
TYPE Technology and Code
PUBLISHED 27 April 2023
DOI 10.3389/fspas.2023.1119775

OPEN ACCESS

EDITED BY

Jonathan Eastwood,
Imperial College London, United
Kingdom

REVIEWED BY

Arnaud Masson,
European Space Astronomy Centre
(ESAC), Spain
Peter Chi,
University of California, Los Angeles,
United States

*CORRESPONDENCE

R. A. Stoneback,
contact@stoneris.com

SPECIALTY SECTION

This article was submitted to Space
Physics, a section of the journal
Frontiers in Astronomy and Space
Sciences

RECEIVED 09 December 2022
ACCEPTED 28 February 2023
PUBLISHED 27 April 2023

CITATION

Stoneback RA, Burrell AG, Klenzing J and

Smith J (2023), The pysat ecosystem.

Front. Astron. Space Sci. 10:1119775.

doi: 10.3389/fspas.2023.1119775

COPYRIGHT

© 2023 Stoneback, Burrell, Klenzing and
Smith. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

The pysat ecosystem

R. A. Stoneback1*, A. G. Burrell2, J. Klenzing3 and J. Smith3,4

1Stoneris, Plano, TX, United States, 2Naval Research Laboratory, Space Science Division, Washington,
DC, United States, 3NASA Goddard Space Flight Center, ITM Physics Laboratory Greenbelt, Greenbelt,
MD, United States, 4Catholic University of America, Washington, DC, United States

The Python Satellite Data Analysis Toolkit (pysat) is an open source package that
implements a general data analysis workflow for arbitrary data sets, providing
a consistent manner for obtaining, managing, analysing, and processing data,
including modelled and observational ground and space-based data sets for the
space sciences. Pysat enables systematic and individual treatment of data as well
as simplifies rigorous data access and use, allowing larger-scale scientific efforts
including machine learning, data assimilation, and constellation instrumentation
processing. Since the start of its development pysat has evolved into an
ecosystem, separating general file and data handling functionality from both
individual data set support and generalized data analysis. This design choice
ensures that the core pysat package has only the necessary functionality required
to provide data management services for the wider development community.
The shift of data and analysis support to ecosystem packages makes it easier
for the community to contribute to, as well as use, the full array of features
and data sources enabled by pysat. Pysat’s ease of use, and generality, supports
adoption outside of professional science to include industry, citizen science, and
education.

KEYWORDS

pysat, data analysis, data management, space-based data, ground-based data,
heliophysics, space physics

1 Introduction

The future expansion of scientific instrumentation will exacerbate the difficulties in
finding, downloading, accessing, and utilizing space science data. Currently, data is stored
and distributed by a variety of government, academic, and commercial agencies through a
variety of mechanisms and file formats. While these specific mechanisms and formats may
reflect the specific needs of a particular community it produces an additional challenge for
scientists seeking to work with data across various sub-fields. Many problems require the
integration and use of ground-based, space-based, and even modelled data to understand or
answer science questions.

There are emerging solutions for cloud computing where the data and processing
capabilities are hosted on remote servers that scientists can access. These services
can be extremely useful, particularly within a community that has similar needs
but differing funding levels. While this technique can make it easier for scientists
to access and load data, the available data is limited to sets installed on the server.
Thus, interdisciplinary users are likely to encounter situations where desired data sets
may be distributed across multiple servers, similar to the current data distribution
challenges. While users may be able to download data from different services on a
computer they control, it is less likely that users will be able to upload their own data
sets.

Frontiers in Astronomy and Space Sciences 01 frontiersin.org

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2023.1119775
https://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2023.1119775&domain=pdf&date_stamp=2023-04-24
mailto:contact@stoneris.com
https://doi.org/10.3389/fspas.2023.1119775
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fspas.2023.1119775/full
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Stoneback et al. 10.3389/fspas.2023.1119775

A shift to cloud computing also has negative implications
for equitable and long term accessibility of data. Use of cloud
computing has ongoing non-trivial costs and excels for situations
where significant resources are needed for only a limited time. Users
without funding, or additionally without access, like the public,
would not be able to utilize those services for their own research.The
ongoing costs for local hardware, by virtue of not including hardware
costs as done in cloud computing, are lower. Further, administrative
approval is not required for users to operate personal computers.
Thus, software that supports scientific processing, including data
downloads, on a user’s local machine (as well as via the cloud)
provides the greatest accessibility and access for the largest number
of people.

One approach for solving the data distribution and format issues
is to mandate a single file format across a scientific discipline and
create a super server, or single access point, for all data.The challenge
with this type of solution is it ignores the historical reasons that
created multiple file formats and access mechanisms in the first
place. Typically speaking, each community within space science has
its own requirements, based upon science focus, data type, and
distributionmechanisms that evolved over time consistent with that
particular communities needs.Mandating a singlemethod or format
across space science ignores these sub-field requirements. Working
with a single general format everywhere is thus likely not possible,
and at best sub-optimal, increasing the cost of working with data for
everyone. A change in file format could also break existing systems.
Further, unless all data in space science, as well as all disciplines that
can impact space science, are all integrated into the same format and
server, there will always be scientists that must work across formats
and data sources.

While data discovery, download, and loading are significant
challenges, scientific data also generally requires additional
processing to be useful. Typically, atminimum, datamust be selected
for high quality observations (or cleaned). Depending upon the
data set there may be flags included with the data. Alternately, the
appropriate conditions for selecting from all available data may
only be available in a scientific publication. Though there is a move
towards greater access to publications the historical record is still
typically confined behind a paywall. Even when readily accessible,
the current situation requires researchers to construct code to
properly clean data for robust scientific analysis.

The scientific community has been shifting from analyzing data
from one or few platforms to working with multiple platforms,
particularly for data assimilation or machine learning models.
Working with multiple data sets involves additional challenges.
While some analyses can work with multiple data sets individually,
this is not always the case. When an individual data set approach
is not possible, multiple data sets need to be loaded at once, where
data fromone source is used directly in the selection or processing of
other data. Without a systematic framework to work with multiple
data sources the practical challenges are likely to be solved sub-
optimally, as pressures to produce results and publish can limit the
quality, extensibility, and maintainability of the code produced.

The traditional instrument mission in space science required
the concerted effort of multiple space scientists per instrument.This
level of personnel is supportable when there are few spacecraft and
the ground-based instrumentation is easily maintained. The rise of
massive constellations with thousands of satellites, such as Starlink,

cannot maintain the same staffing levels (Moigne, 2018). Further,
one of the challenges when working with multiple instruments in a
constellation is each instrument may have unique and unexpected
characteristics that requires additional specialized processing. To
enable science to make use of large constellations there is a need
for software that can effectively scale the efforts of few scientists
to many instruments, while accommodating the potentially
unique processing requirements for individual instruments in the
constellation.

The Python Satellite Data Analysis Toolkit (pysat) provides
a community wide solution for these problems. The core pysat
package provides a data-independent user interface that abstracts
away the tedious details of file, data, and metadata handling
so that scientists can focus on science. Pysat is designed as a
data plug-in system where support for each data set includes
functionality to download, load, process, and clean data. Plug-
ins differ from modules in that plug-ins are not functional on
their own and depend upon a host program to plug into. Further,
users don’t generally interact with the plug-ins directly but through
the host program, or pysat. This plug-in configuration supports
any file format or data source. Further, it makes it possible for
community members to distill their data knowledge into working
code so that the community can automatically work with the
best interpretation of data. In addition, the core pysat package
includes a variety of standards and functionality tests so that
developers of these plug-ins get direct feedback on standards
compliance.

Support for a wide variety of data sets in pysat has been grouped
by data provider and released as independent software packages.
This configuration reduces the requirements for any given user as
they only need to install the packages they need while offering the
broadest array of instrument support in the open source community.
The versatility and generality of these features makes it possible for
pysat to support data from any provider and in any format. Rather
than require all funding agencies to adopt the same standard, pysat is
designed to interactwith a variety of data sources andfile formats but
still provide a common and consistent interface for scientists. Thus,
communities may maintain their specialized approaches as desired,
while those that work across or within domains can do so through a
consistent interface.

The array of pysat features are well suited for instrumentation
processing. The data and metadata handling features reduces
requirements on developers while maintaining the customizability
needed for large constellations. Pysat is in use for Ion VelocityMeter
(IVM) processing on both the NASA Ionospheric Connections
(ICON) Explorer as well as the National Oceanic and Atmospheric
Administration (NOAA)/National Space Organization (NSPO)
Constellation Observing System for Meteorology Ionosphere
and Climate-2 (COSMIC-2) constellation. Pysat features are
also used to create the publicly distributed files for the
missions.

