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Amajor challenge facing scientists using conventional approaches for solving PDEs is
the simulation of extreme multi-scale problems. While exascale computing will
enable simulations of larger systems, the extreme multiscale nature of many
problems requires new techniques. Deep learning techniques have disrupted
several domains, such as computer vision, language (e.g., ChatGPT), and
computational biology, leading to breakthrough advances. Similarly, the
adaptation of these techniques for scientific computing has led to a new and
rapidly advancing branch of High-Performance Computing (HPC), which we call
neural-HPC (NeuHPC). Proof of concept studies in domains such as computational
fluid dynamics and material science have demonstrated advantages in both
efficiency and accuracy compared to conventional solvers. However, NeuHPC is
yet to be embraced in plasma simulations. This is partly due to general lack of
awareness of NeuHPC in the space physics community as well as the fact that most
plasma physicists do not have training in artificial intelligence and cannot easily adapt
these new techniques to their problems. As we explain below, there is a solution to
this. We consider NeuHPC a critical paradigm for knowledge discovery in space
sciences and urgently advocate for its adoption by both researchers as well as
funding agencies. Here, we provide an overview of NeuHPC and specific ways that it
can overcome existing computational challenges and propose a roadmap for future
direction.
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1 Introduction

Over the years there have been many techniques trumpeted as having great disruptive
potential, which were eventually found to have muted applicability. It is rare that a technology
comes along that is truly disruptive and is adopted across wide areas of science and engineering.
Modern artificial intelligence (AI) is a rare technology where those claims are not overblown. In
what follows, we will use the terms “machine learning” and “artificial intelligence”
interchangeably.

One of the authors (HK) was an early advocate of the use of AI and computer vision in space
sciences with applications in event detection/classification (e.g., Karimabadi et al., 2009),
knowledge discovery in simulations and in-situ-visualization (e.g., Karimabadi et al., 2011a;
Karimabadi et al., 2011c; 2012; 2013a), and derivation of equations from data (Karimabadi et al.,
2007). The impetus for this effort was based on the vision that as our ability to generate data
continues to grow exponentially, data driven science would become an indispensable field of
scientific knowledge discovery. This vision has since come to pass, but the rate and scale with
which this has happened has exceeded all expectations.

Despite the promising results and utility of those early works, including applications of
simple neural nets to spacecraft data (e.g., Newell et al., 1991; Boberg et al., 2000), the techniques
were not widely adopted. At the time, the field of AI was in a nascent stage in which artificial
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neural networks (ANNs) had been largely abandoned in favor of
“lighter weight” techniques such as support vector machines. These
algorithms had limited learning capacity, and relied heavily on hand
engineered features, requiring a top-down agent to act as a “God
outside themachine” to tell the models which attributes of the world to
focus on, rather than allowing the algorithms to learn what is and is
not relevant bottom-up, from the data and the model’s objective
function. Another factor that limited their utility was their lack of
universality. One had to devise special algorithms for problems in
computer vision, speech, and audio, among others.

Everything changed in 2012 when AlexNet, a GPU implemented
convolutional network (CNN), won ImageNet’s image classification
competition by a wide margin. This seemingly overnight success was
built upon 7 decades of slowly evolving research in deep learning (see
the Supplementary Material for definition of deep learning). The field
had to wait for the accessibility of large data sets and the development
of GPUs, a widely available relatively inexpensive device with a special
kind of massively parallel computational power, before its potential
could be realized.

Since AlexNet, advances in AI have fueled adoption of neural
algorithms across a myriad of industries and sciences. The first
applications of AI in space sciences have been in analysis of
spacecraft data (e.g., Camporeale, 2019; Breuillard et al., 2020; Li
et al., 2020; Hu et al., 2022) where off-the-shelf AI techniques can be
readily applied. However, application of AI in NeuHPC offers a greater
opportunity with the potential to qualitatively change the field. The
remainder of this article focusses on NeuHPC.

