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Editorial on the Research Topic

Machine learning and statistical methods for solar flare predictions

In recent years, the explosion in computing power and the amount of accessible data have
resulted in a subsequent growth in applications of machine learning and statistical methods
across many disciplines. The use of these methods in astronomy and space sciences has
advanced both physical process modeling and data analysis. See Camporeale (2019) for
a brief review of the challenges and opportunities of applying machine learning to space
weather.

Among various space weather-relevant phenomena, solar flares, which are intense
localized eruptions of electromagnetic radiation in the Sun’s lower atmosphere, are a
fundamental manifestation of solar explosive activity that researchers are interested in
forecasting. Solar flare predictions are generally provided in occurrence probabilities of
flares above M- or X-class within 24 or 48 h. The National Oceanic and Atmospheric
Administration (NOAA) Research Topic near real-time solar flare data and resources. Flares
are often accompanied by, though not always, coronal mass ejections (CMEs), which are
large expulsions of plasma and magnetic field from the Sun’s atmosphere. The CMEs affect
power grids, telecommunication networks, and orbiting satellites. Solar energetic particles
(SEPs) are high-energy, charged particles that originate in the solar atmosphere and solar
wind. SEPs can originate either from a solar flare site or from shock waves associated with
CMEs. See Whitman et al. (2022) and references therein for a comprehensive literature on
forecasting of SEPs.

In particular, data analytics approaches using modern machine learning and statistical
models are now being adopted in solar flare forecasting, aiming to enable early warning of
strong solar flare events. Many articles have been published on this Research Topic over the
past decade or so, for example, see Qahwaji and Colak (2007); Colak and Qahwaji, 2009;
Huang et al., 2012;Ahmed et al., 2013;Huang et al., 2013;Huang andWang, 2013; Bobra and
Couvidat, 2015; Barnes et al., 2016; Huang et al., 2018; Florios et al., 2018; Leka et al., 2018;
Leka andBarnes, 2018; Leka et al., 2019a,Leka et al., 2019b; Liu et al., 2019; Chen et al., 2019;
Campi et al., 2019; Wang et al., 2020; Jiao et al., 2020; Cinto et al., 2020; Park et al., 2020;
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Sun et al., 2021; Nishizuka et al., 2021; Georgoulis et al., 2021;
Sun et al., 2022; Liu et al., 2022 and references therein.

Despite the demonstrated potential and success of adopting
machine learning methods for solar flare forecasting, there are still
many remaining Research Topic to be solved. The ultimate goal for
the community of researchers will be to finally close the gap between
scientific research, using either physics-driven or data analytics
approaches and real time forecasting of strong space weather events.
For solar flare prediction in particular, we recognize the adoption
of machine learning approaches over the years, where: (i) complete
black box models with no physics results in less interpretability, (ii)
limited data from the past and relatively quiet solar cycles prohibit
generalizations for the future trainedmodel, and (iii) limited physics
knowledge of the flaring mechanism leads to a less informative and
partial list of important precursors.

The articles published in this Research Topic address a wide
range of problems in solar flare forecasting, covering flare catalog,
feature extraction, and CME arrival prediction. The methodologies
range from regression models, deep neural networks, anomaly
detection, and spatial Fourier transform to models of finite mixture.
See below for a more detailed description of each article.

We, the editors, hope that this Research Topic of articles present
readers with a wealth of modern methodologies and point out
important and promising directions to delve into further. As a result
of this Research Topic, we hope to see more innovative processing of
various data products, novel methodologies, and new findings in the
future on data driven approaches for solar flares and related events
such as CMEs, monitoring, and forecasting.

Alobaid et al. in Predicting CME arrival time through data
integration and ensemble learning, 363 geoeffective CMEs are
collected from two solar cycles, #23 and #24, from 1996 to 2021.The
authors use CME features, solar wind parameters, and CME images
obtained from the SOHO/LASCO C2 coronagraph to predict the
arrival time of these CMEs using an ensemble learning approach,
named CMETNet.

Sande et al. in Solar flare catalog based on SDO/AIA EUV
images: Composition and correlation with GOES/XRS X-ray flare
magnitudes, a Solar Dynamics Observatory (SDO) Atmospheric
Imaging Assembly (AIA)-based flare catalog, covering flares of
GOES X-ray magnitudes C, M, and X from 2010 to 2017,
is presented. An extremely randomized trees (ERT) regression
model is used to map SDO/AIA flare magnitudes to GOES X-ray
magnitude.The resulting catalog overlaps with 85% of M/X flares in
the GOES flare catalog. A number of unrecorded ormislabeled large
flares in the GOES catalog are also discovered.

Wang et al. in Precursor identification for strong flares based on
anomaly detection algorithm, strong flares correspond to “anomaly”.
The “normal” state is trained based on an unsupervised learning
autoencoder network, whereas departures from the “normal”
state are quantified by the differences between the observed and
reconstructed pictures derived by the network. The results show
promise for a long warning period of up to 2 days prior to strong
flare events.

Guastavino et al. inOperational solar flare forecasting via video-
based deep learning, it is shown that video-based deep learning, a

combination of a convolutional neural network and a Long-Short
Term Memory network, can be used for operational purposes. An
algorithm that build up sets of active regions that are balanced
according to the flare class rates associated to a specific cycle phase
is presented; and this resulting data set is used for training and
validating the video-based deep learning model.

Massa and Emslie in Efficient identification of pre-flare features
in SDO/AIA images through use of spatial Fourier transforms,
feature extraction or data compression of pre-flare SDO/AIA data
is presented. This work is motivated by the potential of training
Neural Networks using AIA data to identify features that lead
to a solar flare, considering the extremely large data volume.
Numerical experiments show that, not only do Fourier maps
retain more information on the original AIA images compared to
straightforward binning of spatial pixels, but also that certain types
of changes in source structure (e.g., thinning or thickening of an
elongated filamentary structure) are equally recognizable in the
spatial frequency domain.

Aktukmak et al. in Incorporating Polar Field Data for Improved
Solar Flare Prediction, data associated with the Sun’s north and
south polar field strengths are employed to improve solar flare
prediction performance using machine learning models. As global
information, the polar field data, when combined with local data
from active regions on the photospheric magnetic field of the
Sun, can help classify individual solar flares. This is manifested
by the fact that the Heidke Skill Score improves by 10.1%. A
novel probabilistic mixture of experts model is proposed, which
can simply and effectively incorporate polar field data and provide
on-par prediction performance with state-of-the-art solar flare
prediction algorithms such as the Recurrent Neural Network
(RNN).
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