Pysat is an open source package that builds upon the existing
community of tools and is designed to interact with others (e.g.,
Burrell et al., 2018; Pembroke et al., 2022). In particular, pysat builds
upon the pandas (pandas development team, 2022) and xarray
(Hoyer et al., 2022) packages so that the general and scientific
community use the same tools. This commonality reduces the
barrier for the public to interact with scientific data, as well as

Frontiers in Astronomy and Space Sciences 02 frontiersin.org

https://doi.org/10.3389/fspas.2023.1119775
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Stoneback et al. 10.3389/fspas.2023.1119775

making it more likely for pysat to expand beyond the currently
supported community.

Pysat’s generalized features makes it well suited for any data
set available from any source. The core pysat team are ionospheric
scientists thus the data sets already supported by pysat reflect this
scientific focus. However, pysat itself is not limited to ionospheric
data, and pysat’s plug-in design makes it possible for users to add
their own data to pysat. As such, pysat is suitable for use in industry,
professional science, citizen science, and the classroom. To support
this wider perspective pysat joined NumFOCUS as an affiliated
package.

Since its original publication (Stoneback et al., 2018), pysat has
broken out data support and analysis packages into an ecosystem.
Features within pysat have also been expanded and generalized as
needed. For clarity, this manuscript covers the advances within the
core pysat package as part of a description of pysat’s larger feature set.
Examples from each of the pysat ecosystem packages (collectively
referred to as the pysat Penumbra) are also included. Analysis
functionality has also been broken out into individual packages.This
reconfiguration of pysat helps to minimize requirements on users
and developers, while maintaining the same level of functionality.
The ecosystemmakes it easier for thewider community to contribute
instrument support code as each pysat Penumbra package is
focused and contains functions designed to work with a particular
data source or perform a particular type of analysis. Pysat is
a core package within the Python in Heliophysics Community
(Burrell et al., 2018; Barnum et al., 2022) and is a community
developed package.

2 Methods

2.1 Pysat

The main user interface is the pysat Instrument object. The
Instrument object provides a consistent interface for working with
data independent of source, abstracting away tedious file and
data handling details. The Instrument object incorporates a data
processing workflow to accommodate all of the versatility required
for research data analysis within a systematic framework. Data
can be loaded by users either by file or by specifying a time
range in increments of days, independent of the time stored in
a given file. The features in the Instrument object enables the
construction of instrument independent analysis procedures that
work independent of the data dimensions or source, and provides
a foundation to transition to the analysis of many data sources with
limited personnel.

A canonical example for working with any data set supported by
pysat is included below.

First, relevant packages are imported and then a directory for
pysat to store data is assigned. The pysat directory, or directories,
only needs to be assigned once per installation. For this example
we will work with the Solar Wind Electron Proton Alpha Monitor
(SWEPAM) instrument on the Advanced Composition Explorer
(ACE) spacecraft. Support for this data set is provided in the
pysatSpaceWeather (Burrell et al., 2022b) package and must be
registered once before use.

To accommodate the wide variety of data sources and file and
metadata formats pysat is designed as a plug-in system. Support
for a particular data set is enabled by an external module that
implements a variety of methods required by pysat, including
support for downloading, loading, and cleaning data.Thesemodules
’plug-in’ to specific interfaces within pysat, are controlled by pysat,
and aren’t functional on their own. As directed by a user, pysat
will invoke these supporting functions as needed to provide data
and metadata to pysat in appropriate formats. The configuration
provides a consistent interface for the user while accommodating
a wide variety of technical solutions for any particular data
set.

A pysat instrument object for the ACE SWEPAM data is
instantiated after the pysat directory is assigned. Data sets are
labeled by up to four parameters: ‘platform’, ‘name’, ‘tag’, and ‘inst_id’.
‘Platform’ and ‘name’ are required and refer to the measurement
platform and instrument name. ‘Tag’ and ‘inst_id’ may be used to
further distinguish betweenmultiple outputs from an instrument, or
perhaps multiple data products from a given measurement platform
(e.g., spacecraft, constellation, or observatory) and instrument
combination.

Using the Instrument object the full life cycle for data analysis is
enabled through class methods. Data is retrieved from the remote
repository using the ‘ace.download’ command. The user specifies
a range of dates and pysat calls the ACE SWEPAM support in
pysatSpaceWeather to access the remote repository, retrieve the
data, and store it locally. The files are organized under the pysat
data directory assigned by the user. By default, data is organized
under this user-specified directory using ‘platform’, ‘name’, ‘tag’,
and ‘inst_id’ sub-directories, allowing simple machine and user file
navigation.

Frontiers in Astronomy and Space Sciences 03 frontiersin.org

https://doi.org/10.3389/fspas.2023.1119775
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Stoneback et al. 10.3389/fspas.2023.1119775

All of the ACE SWEPAM data on a user’s system is loaded
using the pysat Instrument class method ‘load’. A load command
with no date restrictions will load all data on the user’s system.
Note that no memory checks are performed before loading. This
means that if a ‘.load()’ command is issued for a very large data set,
pysat will attempt to load all of the data, even if it exceeds local
memory. Alternately, a single date (specified by the year and day
of year or a Python datetime object) or a range of dates may be
provided.

To continue the canonical pysat code example, a range of dates
is defined and each ACE SWEPAM variable is plotted as a function
of time. Since files from different sources do not typically have
the same metadata standards, pysat automatically translates loaded
metadata into a set of labels that may be controlled by the user.
Defaultmetadata labels of ‘units’ and ‘name’ are used in this example.
A selection of the plots produced from the code above are in
Figure 1.

To support an even more generalized approach for cases where
users assign non-default metadata labels developers may use the
‘meta.labels’ instance to access metadata as below. This ensures
that regardless of the string values assigned to the Instrument
object to identify ‘units’ or ‘name’ the code will continue to
work. We emphasize the code below is not needed to account
for different labels used within files as metadata labels are
automatically translated to the standard assigned in the Instrument
object.

The only portions of the canonical example code above that are
specific to SWEPAM on ACE are the particular values of ‘platform’,
‘name’, and ‘tag’ when instantiating the Instrument. Updating those
values for any of the other instruments within pysat will similarly
download, load, and plot data in early July 2021, provided the data
is available.

A listing of all data sets registered in pysat is available to the
user with the ‘pysat.utils.display_available_instruments()’ function
which prints the corresponding ‘platform’, ‘name’, ‘tag’, ‘inst_id’, and
a short description for all registered plug-ins. Further, additional
information may be obtained from each data plug-in module
using the ‘help’ command. Similarly, help may be invoked on the
‘inst_module’ attribute attached to the pysat Instrument class for
expanded information on the instantiated data set.

2.1.1 Data
Pysat also includes generalized data access at the Instrument

level for ease of use and to support the construction of the
generalized processing functions. Some instruments produce a

FIGURE 1
Selected output plots from ACE SWEPAM example.

collection of one dimensional signals that depend soley on
time, while others require higher-dimensional structures. To
support the widest variety of data sets pysat provides support
for Instruments to utilize a pandas DataFrame or an xarray
Dataset as the underlying data format. The DataFrame excels at
tabular data, or a collection of one dimensional data in time.
Higher dimensional data is better served using xarray, which
builds upon pandas indexing to support higher dimensional data
sets.

Frontiers in Astronomy and Space Sciences 04 frontiersin.org

https://doi.org/10.3389/fspas.2023.1119775
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Stoneback et al. 10.3389/fspas.2023.1119775

Similar to numpy (Harris et al., 2020), pandas, and xarray,
the pysat Instrument supports a variety of indexing techniques
for data access and assignment. These methods are shown
below.

Though a simulated data set loaded into xarray is used here,
the same commands also work for Instrument objects with pandas
DataFrames as the underlying format. Variables can be selected
singly or through a list of strings. Data may be down-selected using
Boolean or integer indexing. Indexing functionality supports both
one and higher dimensional data. While the access and assignment
functionality should serve all developer needs the full data set is
always available to users and developers at the ‘data’ Instrument
attribute. Users and developersmay access ormodify the loaded data
directly as needed.

The data access provided by pysat is primarily enabled by the
underlying data formats. Pysat is simply mapping the inputs to the
relevant underlying format. This simplifies the user’s experience,
since these methods are not always treated identically by pandas
and xarray. This general data support is a core functionality of

pysat, and will be maintained if other internal data formats are
introduced.