Partial differential equations (PDEs) often lead to extreme multi-
scale behavior which makes the resolution of all scales in one
simulation impossible. While exascale computing will enable
simulations of larger systems (e.g., Xiao et al., 2021; Ji et al., 2022),
the extreme multiscale nature of many problems in space sciences
requires new techniques. In the global magnetosphere, there are 107

degrees of separation in spatial and temporal scales, putting it beyond
the conventional techniques even at exascale. Also, round-off error in
time-stepped solvers is severely limiting. Further, exascale simulations
present other challenges, from knowledge discovery to the massive
datasets, to efficient checkpointing and data management. We

TABLE 1 Summary of key features of ANNs that enable new capabilities in HPC. References to some recent work that have gone beyond the proof of concept stage are
also provided.

“Features” Benefits Key references

State-of-the-art in vision (object detection,
tracking, classification, . . .)

-Knowledge discovery from large data There are many well-known and open-sourced AI models (e.g., Faster
R-CNN, Detectron2, YOLO, U-Net, ResNet, . . .)

-Computational steering

-Intelligent checkpointing

-Efficient data dumps

Automated differentiation -Mesh-free simulations (no grid error) Auto differentiation is available in AI platforms like Tensorflow https://www.
tensorflow.org/guide/autodiff

-Super resolution For its incorporation into solutions of PDEs, see PINN, PINO, FNO,
DeepONet

Universal approximation theorem (functions) -Equation discovery from data Udrescu and Tegmark (2020)

-Closure models Derived all 100 of Feynman equations from data https://ai-feynman.
readthedocs.io/en/latest/PySR: High-Performance Symbolic Regression in
Python https://astroautomata.com/PySR/

-System/subsystem/reduced order model discovery Kamienny et al. (2022) End-to-end Symbolic regression with several orders of
magnitude faster inference as compared to state-of-the-art genetic
programming

-Accelerated simulations DeepXDE (PINN)—AI-based solution of PDEs https://deepxde.readthedocs.
io/en/latest/

-Error correction Kochkov et al., 2021—accelerated simulations with 40–80x fold
computational speedups. A trained model for Re = 1,000 generalized to
higher Reynolds number of Re = 4,000

-Frame predictions/Predicting the evolution of
spatiotemporal turbulent flow

TF-Net—Wang et al., 2020 - Successful prediction of 60 frames ahead for
turbulent flow

Universal approximation theorem (operators) -Solution to a family rather than instance of PDEs FNO—Li et al., 2021a achieved up to three orders of magnitude in speedup as
compared to traditional PDE solvers

https://github.com/zongyi-li/fourier_neural_operator

-Zero-shot super resolution DeepONet - Lu L et al., 2019, Lu et al., 2021 https://github.com/lululxvi/
deeponet https://deepxde.readthedocs.io/en/latest/Fourcastnet—Pathak et al.
(2022)

-Enables ensembling Using FNO, is able to generate forecasts orders of magnitude faster than
state-of-the-art weather forecasting model

PINO—Li et al., 2021b produces accurate results while retaining a 400x
speedup compared to the GPU-based pseudo-spectral solver
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consider AI as a core technology and its adoption as critical for
meaningful advancement in scientific computing. This belief is based
on unique features of neural nets and the rapid and promising
advancements of their use in scientific computation.

Table 1 summarizes key features of ANNs that make them
especially suitable for overcoming the current HPC challenges
by enabling new capabilities not possible with conventional
approaches. While in-depth discussion of each topic is beyond
the scope of this paper, relevant references are provided for
interested reader to learn more. First, automated differentiation
(see the Supplementary Material for more details) enables
accurate computation of derivatives of arbitrary order (spatial
and temporal) to working precision. This mesh-free operation,
resulting in mesh invariant solutions, is advantageous over
numerical differentiation methods (e.g., finite differencing) which
suffer from discretization error with increasing cost and error
in higher derivatives. As an example, one can solve the heat
equation zu/zt = Δ(u) where the function u is represented as a
neural net and the spatial and temporal derivatives are calculated
using the chain rule.

Second, the universal approximation theorem (Hornik et al., 1989)
implies that ANNs can accurately approximate any function. In
contrast to fixed-shaped approximators that have no internal
parameters (e.g., polynomials), neural networks consist of
parameterized functions, allowing them to take on a variety of
different shapes.

