developed a
semi-analytical model to provide effective tools for the solution of this
problem. Our model includes the perturbations of the central body’s
oblateness and the third-body gravity to the hexadecapole order. In
particular, the perturbing body is assumed to be in an inclined and
eccentric orbit and its non-spherical gravity is also incorporated. Thanks
to the double averaging, the secular dynamics can be parameterized by a
few coefficients, and throughwhich one can conduct analytical studies on
a wide range of physical systems. Formulated in vectorial elements, the
equations ofmotion take a compact formand can be easily reduced to the
coplanar or circular perturbing body cases.

Then, numerical integrations have been proposed to demonstrate
the validity of our model and to present some numerical results.
Comparisons are made among the full, quadruple-level, octupole-
level, and hexadecapole-level models. From the numerical results
applied to the binary asteroid system 4951 Iwamoto, we have shown
the high accuracy of the hexadecapole-level model within the
determined valid range of the semimajor axis, while the quadrupole-
level and octupole-level models may have obvious deviations. In
addition, several secular dynamical features have been highlighted:
(a) a joint effect of the perturbing body’s inclination and eccentricity
that could drive high eccentricities with chaotic behavior (see Figure 7);
(b) the changes in the unstable inclination regions due to the third-body
inclination (see Figure 8); and (c) for the iB � 0 cases, the octupole-
order terms may break the stable Lidov-Kozai equilibrium points by
gradually increasing their amplitudes (see Figure 9). We have also
integrated a fictitious system with assumed parameters. We have found

that when the coefficient κ is comparable to the octupole-order
coefficient εOct, the octupole-order terms may bring new secular
effects that could excite both high inclinations and high
eccentricities (see Figure 12). We point out that a thorough study of
dynamical essence of these secular features is beyond the scope of this
paper, which will be the motivation for our future work.
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