2.1.2 Metadata
Pysat also includes support for tracking metadata, so users can

easily understand a data set they are working with and by accessing
the data documentation provided in the original files. While xarray
is equipped to track metadata for both individual variables and an
entire data set, pandas is not equipped to do so. To ensure the most
consistent user interface, pysat tracks metadata using its own class
and is thus independent of the underlying data format.

Since file standards typically document metadata in different
ways pysat builds in functionality to automatically translate
metadata in the file to a user provided consistent standard. Pysat
defaults to tracking seven differentmetadata parameters: Units, long
name, notes, description, minimum, maximum, and fill value. The
categories of metadata are used to automatically translate metadata
as directly stored in a file to a standard set by the user. Users can
track any number of desired parameters for individual variables.
File-level metadata is stored using the file-specified attributes in the
‘meta.header’ class. This ensures all metadata provided within a file
is accessible within the pysat Instrument without duplicating any
data.

For ease of use, the metadata access is case preserving but
case insensitive. Thus, using ‘units’ or ‘Units’ or any other variation
in case returns or assigns the same data. This feature is intended
to support broader compatibility of code written to a particular
metadata standard.

Pysat’s metadata support is intended to support coupling
metadata from any standard for use within pysat. As such, adopting
a particular metadata file format for pysat compatibility is not
strictly required. Maximum compatibility is achieved when the file
metadata standard includes information in the seven categories that
pysat tracks by default, as noted above. However, pysat supports
additional categories as needed.

2.1.3 File handling and organization
Pysat’s Instrument class is intended to free users from specific

knowledge about a data set’s files. Enabling this abstraction requires
that pysat has knowledge about the files on the local system, obtained
by parsing filenames.The file list is used by pysat when loading data,
either through the ‘load’ class method, or through pysat’s built in
iteration features. Information about local files is also used when
updating a local data set for consistency with the most recent files
at the data source.

Pysat requires that all of the data be placed in one or more user-
specified high level directories. Nominally data sets are organized
under the top-level directories using the corresponding values
of ‘platform’, ‘name’, ‘tag’, and ‘inst_id’. Users can set their own
preferred schema and utilities are included to move files from one
schema to another. This preference may be assigned pysat wide
using the parameters class, or an a per Instrument basis using the
‘directory_format’ Instrument keyword.

Pysat has file parsing utilities to properly categorize the date of
the file, as well as parameters such as version, revision, or cycle.
Users can direct pysat to parse out custom information as well.
The informational structure of a filename is typically specified and

Frontiers in Astronomy and Space Sciences 05 frontiersin.org

https://doi.org/10.3389/fspas.2023.1119775
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Stoneback et al. 10.3389/fspas.2023.1119775

used internally by a developer when constructing a pysat data set
plug-in. Users can load data with a different filename structure, e.g.,
for files obtained from a non-default data provider, by setting the
same information at Instrument instantiation with the ‘file_format’
keyword.

Pysat provides two functions for parsing filenames using
delimited and fixed width standards. The fixed length parser uses
the fixed location of information within a filename to extract
information. The delimited parser uses the presence of a supplied
character to locate information. In practice, released data sets may
employ a combination of techniques when encoding filenames.
There is a large degree of overlap between the two functions: The
delimiter parser works on fixed length filenames without a single
delimiter, while the fixed width parser works on some filenames
with a variable width. Different approaches are taken within each
function, particularly in areas with feature overlap, to help ensure
that any unexpected edge cases remain parsable.

The ’download_updated_files‘ Instrument class method will
keep a local machine up to date with respect to files on servers. Pysat
will identify the files on the local machine, as well as those on the
data source server. Any dates on the server but not present locally are
downloaded, and server files with a newer version, revision, or cycle
compared to local files are also downloaded. These features makes
it trivial for a user to ensure their local machine is current with the
most recent server products.

2.1.4 Loading and customizing data
Pysat’s features make it possible to construct instrument

independent analysis functions and scale scientific analysis from
few to many data sources. The processing cycle described in this
section is a fundamental enabling technology for those features.
The internal data flow makes it possible for users to interact with
data in increments different than stored in a file. The availability
of programmatic hooks at multiple locations within the data flow
makes it possible for developers and users to easily configure a
data flow that satisfies a broad range of technical and processing
requirements. These features provide a foundation for constructing
instrument independent analysis functions, as well as the scaling
needed to move from interacting with few to many data sources in
scientific analysis.

When a user invokes the ‘load’ Instrument class method a chain
of function calls begins as in Figure 2. First, a list of files is returned
frompysat corresponding to the date range provided by the user.The
list of files is passed along to supporting data set plug-in functions
that perform the actual loading. Those functions return data and
metadata loaded from the supplied filenames.Thedata andmetadata
are attached to the Instrument object which is then passed by pysat
to the ‘preprocess’ and ‘clean’ functions.

The ‘init’ method is only called when instantiating the
Instrument, and is not shown in the load data flow.The ‘init’ method
is generally useful for setting parameters that don’t typically change,
such as the data set’s acknowledgements and references. A full
Instrument instance is passed to ‘init’ to ensure users and developers
can change any aspect of the Instrument.

The ‘preprocess’ function allows a data set plug-in developer
to automatically modify loaded data, or an Instrument object, just
after the data is loaded internally and before any other changes

could be made. This feature is one of the ways developers can
transfer their practical data set knowledge to users. As an example,
the Communications/Navigation Outage Forecasting System
(C/NOFS) IVM(Heelis andHanson, 1998; de La Beaujardière, 2004;
Stoneback et al., 2012) data set begins with measurements at a 2-Hz
sample rate but later shifts to a 1-Hz sample rate. The C/NOFS IVM
pysat plug-in thus assigns an attribute to the Instrument object
during loading for the sample rate. Downstream functions intended
for C/NOFS IVM can easily refer to that attribute as needed during
processing. Alternately, custom C/NOFS functions can use that
information to accurately couple into more general community
packages.

After pre-processing, the Instrument object is passed to a ‘clean’
function. This function is written by a developer so that users, by
default, operate upon high quality scientific data. While data sets
may feature a flag indicating data quality, it is still incumbent upon
the user to properly incorporate that flag. For data sets that do
not include a quality flag this information may be in a published
manuscript, or, in a worst case scenario, not present.Thus the ‘clean’
function allows knowledgeable developers to construct data filters
that correspond to four quality levels, ‘clean’, ‘dusty’, ‘dirty’, or ‘none’.
By default, data is loaded at the ’clean’ level. This setting may be
updated by users, either as a general pysat wide parameter, or when
setting up the Instrument.

After cleaning, the Instrument object goes through optional
data padding that turns disparate files into a computationally
continuous data set. Time based calculations can require aminimum
number of continuous samples for proper output. Thus, to apply
this function to the first sample of a file could require more samples
for an accurate calculation than would otherwise be loaded (such
as data before and after the desired analysis period). The data
padding feature, enabled at the Instrument level, pads the primary
loaded time frame with a user specified amount of data before
and after the primary data window. After padding, the data is
processed by user specified functions, then the additional padded
data is removed. The feature thus provides a user transparent
spin-up and spin-down data buffer that produces accurate time-
based calculations equivalent to loading the full data set. To
minimize excess loading, a cache is employed for leading and trailing
data.

The ‘Custom Functions’ section enables users to attach a
sequence of user provided functions that will be automatically
applied to the Instrument object in order as part of the loading
process. This functionality makes it possible to easily modify data
as needed for instrument independent analysis code. Suppose there
is an analysis package that internally loads one or more days of
data. If a user wants that analysis applied to a calculated variable
not directly stored in the data set file then without custom functions
the user would have to either modify the analysis package to modify
the data after it is loaded, or produce a new file that also includes
the new data and then use that data set. By including a custom
processing queue within the Instrument object data from the file
may be arbitrarily modified without requiring any changes within
the external analysis code.The only requirements on these functions
are that the Instrument object must be the first input argument
and that any information to be retained is added directly to the
Instrument.

Frontiers in Astronomy and Space Sciences 06 frontiersin.org

https://doi.org/10.3389/fspas.2023.1119775
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Stoneback et al. 10.3389/fspas.2023.1119775

FIGURE 2
Internal pysat data flow when user invokes. Load command.

For a standard load call the pysat data flow is now complete.
The loaded data is attached to the Instrument object through a ‘data’
attribute, readily available to the user for further modification.

The availability of programmatic hooks at multiple locations
within the data flow makes it possible for developers and users to
easily configure a data flow that satisfies a broad range of technical
and processing requirements.