Less known but as important is the universal approximation
theorem for operators (Chen and Chen, 1995) which states that a
neural net with a single hidden layer can accurately approximate any
non-linear continuous operator (Lu et al., 2021). The operator can be
explicit such as derivatives (e.g., Laplacian), integrals (e.g., Laplace
transform) or implicit such as solution operators of a PDE. This offers
a unique capability where the network can learn the solution to an
entire family of PDEs rather than an instance of a PDE, as in the
conventional approaches. Once the model is trained, inference to
obtain solutions for different parameters of the PDE is very fast. This
can lead to orders of magnitude speedup and enables efficient
exploration of the solution space and ensemble modeling which
may be prohibitively expensive otherwise.

These capabilities open the door to zero-shot learning, i.e., the
operator can be trained on a lower resolution and evaluated at a higher
resolution, without seeing any higher resolution data. To this end, Li
et al. (2021a) developed the first network (FNO) with zero-shot
learning that successfully learns the resolution-invariant solution
operator for the family of Navier-Stokes equations in the turbulent
regime. This feature of transferring the solution between the meshes
works well on both the spatial and temporal domain (Kovachki et al.,
2021). We refer the reader to Kim et al. (2021) for discussion and
differences of super-resolution reconstruction for paired versus
unpaired data. Another useful feature of AI-based solvers is
transfer learning. For example, Li et al. (2021b) used a pre-trained
model on the Kolmogorov flow to transfer it to different Reynolds
numbers.

A wide variety of solutions have been proposed to leverage ANNs
in computations across domains such as CFD, material science, and
weather forecasting. A detailed review is beyond the scope of the
present work. Our goal is simply to bring awareness to promising
advances in NeuHPC and provide a starting point for further
exploration. Although our focus is NeuHPC, techniques such as

system identification can also be applied to spacecraft data either
in isolation or in combination with simulation data.

2 Proof of concepts and beyond

2.1 Quantitative data analysis

We demonstrate the utility of AI for analysis of simulation data by
addressing the challenging problem of automated detection and
measurement of scales of individual current sheets formed in
plasma turbulence. Previous works, limited to two snapshots of
MHD simulations, were based on phenomenological approach,
utilizing insights on MHD physics (e.g., Uritsky et al., 2010;
Zhdankin et al., 2013). We time-boxed ourselves to 2 days to see
whether we can significantly reduce time-to-solution using existing AI
techniques. We used the magnitude of current density (507 timeslices)
from simulations of Karimabadi et al. (2013b). Figure 1 shows the
results for one time slice, where lengths of only a few current sheets are
displayed. Visual comparison with the raw image of the current sheets
shows generally good agreement and demonstrates the utility of AI.
Details including the code and videos of results over 507 slices are
provided in the Supplementary Material.

2.2 Derivation of equations and operators
from data

Deriving closed form, compact and understandable analytical
equations from data is at the core of scientific discovery. In the
following, we provide an overview of the recent ML techniques
aimed at turning machine models to scientific knowledge. Such
knowledge discovery can come in different forms: a) derivation of
algebraic equation (e.g., law of gravity), b) derivation of ODE or PDE
(e.g., the diffusion equation), and c) the derivation of the unknown
parameters of a known equation (the so-called inverse problem).

2.2.1 Algebraic equations
Symbolic regression is an ML technique that searches the space of

mathematical expressions to find the best data-feeding model. The
goal is to strike a balance between model accuracy and model
complexity. The common benchmark to compare the efficacy of
different models is the Symbolic Regression database (https://space.
mit.edu/home/tegmark/aifeynman.html) which contains
120 symbolic regression mysteries and answers. Most (100) of the
equations are from Feynman Lectures on Physics and 20more difficult
equations are sourced from other physics books. See La Cava et al.
(2021) for additional benchmarks.