An additional layer of versatility is supported by enabling users
to engage options within Instrument plug-ins. Custom keyword
arguments provided by users are identified andpassed to appropriate
plug-in functions. These keywords only need to be defined in the
data set plug-in code. Pysat identifies any undefined keywords in
relevant method calls, compares these keywords to those defined
in the plug-in methods, and passes matching keywords and values
to the relevant methods. These keywords may be provided upon
instantiation or in a method call. If provided both at instantiation
and in a particular call then the value in the method call is used.The
value at instantiation is retained and used by default if a value is not
provided in the relevant call.

2.1.5 Iterating through data
Analysis of data over time requires loading data over a range

of days, files, orbits, or some general condition upon the data.
Pysat includes functionality to support this type of loading through
iteration independent of the data distribution in the files. Loading
data through iteration engages the same process in Figure 2 to
ensure a consistent user experience.

Pysat’s iteration may be accessed using Python’s for loop
construction as demonstrated below. The code produces the following output,

Frontiers in Astronomy and Space Sciences 07 frontiersin.org

https://doi.org/10.3389/fspas.2023.1119775
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Stoneback et al. 10.3389/fspas.2023.1119775

The bounds of the iteration are set through the Instrument
‘bounds’ attribute, which may contain one or more ranges of
date/files that the Instrument will load data for. In addition, users
can set the number of days/files to load each iteration, as well as
the number of days/files to increment for the next iterative load.The
bounds attribute is employed, rather than using a specification in the
for loop itself, so that iteration independent codemay be constructed
by developers.

After imports and definition of time ranges, a Instrument is
instantiated with a simulated satellite-like test data set. The default
range of ‘files’ for the simulated data are outside the desired
range so the ‘file_date_range’ custom keyword is used to alter the
supported range of dates. Note that the ‘file_date_range’ keyword
is specific to the pysat testing data plug-ins and is not a keyword
supported for all Instruments. Next, two example definitions for
the starting and ending conditions are shown. The bounds are
assigned through ‘inst.bounds’ and are followed by the iteration
commands.

Each iteration of the for loop will load 3 days worth of data
using the ‘inst’ Instrument object. A copy of the ‘inst’ Instrument
object is returned as ‘loop_inst’. For performance reasons the
underlying datawithin ‘inst’ is not actually duplicated but is available
through ‘loop_inst’. The next loop will step forward ‘step’ days
and load ‘width’ days, repeating until the final stop bound is
reached.

Users may also iterate through data one orbit at a time.
This iteration calculates the locations of orbit breaks as part
of the data loading and orbit iteration process. The process
enables users to employ arbitrary conditions to define an ‘orbit’.
Complete orbits are returned each loop independent of day or file
breaks.

The current code has support for identifying orbits through an
orbit number variable, a negative gradient, or a sign change. If an
orbit value is already provided pysat will iterate through the data
set selecting all times with the next orbit value each iteration. The
negative gradient or sign change detectors look for specific data
conditions with the user supplied data variable to determine where
orbit breaks occur.

The orbit iterator can compare the time of a detected orbit
against a user supplied value to limit false positives when working
with noisy data. Note that some tolerance is required as not all
orbit types have a consistent orbit period. Geophysical variability
in the orbit environment can physically change orbit properties.
Additionally, orbit periods calculated with respect to magnetic local
time aren’t consistent orbit to orbit. This variability arises due to
the offset of the geomagnetic field with respect to Earth’s rotation
axis.

In the future the orbits class will be generalized so that users can
directly select a wider variety of techniques for calculating iteration
breaks in the data. This generalization in user input will enable

iterating through the data against arbitrary data conditions, not just
against orbit expectations.

2.1.6 Creating files
Support is included for writing Instrument objects to disk as

a compliant netCDF4 file with arbitrary metadata standards. By
default, pysat will create files with a simplified version of the
Space Physics Data Facility (SPDF) International Solar-Terrestrial
Physics (ISTP)/Iteragency Consultancy Group (IACG) standard.
Instrument objects may be written to disk, then reloaded, without
loss of information.

The Ionospheric Connections (ICON) Explorer mission created
a new standard for SPDF and netCDF4 files. The original SPDF
standard was composed for Common Data Format (CDF) files.
ICON chose the netCDF variant for the mission which required
some translation from the original standard due to an existing
library of netCDF software. To achieve the greatest software
compatibility the SPDF netCDF4 format includes some information
under multiple names. For example, the standard itself requires
the use of '_FillValue' but 'FillVal' is also mandated for community
compatibility reasons. Further, maximum and minimum expected
data values have multiple names. To support the SPDF netCDF4
and other formats pysat makes it possible to arbitrarily modify
stored Instrument metadata as it is being written to the file. This
enables developers to work with the minimum unique information
throughout processing and then expand as needed for file creation.

The code below maintains metadata compliance with the full
SPDF netCDF4 standard.

The labels class provides a mapping from the types of metadata
to be stored, the string value used to store the metadata, and the
default type for that parameter. The labels dictionary is provided
at Instrument instantiation to modify the default metadata labels.
While the underlying ‘testing’ data set is created with the standard
pysat metadata labels, and not the expanded labels needed for SPDF,
pysat will automatically translate the standard labels in the file to
the user provided values as part of loading. New labels without a
corresponding entry in the data are left empty.

Frontiers in Astronomy and Space Sciences 08 frontiersin.org

https://doi.org/10.3389/fspas.2023.1119775
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Stoneback et al. 10.3389/fspas.2023.1119775

The ‘meta_translation_table’ defines a mapping from the
metadata labels in the Instrument object to those used when writing
a file. Entries may be mapped to one or more labels in the file.
The multi-label support is used to convert single entries at the
Instrument level, such as the minimum expected data values, to
multiple labels in the file, ‘Valid_Min’ and ‘ValidMin’.

Additional parameters required by SPDF but that can be
unambiguously determined directly from data are handled by pysat.
The time data also has different metadata parameters available
and is assigned by pysat. Metadata is constructed in the same
way for both xarray and pandas Instrument objects. For pandas
objects pysat directly creates the netCDF file. For xarray objects
pysat uses xarray’s netCDF4 functions when writing the actual
file.

Global attributes in the netCDF4 file created in the code above
may be set by assigning new attributes to ‘inst.meta.header’.

2.1.7 General settings
Pysat has a parameters class to create a central location for

users to set pysat or custom settings. The ‘pysat.params’ class
stores defaults for checking file system every instantiation, default
clean level, directories for data, whether to ignore empty files, and
registered user modules. Users may also assign their own custom
entries.

2.1.8 Constellation
To support the use of multiple data sets in concert pysat

also offers a Constellation class. Constellations may be defined
and distributed by a developer, similar to Instrument data set
plug-ins. Alternately, users can collect an arbitrary group of
Instruments in a list to instantiate a Constellation object or create a
Constellation of all available Instruments that share a set of defining
characteristics (e.g., load all historic ACE data or all instruments
from an observational platform). There are no restrictions on
the types of Instruments object that may be combined in a
Constellation.

The intent of the Constellation class is to provide a high degree
of compatibility between Constellation and Instrument objects in
terms of attributes and methods. As an example, invoking the
Constellation load method will trigger a corresponding call to load
data for all Instrument objects within the Constellation. However,
as the Constellation object is a collection of Instruments, each
Instrument may still be manipulated individually. For example,
custom functions may be applied to the Constellation object itself
(affecting all Instruments) or to single Instruments within the
Constellation.

The Constellation class is more than simply a wrapper for a list
of Instruments. It contains several attributes designed to improve
analysis onmultiple Instruments.These include the establishment of
a common time-series and attributes (‘empty’ and ‘partial_empty’)
that define if all, some, or no data was present for the desired time
period. The Constellation class is the youngest of the core pysat
classes, and is undergoing active testing and development. Future
enhancements include a method to convert from a Constellation to
an Instrument and allowing Constellation sub-modules to provide
‘init’ and ‘preprocess’ methods.

2.2 The penumbra environment

To provide support for the broadest array of data sets and
data providers, both in and out of science, pysat is designed to
accommodate data sets through a modular system. This system
design ensures a consistent user experience without requiring any
consistency from data providers or analysis packages. For Python
packages built using pysat, the user will (for most processes) call
pysat directly. This simplifies the analysis process for scientists
performing studies from multiple data sets.

Because the data providers are typically self-consistent, pysat
packages that focus on providing data are organized by data
provider. pysatNASA (Klenzing et al., 2022b) supports NASA data
from Coordinated Data Analysis Web (CDAWeb), pysatMadrigal
(Burrell et al., 2021) for National Science Foundation (NSF) data
from Madrigal database, and pysatCDAAC (Klenzing et al., 2021)
for Cosmic Data Analysis and Archive Center (CDAAC) data.
Other pysat packages focus on a particular type of data set that
may spanmultiple data providers: pysatSpaceWeather (Burrell et al.,
2022b) focuses on space weather indices and real-time data,
while pysatModels (Burrell et al., 2022a) has utilities designed
to facilitate model-observation comparisons and loading model
files for analysis. Other pysat packages focus on a particular
analysis goal, with pysatMissions (Klenzing et al., 2022a) providing
tools to simulate and propagate orbits for current or future
space missions and pysatSeasons (Klenzing et al., 2022c) providing
averaging processes independent of data source and dimensionality.

Template instruments are included in pysat as well as several
of the pysat Penumbra packages to make it easier for users and
developers to add new Instruments. The templates include calls to
pysat provided functions that are generally applicable. Each stage of
the template Instrument plug-in is documented with comments and
descriptive basic docstrings.

To assist developers in ensuring compliance of data module
functions pysat includes a suite of unit tests for external instrument
modules. Data modules outside the core package can inherit this
core suite of tests in local tests built using pytest (Krekel et al., 2004).
These tests cover standards compliance for each module, as well as
a test run of a common set of operations: download a sample file,
load it with different levels of cleaning, and test remote file listing
if available. All test data is downloaded to a temporary directory
to avoid altering an end user’s working environment should they
contribute to the code. The tests are inherited from a top-level class,
and are used across the ecosystem to maintain consistent standards.
Additional tests for instruments with custom inputs can be added at
the package level using the inherited setup.

2.2.1 Currently supported data

2.2.2 Supporting new data sets
Pysat’s plugin design enables the wider community to load any

data set via pysat. Given pysat’s plug-in design, pysat does not
directly identify, download, load, or clean a data sets files. Rather,
pysat directs Instrument plug-ins, or a collection of appropriately
written methods, to perform various actions as required to work
with a particular data set.

Frontiers in Astronomy and Space Sciences 09 frontiersin.org

https://doi.org/10.3389/fspas.2023.1119775
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Stoneback et al. 10.3389/fspas.2023.1119775

Supported data sets grouped alphabetically by package

Platform Name Tag Inst_ID Description

Package: pysatSpaceWeather

 ace epam realtime ‘’ Real-time ACE EPAM data (SWPC)

historic Historic ACE EPAM data (SWPC)

mag realtime Real-time ACE Magnetometer data (SWPC)

historic Historic ACE Magnetometer data (SWPC)

sis realtime Real-time ACE SIS data (SWPC)

historic Historic ACE SIS data (SWPC)

swepam realtime Real-time ACE SWEPAM data (SWPC)

historic Historic ACE SWEPAM data (SWPC)

sw dst noaa Historic Dst data (NOAA/NCEI)

lasp Predicted Dst (LASP)

f107 historic Daily LASP value of F10.7

prelim Preliminary SWPC daily solar indices

daily Daily SWPC solar indices (contains last 30 days)

forecast SWPC Forecast F10.7 data (next 3 days)

45 days Air Force 45-day Forecast

kp ‘’ Deprecated: definitive and nowcast Kp (GFZ)

def Definitive Kp (GFZ)

now Nowcast Kp (GFZ)

forecast SWPC forecast Kp (next 3 days)

recent SWPC historic Kp (past 30 days)

mgii composite Composite data set of MgII core-to-wing index

sorce SORCE SOLSTICE MgII core-to-wing index

Package: pysatNASA

 cnofs ivm ‘’ ‘’ CINDI-C/NOFS Ion Velocity Meter

plp C/NOFS Langmuir Probe

vefi dc_b C/NOFS DCMagnetometer data

de2 lang ‘’ DE-2 Langmuir Probe data

nacs DE-2 Neutral Atmosphere Composition Spectrometer data

rpa DE-2 RPA data

wats DE-2 Wind And Temperature Spectrometer data

icon euv ICON EUV Level 2 data

fuv day Level 2 ICON FUV daytime O/N2

night ICON FUV Level 2 nighttime O profile

ivm ‘’ a ICON IVMa Level 2 data

b ICON IVMb Level 2 data

(Continued on the following page)

Frontiers in Astronomy and Space Sciences 10 frontiersin.org

https://doi.org/10.3389/fspas.2023.1119775
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Stoneback et al. 10.3389/fspas.2023.1119775

(Continued)

Supported data sets grouped alphabetically by package

Platform Name Tag Inst_ID Description

mighti vector_wind_green vector ICONMIGHTI green-line vector winds

vector_wind_red ICONMIGHTI red-line vector winds

los_wind_green a ICONMIGHTIa green-line LoS winds

b ICONMIGHTIb green-line LoS winds

los_wind_red a ICONMIGHTIa red-line LoS winds

b ICONMIGHTIb red-line LoS winds

temperature a ICONMIGHTIa neutral temperature data

b ICONMIGHTIb neutral temperature data

 formosat1 ivm ‘’ ‘’ F1/ROCSAT IVM

iss fpmu International Space Station FPMU

jpl gps roti Rate of change in TEC

omni hro 1min OMNI HRO 1-min time averaged data

5min OMNI HRO 5-min time averaged data

ses14 gold nmax GOLD Level 2 Nmax data

timed saber ‘’

see

Package: pysatCDAAC

 cosmic gps ionprf ‘’ COSMIC ionospheric profiles

wetprf COSMIC atmospheric profiles with moisture

atmprf COSMIC atmospheric profiles without moisture

eraprf COSMIC ERA-40 interim reanalysis data

gfsprf COSMIC NCEP operational analysis data

ionphs COSMIC ionospheric excess phase

podtec COSMIC absolute TEC and auxiliary data

scnlv1 COSIC S4 scintillation index and auxiliary data

 cosmic2 ivm ‘’ e1 COSMIC2 IVM data

e2 COSMIC2 IVM data

e3

e4

e5

e6

Package: pysatMadrigal

 dmsp ivm ‘’ f11 DMSP IVM Level 2 data

f12

f13

f14

f15

f16

f17

f18

(Continued on the following page)

Frontiers in Astronomy and Space Sciences 11 frontiersin.org

https://doi.org/10.3389/fspas.2023.1119775
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Stoneback et al. 10.3389/fspas.2023.1119775

(Continued)

Supported data sets grouped alphabetically by package

Platform Name Tag Inst_ID Description

utd f11 UTDallas DMSP data processing

f12

f13

f14

f15

 gnss tec vtec ‘’ Ground-based vertical TEC

jro isr drifts JRO ISR drifts and wind

drifts_ave JRO ISR averaged drifts

oblique_stan JRO ISR standard Faraday rotation double-pulse

oblique_rand JRO ISR randomized Faraday rotation double-pulse

oblique_long JRO ISR long pulse Faraday rotation

Package: pysatMissions

 missions ephem ‘’ ‘’ Satellite simulation data set

sgp4

Package: pysatModels

 pydineof dineof ‘’ ‘’ pyDINEOF output file

test Standard output of pyDINEOF for benchmarking

sami2py sami2 ‘’ sami2py output file

test Standard output of sami2py for benchmarking

ucar tiegcm ‘’ UCAR TIE-GCM file

End of Supported Data Sets

Pysat has an ionospheric heritage, reflected in the currently
supported data sets across the pysat ecosystem, consistent with
the scientific focus of the developers. However, pysat itself
is not limited to ionospheric or even scientific data. As the
pysat team cannot directly develop plug-ins for every data set,
pysat is designed so that users can construct their own plug-
in modules to support their own particular data. This user
available Instrument plug-in creation support is the same used
by the pysat team to add the full variety of data sets in
section 2.2.1.

In this section we provide an overview of Instrument plug-in
requirements and demonstrate that any data set that a user can
load on their own system is a data set that can be loaded from
the pysat interface. An example for an Instrument support plugin
is included below. The docstrings and other comments have been
significantly reduced here for brevity. The full template is included
with the pysat source code under ‘pysat/instruments/templates‘.
The file should be named ‘platform_name.py‘ where ‘platform‘,
‘name‘ are replaced with appropriate values. These identifiers
are used by pysat when a user instantiates an Instrument
object. The instrument plug-in file must be part of a python
module and registered with pysat before it will be available for
use.

First, a variety of Instrument attributes are set by the developer,
along with a range of testing attributes. Pysat includes a suite of
general Instrument plug-in tests that are applied to all registered
plug-ins whenever unit tests are run.This is done to make it easy for
users to ensure compliance of any plug-in code.The testing attributes
enable the developer to specify what types of tests to run and under
what conditions.