Symbolic regression has been commonly carried out using generic
programming and evolutionary algorithms, and there are several open
source and commercially available libraries such as Eureqa (Schmidt
and Lipson, 2009). Their main drawback is that, due to the
combinatorial nature of the problem, genetic programming does
not scale well to high dimensional systems. In contrast, ANNs are
highly efficient at learning in high-dimensional space, and this has led
to a flurry of activity in their adaptation to address the combinatorial
challenge of symbolic regression. The blackbox nature of neural nets
seems at first to be at odds with the goals of symbolic regression.
Various approaches differ in how they overcome this issue and have
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been of two general varieties. In one approach, neural nets are used
as an aid to reduce the search space of genetic programming
techniques (e.g., Cranmer et al., 2020; Petersen et al., 2020;
Udrescu et al., 2020; Udrescu and Tegmark, 2020). In AI-
Feynman (Udrescu & Tegmark, 2020), the neural nets are used
to find hidden simplicity such as symmetry in the data. Using this
approach, they were able to derive all 100 of Feynman equations
versus 71 using previous techniques.

The second class of solutions adapt the architecture of the neural
nets for symbolic regression. The two key modifications required are
to enable ANN to have access to a vocabulary of functions/primitives
and to impose sparsity to reduce model complexity while maintaining
high accuracy. Martius & Lampert (2016) proposed a simple
feedforward ANN where standard activation functions are replaced
with symbolic building blocks corresponding to functions common in
science and engineering. These activation functions are analogous to
the primitive functions in symbolic regression. Sahoo et al. (2018)
extended the work to include division. In the Supplementary Material,
we construct another type of ANN which, unlike standard ANNs, has
a variety of synapses and cell body types. We show that it can derive
law of gravity from data. Another approach involves adaptation of
language models/transformers to the symbolic regression problem.
Kamienny et al. (2022) developed an end-to-end transformer-based
model that uses both symbolic tokens for the operators and variables,
and numeric tokens for the constants. It shows a significant jump in
accuracy compared to previous ANN-based approaches, with several
orders of magnitude faster inference as compared to state-of-the-art
genetic programming.

2.2.2 Unknown PDEs
In cases where the underlying PDEs are not known, scientists want

i) accurate solvers that generalize well, ii) fast solvers which would be
faster than traditional solvers in test cases where the PDE is known, iii)
accurate symbolic extraction. Studies with their prime focus on symbolic
extraction follow similar approaches as those for algebraic equations
(see below). However, there are innovative breakthroughs in the
development of solvers that address objectives i)-ii). This is
accomplished through approaches that learn PDE solution operators.
This includes DeepONet (Lu et al., 2019; Lu et al., 2021) and FNO (Li
et al., 2021a, Kovachki et al., 2021) which are open source. See the latter
for additional references and a useful literature review. Li et al. (2021a)
showed successful experiments on Burger’s equation, Darcy flow, and
the Navier-Stokes equations and achieved up to three orders of
magnitude in speedup compared to traditional PDE solvers. Another
important proof point and real-world application for FNO came from
its adaptation for weather forecasting (FourCastNet) by Pathak et al.
(2022). In a head-to-head comparison with a state-of-the-art forecasting
system (IFS), FourCastNet was found to have generally comparable
accuracy as IFS but with higher accuracy for small-scale variables,
including precipitation. In addition, FourCastNet can generate
forecasts (less than 2 s for a week-long forecast) orders of magnitude
faster than IFS. This enables creation of fast large-ensemble forecasts
which are out of reach of traditional techniques.

While DeepONet and FNO were not focused on symbolic
extraction, one can always add symbolic extraction to the models.
The basic ideas for discovery of PDEs from data in symbolic form are
like those for algebraic data and can be cast into three categories. One

FIGURE 1
(A) Intensity plot of current density, (B) Automated detection and length measurements of current sheets.
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category (e.g., sparse identification of non-linear dynamics (SINDy))
consists of construction of a candidate library of partial derivatives
which is then used by a sparse regression technique to obtain a
parsimonious model (Rudy et al., 2017; Champion et al., 2019). In
case of PDEs, neural nets offer the added advantage of accurate
differentiation. As a result, a second category of solutions combine
neural nets with genetic algorithms where the derivatives are calculated
by neural nets and genetic algorithms are used for search (Xu et al., 2020;
Desai and Strachan, 2021). A third class is purely neural net based and
includes the use of symbolic networks (Long et al., 2019).