Following the attribute assignments a variety of required and
optional functions are defined. The use of these functions within
pysat’s loading process is covered in section 2.1.4. Minimum
required functions are ‘list_files‘, ‘load‘, ‘clean‘ and ‘download‘. The
‘preprocess‘ is optionally defined as needed by developers to modify
data as it is loaded. Finally, the ‘list_remote_files‘ is optional but
recommended. Pysat uses this function to keep a local system up
to date with respect to the most recent server data.

The ‘init‘ function is run once upon instantiation. As shown, it is
typically used to set references, acknowledgements, and other top-
level Instrument attributes. The ‘clean‘ and ‘preprocess‘ functions
provide opportunities to clean the data, as requested by the user, or
otherwise processes or modify the data before it becomes available
to the user. These functions are data set specific. The ‘init‘, ‘clean‘,
and ‘preprocess‘ functions all receive the pysat.Instrument object as
input.

Frontiers in Astronomy and Space Sciences 12 frontiersin.org

https://doi.org/10.3389/fspas.2023.1119775
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Stoneback et al. 10.3389/fspas.2023.1119775

The ‘list_files‘ function provides pysat with information on the
files on a user’s system. The function as presented is typically
sufficient for most data sets, the developer merely needs to provide a
filename template in the variable ‘format_str‘ as well as set keywords
in the call to ‘pysat.Files.from_os‘.The ‘format_str‘ variable provides
information on which portions of a filename contain relevant
information and how to parse that information. The example
includes the ‘year‘, ‘month‘, and ‘day‘ keywords, thus the day will be
treated as day of month. If only ‘year‘ and ‘day‘ are included then the
day is treated as day of year.

The ‘download‘ function is responsible for downloading data
for the provided dates in ‘date_array‘ to the local ‘data_path‘
location. User information is provided by the user, as needed, when
they invoke the download method. It is up to the developer to

provided the underlying functionality to actually download the data.
Typically, this function is the same for a given data source provider.

The ‘load‘ method is responsible for loading data from the
local system and returning appropriate data and metadata. A list
of filenames to be loaded is provided to the developer by pysat.
It is up to the developer to provide the required functionality to
load the files and suitably format the loaded data and metadata
for pysat. Metadata is stored within the pysat.Metadata class
to ensure a proper format. Properly formatted data is either a
pandas DataFrame or an xarray data set. A given data provider
may tend to serve files in a particular format, thus, the load
function may be shared across multiple plug-ins from the same
source.

Any file format may be loaded with this plug-in design. Note
that pysat itself doesn’t impose any requirements on the formatting
of the data or the metadata to be loaded, only on the data and
metadata returned by the function. For simple text or other data
files that don’t include metadata in the file the developer can
define the information in the function and return it as part of the
metadata. Asmetadata in pysat is primarily informational the system
still functions even when no metadata is provided by a developer
though pysat warns the user that metadata defaults are being
applied.

While pysat is file format agnostic when loading data, pysat
includes built-in support for writing and loading netCDF files. The
netCDF support will, by default, transparently store and load an
instantiated pysat.Instrument to and from disk. The functions also
include a variety of metadata and other options to store the data
using other file standards with user specified properties. Support
for loading other file formats, Common Data Format (CDF) and
Hierarchical Data Format (HDF), may be found in pysat penumbra
packages pysatCDF (Stoneback et al., 2022) and pysatMadrigal,
respectively.

3 Penumbra examples

3.1 Instrument independent analysis

The pysat Instrument and Constellation objects make it possible
to build analysis software that works with any combination of
data sets. This generalization removes the need for repeated
development or modification of the same analysis functions
but applied to different data. Analysis packages built upon
pysat can also utilize the included test instruments to develop
rigorous unit tests and enable validated access across the
community. These features increase the general trustworthiness of
manuscripts while simultaneously reducing the workload upon the
scientists.

Each of the following sub-sections covers a single pysat example.

3.1.1 Bin averages in time
PysatSeasons generalizes the commonly employed two

dimensional binning of data, such as binning a variable over
longitude and local time, to produce maps of geophysical
parameters. pysatSeasons is built on pysat’s Constellation object
to accommodate averaging data from multiple data sets at once. It

Frontiers in Astronomy and Space Sciences 13 frontiersin.org

https://doi.org/10.3389/fspas.2023.1119775
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Stoneback et al. 10.3389/fspas.2023.1119775

supports binning N-dimensional data within each bin as all input
data is translated into xarray form.

An example producing the distribution of ion density as
functions of magnetic local time and longitude using data
from the Constellation Observing System for Meteorology
Ionosphere and Climate (COSMIC-2) constellation is in the code
below.

A user-defined constellation is created after the pysat directory
assignment by defining a list containing Instrument objects for
each satellite within the six satellite constellation. The list of
Instruments is provided to the Constellation class at instantiation.
The bounds of the analysis are set at the Constellation level
which passes these limits to each individual Instrument object
within.

While measurements of ion density are directly available in
the COSMIC-2 IVM files, given the large range in values for this
analysis we want to produce amap of the log of the density. A simple
function to calculate the log of ion density, as well as add appropriate
metadata, is defined after the bounds assignment. After definition,
this custom function is attached to all the Instruments within the
Constellation by attaching the function using the Constellation
class ‘custom_attach’ function. Support is also offered for applying
custom functions at the Constellation level. Functions must accept
a Constellation as the first input rather than an Instrument.
Alternately, usersmay directly attach custom functions to individual
Instruments.

Near the end of the example code the pysat logger is updated
to provide additional feedback as the pysatSeasons bin averaging

FIGURE 3
Median ion density from COSMIC-2 constellation from January
1—January 31, 2021.

process runs. The ‘median2D’ function will load data for each of
the Instruments in the Constellation over the assigned bounds,
binning the data as appropriate. After all constellation data is
loaded a median is applied to the data within each bin. Though
the binning function currently only internally supports calculating
the bin median, all of the binned data may be returned to the user
with the ‘return_data’ keyword, enabling application of any statistical
analysis.

The returned output in the final line of code is stored in
‘results’, a dictionary, whose values are plotted in Figure 3. Raw
density values range over multiple orders of magnitude thus
the observed range in values between 4-5 is clear evidence that
user generated variables added through the custom functions
features are supported for averaging. Consistent with general
geophysical expectations a clear wave three signature is seen
in longitudinal variations in total ion density near local
noon.

3.1.2 Occurrence probability
PysatSeasons also includes generalized support for determining

how often a user determined condition occurs. The occurrence
probability is the number of times the condition occurs at least
once per bin per load iteration divided by the number of times
the Instrument made at least one observation in a given bin
per load iteration. The occurrence probability may be calculated
using a daily (or longer) load iteration or using the orbit
iterator.

The code below calculates and plots how often plasma bubbles
will be detected at ICON’s location per orbit.

The first three code groups import required packages as
well as register a single NASA data set within pysat. Next,
a pysat Instrument is instantiated for the Ion Velocity Meter
(IVM) onboard ICON. Two optional features are engaged with
the instantiation. Namely, information on identifying orbit
breaks in the data, as well as data padding for accurate time-
based calculations. Finally, a simple date range is set on the
object.

Frontiers in Astronomy and Space Sciences 14 frontiersin.org

https://doi.org/10.3389/fspas.2023.1119775
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Stoneback et al. 10.3389/fspas.2023.1119775

FIGURE 4
Occurrence probability results for ICON IVM between 1 January
2020—31 March 2020.

A pair of custom functions are then defined to modify the
ICON data as loaded from files. To identify plasma bubbles a simple
running standard deviation is defined in ‘add_std_dens’. IVM data
is loaded into a pandas DataFrame thus pandas functionality is
used to calculate the standard deviation. First, a rolling centered
time window of 30 s is defined and that rolling window is used
to calculate the standard deviation. Plasma bubbles predominantly
occur at night thus the ‘shift_local_time’ function shifts local times
from 0 to 24 to 16-40. Both custom functions are attached to the
Instrument object.

The occurrence of standard deviations in plasma
density greater than 5E3 N/cc as determined by the
‘pysatSeasons.occur_pron.by_orbit2D’ is in Figure 4. The top figure
is the distribution of plasma bubbles as a function of longitude and
local time, from late afternoon until dawn.Only the SouthAmerican
sector shows any activity. The ‘by_orbit2D’ function uses the pysat
Instrument object to iterate through ICON data orbit-by-orbit. In
this case, orbit breaks are defined using the ‘Magnetic_Local_Time’
variable and the internally observed locations with significant
negative gradients. For complete data sets significant negative
gradients would only be observed when local times rolled over
from 40 to 16.

Frontiers in Astronomy and Space Sciences 15 frontiersin.org

https://doi.org/10.3389/fspas.2023.1119775
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Stoneback et al. 10.3389/fspas.2023.1119775

3.1.3 Model data comparison
PysatModels includes support for loading model data through

pysat as well as functionality for comparing model data with
other data sets. The code below will download, load, and compare
Jicamarca Radar Observatory Incoherent Scatter Radar (JRO-ISR)
observations with a test model data set in pysat.

After the imports the JRO instrument is instantiated. Data is
downloaded if not already present on the local system. The test
model is then instantiated and loaded. The data is simulated thus
no download is necessary. To ensure both data sets have the same
longitude range, the range from the test model is identified and used
as part of the input to a custom function applied to the JRO data,
which is then loaded.

Next a comparison between the two data sets is performed.
First, for comparison against JRO ion drift measurements a non-
specific test variable is modified to have appropriate units. Next, the
pysat Instrument object is distilled into an xarray data set. Input
arguments identifying equivalent variables between data sets and
other needed parameters are constructed and used to extract model-
data pairs, locations where both data sets have information. Figure 5
plots the distribution of points for the model, for JRO, and indicates
which points are selected as present in both data sets. The values

FIGURE 5
Distribution of points identified as part of comparison.

extracted in this case only refer to simulated test data and thus aren’t
shown.

3.1.4 Model data interpolation
PysatModels also includes support for interpolating model data

onto another data set. This feature may be used to switch a model to
a different grid, or alternately, could be used to project model results
onto a satellite orbit.

The code below is an example for interpolating model data from
a regular grid onto a satellite orbit.

Frontiers in Astronomy and Space Sciences 16 frontiersin.org

https://doi.org/10.3389/fspas.2023.1119775
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Stoneback et al. 10.3389/fspas.2023.1119775

FIGURE 6
One dimensional example for interpolating model data values onto
instrument using linear or nearest neighbor interpolation.

After the imports a test satellite and a test model are both
instantiated and loaded with data. Next the model results are
interpolated onto the satellite track using either the nearest valid
value or a linearly interpolated value. Figure 6 shows a results
comparison for both settings. As expected, the linear interpolation
produces a smooth signal while the nearest neighbor method shifts
between discrete values as the satellite moves and the nearest
neighbor shifts.

Not all models have a regular distribution of points over the
variables of scientific interest. The ’pressure_levels’ tag for pysat’s
testmodel simulates a model that has a regular grid over longitude,
latitude, and pressure level, but pressure level has an irregular
relationship to altitude. Interpolating from thismodel onto a satellite
data set with altitude, with performance, requires converting the
satellite altitude to a model pressure.

The code below covers the full process.

FIGURE 7
Interpolating irregularly gridded data in altitude onto Instrument using
intermediate pressure calculation to enable regular interpolation.

The altitudes and pressure levels in the model are
used to generate equivalent pressure levels for the
satellite consistent with the satellite altitude through the
‘extract.instrument_altitude_to_model_pressure’ function. The
appropriate satellite pressure levels are generated by guessing initial
solutions and then iteratively using a regular grid interpolation on
the model to get the equivalent altitudes. The satellite pressure
levels are increased/decreased as appropriate and the iteration
continues until the difference between the actual satellite altitude
and the equivalent altitude are within the specified tolerance. The
final pressure levels are stored as ‘model_pressure’ in the satellite
Instrument.

The obtained satellite pressure is used with regular linear
interpolation to extract model ion drift values along the satellite
track through the ‘extract.instrument_view_through_model’ call.
The resulting interpolated quantities are accurate and generated
much faster than using a full irregular interpolation, available
through ‘extract.interp_inst_w_irregular_model_coord’. The results
of the interpolation are in Figure 7.

3.2 Satellite instrumentation processing

The file management, data, and metadata features within
pysat are well suited for science instrument data processing.
Scientific instrumentation goes through a general data flow. Raw
measurements directly from the instrument are converted to
physical quantities. These physical measurements are then used to
generate geophysical parameters such as ion density or temperature.
Finally, the results are stored in standards compliant files and
distributed to the public.

While the details of created files, and the instruments
themselves, may vary from mission to mission, building
instrumentation processing on pysat makes it easy to build long
term heritage in processing while still being versatile and adaptable.
IVM processing software for ICON and COSMIC-2 is built on
pysat. First, A general IVM processing package was developed. The
functions within were written using the pysat Instrument object

Frontiers in Astronomy and Space Sciences 17 frontiersin.org

https://doi.org/10.3389/fspas.2023.1119775
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Stoneback et al. 10.3389/fspas.2023.1119775

FIGURE 8
(A) Full day of simulated satellite data for January 2 (B) A single
complete orbit defined as 0-24 MLT produced by pysat’s orbit iteration
functionality. Note the orbit begins on January 1 and ends on January
2, spanning two files. Replace with fancier ICON summary type plot!.

to provide access to needed data and metadata. A higher-level
packagewas then created for both ICONandCOSMIC-2 that simply
connects the generalized IVM processing package with the ICON
and COSMIC-2 processing environments and file standards. This
design configuration ensures that any processing improvements
developed or identified within a single mission are automatically
available for the other missions. It further allows for significant
unanticipated differences between instruments as well as processing
environments without modifying the core software.

Unit tests were developed for the generalized IVM package
based upon the simulated pysat test instruments. Since the package
was built on pysat, it is easy to substitute new data sources into
the processing, simulated or measured. These unit tests may thus
be reused for future missions, saving future developer time, and
ensuring that processing results maintain accuracy across missions.

Using pysat as a foundation makes it easier to deal with
unanticipated changes in processing as a mission evolves. This is
best achieved by creating a pysat data plug-in that supports each file

stage during processing. This enables pysat to mediate loading data
as well as provides access to a variety of mechanisms to alter data
as needed.The plug-in structure provides multiple functional hooks
for working with the data under a variety of conditions. Further, the
custom function queue attached to the Instrument makes it easy to
change that processing as the mission evolves. For a Constellation
object, the functional hooks make it easy to alter the processing
of some Instruments within the Constellation. The performance of
the same physical instrument may not be the same across an actual
constellation of satellites.

3.2.1 Satellite ephemeris
In addition to analysis of existing satellite data, one can also build

simulated spacecraft orbits through the pysatMissions package. The
core instrument module here simulates a day of orbits using the
sgp4 (Rhodes, 2018) package. The spacecraft can be generated from
either a pair of Two-Line Elements (TLEs), or froma set of individual
orbital elements (orbital inclination, altitude of apoapsis, etc.).When
combined with pysatModels simulated data can be added to the
simulated orbits. While the data is generated on the fly, operations
and analysis are identical to a standard pysat instrument.The current
accuracy of the simulated orbit is on the order of 5− 10 km in
altitude for low Earth orbits. Improvements to the accuracy are
planned in the future.

The code below uses pysatMissions to simulate a satellite orbit as
well as iterate through the simulated data set, orbit-by-orbit.

After the imports and pysat directory assignment, a dictionary
is defined with information needed by the pysat orbit iterator to

Frontiers in Astronomy and Space Sciences 18 frontiersin.org

https://doi.org/10.3389/fspas.2023.1119775
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Stoneback et al. 10.3389/fspas.2023.1119775

determine orbit breaks on the fly. The ‘index’ identifies the variable
for the system to use, while ‘kind’ selects between several internal
orbit break calculations, in this case local time. The period sets
the nominally expected orbit period. The subsequent input cell
uses this information as part of instantiation. Multiple parameters
used internally by the orbit propagator are also set. Internally, these
keywords are routed to the appropriate ‘missions_sgp4’ plug-in
function.

A calculation of solar local time within pysat is coupled to
the simulated orbit using the ‘inst.custom_attach’ command. The
function itself simply passes user identified variables into the
relevant pysat call, then adds the output variables to the Instrument,
with metadata. Not all Instrument data sets label quantities like
longitude, latitude, or altitude the same, thus string inputs are used
to accommodate different naming schemes. Note that only the label
to access the data, not the underlying data itself, is passed so that the
process works as part of the load process for any day or combination
of days.

Data for 2 January 2019 is simulated and loaded into the
Instrument object through the standard ‘inst.load’. The full data set
is plotted in Figure 8 to demonstrate that the simulated orbit data
is treated in the same way as typical satellite data. Note that the first
sample is from January 2.