2.3 Solutions when the form of the PDE is
known

Here, we discuss three class of AI based approaches when the form
of the PDE is known. As mentioned earlier, the so-called inverse
problem is not discussed here (see Camporeale et al., 2022 for an
application in space physics).

2.3.1 AI solvers
Conventional solvers (e.g., FDM) discretize the domain into a grid

and advance the simulation using time-stepped methodology or discrete-
event based time advance (e.g., Omelchenko and Karimabadi, 2022). The
so-called Physics-Informed Neural Network (PINN)-type methods
(Raissi et al., 2019; Jagtap and Karniadakis, 2020) overcome
discretization issues of conventional solvers by taking advantage of
auto-differentiation to compute the exact, mesh-free derivatives. They
also offer several advantages over other deep learning approaches. PINN
requires less training data since the underlying equation is already known.
And having the prior knowledge of the physical/conservation laws enables
their incorporation into the neural network design which in turn reduces
the space of admissible solutions.

A notable study is that of Li et al. (2021b) who combined operator
learning (FNO) with function optimization (PINN). This integrated
technique (PINO) outperforms previous ML methods including both
PINN and FNO, while retaining the significant speedup of FNO
compared to instance-based solvers. In the challenging problem of long
temporal transient flow of Navier-Stokes equation, where the solution
builds up from near-zero velocity to a velocity where the system reaches
ergodic state, PINO produces accurate results while retaining a 400x
speedup compared to the GPU-based pseudo-spectral solver.

2.3.2 Closure models
A common approach to deal with the extreme multi-scale solution

to PDEs is using subgrid closure models. Given the utility of neural
networks for extracting equations from data, there has been significant
work, especially in the CFD domain, on their use for development of
closure models (Kurz and Beck, 2022 and references therein). Here we
refer the reader to several review articles on this topic (e.g., Taghizadeh
et al., 2020; Sofos et al., 2022).

2.3.3 Error correction
Another approach has been to use AI to correct errors at each time

step in under-resolved simulations (Kochkov et al., 2021 and references
therein). This approach requires training a coarse resolution solver with
high resolution ground truth simulations. Promising results were
obtained in solution to Navier-Stokes by Kochkov et al. (2021).
Results were as accurate as baseline solvers with 8–10x finer

resolution in each spatial dimension, resulting in 40–80x fold
computational speedups. The model exhibited good stability over
long simulations and showed surprisingly good generalization to
Reynolds numbers outside of the flows where it is trained.

3 Discussion and proposed roadmap for
NeuHPC in space physics

We advocate for the following changes: a) make funding NeuHPC
a priority, b) adapt the funding to the pace of AI developments. This
means a short leash on grants and strong focus on results measured by
well-established benchmarks (see examples of benchmarks below). c)
Promotion of interdisciplinary collaboration with AI experts in
industry and academia to overcome the fact that most plasma
physicists do not have deep expertise in AI.

GivenAI’s prowess in predictions, we suggest as starting point proof-of-
concept (POC) studies focused on video prediction and error correction:

• Video prediction: Apply off-the-shelf spatio-temporal deep
learning models for video prediction (e.g., U-net, ResNet) to
simulations. This would create a benchmark (Wang et al., 2020)
for comparison with follow up studies using PDE centric AI
approaches like PINO or FNO. We suggest 2D hybrid
simulations (e.g., KHI) where many training cases can be
generated for videos of current density, mixing (see
Supplementary Material), among others.

• Grid error correction: Assess the viability of error correction in a
coarse grid hybrid simulation, against an equivalent high-resolution
simulation. DES hybrid (Omelchenko and Karimabadi, 2022) is
particularly useful since it remains stable even when the grid scale is
significantly larger than the ion inertial length.

• PIC noise error correction: Since noise level goes down only as the
square root of number of particles, an AI-based correction would
enable running a simulation with a low number of particles (e.g.,
5 particles/cell) but reproducing results of a simulation with amuch
higher number of particles/cell (e.g., 500), a major breakthrough.

Other POCs of interest that target multi-scale problems include:

• Closure models: Explore derivation of closure models for the
island coalescence problem (Karimabadi et al., 2011b).

• PDE derivation: Explore derivation of an equation that describes
the temporal evolution of the island coalescence problem.
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