Finally, pysat’s orbit iteration is used to break down the daily
increment of loaded satellite data into individual orbits. In this case,
orbit breaks are determined using solar local time, appropriate for
plasma investigations due to the large influences from the Sun and
the geomagnetic field. The code is configured to stop the for loop
after the first orbit is loaded. The intent of the orbit iteration is to
provide full orbits each increment of the iteration loop. As orbit
boundaries generally do not respect file or day breaks, pysat uses its
internal data cache to load and store data from January 1 as part of
its internal calculations. Thus the first orbit sample at 0 Solar Local
Time (SLT) occurs on January 1. Note that the load statement from
the previous cell is not required for the iteration, orbit or otherwise,
to function.

4 Conclusion

The abstractions and functionality provided by pysat enables it
to integrate a wide variety of data sets and analysis tools, current or
historical, into a cohesive whole. This is particularly important for
historical packages that are unlikely to comply with current or future
data file standards, since pysat does not impose any requirements
upon these external packages. The versatility of pysat’s coupling
functionality also addresses a fundamental challenge in open source
development. Due to the low barrier for open source development
there are a wide variety of packages in the scientific community.
However, by being open there is no specific requirement that these
packages all work together. Of course, with specific effort individual
packages may be coupled on a one to one basis. With pysat though,
each coupled package coupled is now in an ecosystem where the
outputs from the other packages are also available, creating a one
to many coupling.

The versatility of pysat’s design enables scientists and developers
to address the unique aspects of any instrument while retaining
a systematic and coherent structure. For each type of change
desired by a user, or developer, pysat has built-in functionality to
mediate that change. Pysat is thus also well suited as a foundation
for instrumentation processing. The plug-in design supports the
development of robust and verifiable code for instrumentation
processing. Further, the attention to the full data life cycle ensures
full support for metadata and the requirements of creating publicly
distributed files.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: https://github.com/pysat/.

Author contributions

RS, AB, and JK are core pysat developers. JS is a regular pysat
contributor. RS is the primary author of the manuscript. RS, AB,
JK, and JS edited and reviewed the manuscript. All authors read and
approved the manuscript for submission.

Funding

This work was supported by the DARPA Defense Sciences
Office. RS was supported by the Naval Research Laboratory,
N00173191G016 and N0017322P0744. AB is supported by the
Office of Naval Research. JK was supported through the Space
Precipitation Impacts (SPI) project at Goddard Space Flight
Center through the Heliophysics Internal Science Funding
Model. JS supported through NNH20ZDA001N-LWS and
80NSSC21M0180.

Conflict of interest

The authors declare that the research was conducted in
the absence of any commercial or financial relationships
that could be construed as a potential conflict of
interest.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may be
evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

Frontiers in Astronomy and Space Sciences 19 frontiersin.org

https://doi.org/10.3389/fspas.2023.1119775
https://github.com/pysat/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Stoneback et al. 10.3389/fspas.2023.1119775

References

Barnum, J.,Masson, A., Friedel, R. H., Roberts, A., andThomas, B. A. (2022). Python
in heliophysics community (pyhc): Current status and future outlook. Adv. Space Res.
2022. doi:10.1016/j.asr.2022.10.006

Burrell, A. G., Halford, A., Klenzing, J., Stoneback, R. A., Morley, S. K.,
Annex, A. M., et al. (2018). Snakes on a spaceship—An overview of python
in heliophysics. J. Geophys. Res. Space Phys. 123, 10384–10402. doi:10.1029/
2018JA025877

Burrell, A. G., Klenzing, J., Stoneback, R., and Pembroke, A. (2021).
pysat/pysatmadrigal. v0.0.4 release. doi:10.5281/zenodo.4927662

Burrell, A. G., Klenzing, J., Stoneback, R., Pembroke, A., Spence, C., and Smith, J. M.
(2022b). pysat/pysatspaceweather. v0.0.7. doi:10.5281/zenodo.7083718

Burrell, A. G., Klenzing, J., and Stoneback, R. (2022a). pysat/pysatmodels. v0.1.0
release. doi:10.5281/zenodo.6567105

de La Beaujardière, O. (2004). C/nofs: A mission to forecast scintillations of
equatorial aeronomy sparked by the Jicamarca radio observatory. J. Atmos. Solar-
Terrestrial Phys. 66, 1573–1591. doi:10.1016/j.jastp.2004.07.030.40

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., et al. (2020). Array programming with NumPy. Nature 585, 357–362.
doi:10.1038/s41586-020-2649-2

Heelis, R. A., and Hanson, W. B. (1998). “Measurements of thermal ion drift
velocity and temperature using planar sensors,” in Measurement techniques in space
plasmas: Particles. Editors R. F. Pfaff, E. Borovsky, and T. Young (AGU), 61–71.
doi:10.1029/GM102

Hoyer, S., Roos, M., Joseph, H., Magin, J., Cherian, D., Fitzgerald, C., et al. (2022).
xarray. doi:10.5281/zenodo.7195919

Klenzing, J., Stoneback, R., Burrell, A. G., Depew, M., Spence, C., Smith, J. M., et al.
(2022a). pysat/pysatmissions, 3. Version 0.3. doi:10.5281/zenodo.7055089

Klenzing, J., Stoneback, R., Burrell, A. G., Smith, J., Pembroke, A., and Spence, C.
(2022b). pysat/pysatnasa. v0.0.4. doi:10.5281/zenodo.7301719

Klenzing, J., Stoneback, R., Pembroke, A., Burrell, A. G., Smith, J. M., and Spence,
C. (2021). pysat/pysatcdaac. Version 0.0.2. doi:10.5281/zenodo.5081202

Klenzing, J., Stoneback, R., Spence, C., and Burrell, A. G. (2022c). pysat/pysatseasons.
v0.2.0. doi:10.5281/zenodo.7041465

Krekel, H., Oliveira, B., Pfannschmidt, R., Bruynooghe, F., Laugher, B., and Bruhin,
F. (2004). pytest 7, 2.

Moigne, J. L. (2018). Distributed spacecraft missions (dsm) technology
development at NASA Goddard Space Flight Center. IGARSS 2018 - 2018 IEEE
Int. Geoscience Remote Sens. Symposium 293–296. doi:10.1109/IGARSS.2018.
8519065

Pandas development team (2022). pandas-dev/pandas: Pandas.
doi:10.5281/zenodo.7223478

Pembroke, A., DeZeeuw, D., Rastaetter, L., Ringuette, R., Gerland, O., Patel, D., et al.
(2022). Kamodo: A functional api for space weather models and data. J. Open Source
Softw. 7, 4053. doi:10.21105/joss.04053

Rhodes, B. (2018). python-sgp4.

Stoneback, R. A., Burrell, A. G., Klenzing, J., and Depew, M. D. (2018). Pysat:
Python satellite data analysis toolkit. J. Geophys. Res. Space Phys. 123, 5271–5283.
doi:10.1029/2018JA025297

Stoneback, R. A., Davidson, R. L., andHeelis, R. A. (2012). Ion driftmeter calibration
and photoemission correction for the c/nofs satellite. J. Geophys. Res. Space Phys. 117.
doi:10.1029/2012JA017636

Stoneback, R. A., Depew, M., Klenzing, J., Iyer, G., Pembroke, A., Starr, G., et al.
(2022). pysat/pysatCDF: v0.3.2 (v0.3.2). Zenodo. doi:10.5281/zenodo.1217180

Frontiers in Astronomy and Space Sciences 20 frontiersin.org

https://doi.org/10.3389/fspas.2023.1119775
https://doi.org/10.1016/j.asr.2022.10.006
https://doi.org/10.1029/2018JA025877
https://doi.org/10.1029/2018JA025877
https://doi.org/10.5281/zenodo.4927662
https://doi.org/10.5281/zenodo.7083718
https://doi.org/10.5281/zenodo.6567105
https://doi.org/10.1016/j.jastp.2004.07.030.40
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1029/GM102
https://doi.org/10.5281/zenodo.7195919
https://doi.org/10.5281/zenodo.7055089
https://doi.org/10.5281/zenodo.7301719
https://doi.org/10.5281/zenodo.5081202
https://doi.org/10.5281/zenodo.7041465
https://doi.org/10.1109/IGARSS.2018.8519065
https://doi.org/10.1109/IGARSS.2018.8519065
https://doi.org/10.5281/zenodo.7223478
https://doi.org/10.21105/joss.04053
https://doi.org/10.1029/2018JA025297
https://doi.org/10.1029/2012JA017636
https://doi.org/10.5281/zenodo.1217180
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles

