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The plasmasphere is a region of cold and dense plasma around the Earth,
corotating with the Earth. Its plasma density is very dynamic under the influence
of the solar wind and it influences several processes such as the GPS navigation,
the surface charging of the satellites and the propagation and growth of
plasma waves. In this manuscript, we present a new machine-learning model
of the equatorial plasma density depending only on the Kp index and the
solar-wind properties at the L1 Lagrange point. We call this model PINE-RT
as it has been inspired by the recently-introduced PINE (Plasma density in the
Inner magnetosphere Neural network-based Empirical) model and it has been
developed to run in real-time (RT) in the context of the PAGER project. This
project is an EUHorizon 2020 project aiming at forecasting the threats of satellite
charging as a consequence of the solar activity 1–2 days ahead. In PAGER, the
Kp index and the solar-wind properties at L1 are the inputs which are made
available for the plasmasphere modeling. We report here the detailed derivation
of the PINE-RT model and its validation and comparison with two state-of-the-
art machine-learning and physics-based models. The model is currently running
in real-time and its predictions are publicly available.

KEYWORDS

operational real-time plasmasphere model, machine learning, neural networks, PAGER
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1 Introduction

The plasmasphere is a region of cold (∼1eV) and dense (up to ∼104cm−3) plasma around
the Earth. A sharp drop in the density defines its outer boundary, which is called the
plasmapause. The source of plasmaspheric particles is the ionosphere and its size and shape
can vary dramatically under the influence of the solar wind. During quiet geomagnetic
conditions, it has a toroidal shape extending for several Earth radii into space, corotating
with the Earth. Instead, during geomagnetic storms the plasmasphere shrinks considerably
as the plasma is dragged towards the Sun, and sunward elongated structures, called plumes,
appear, e.g., (Goldstein et al., 2003a; Spasojević et al., 2003). During the recovery phase of a
storm, the plasmasphere is refilled with particles from the ionosphere untill it reaches the
toroidal shape and size of quiet geomagnetic conditions.

Several processes are influenced by the plasmasphere, as for example, the GPS navigation
(Mazzella and Andrew, 2009; Xiong et al., 2016), the surface charging of the satellites
(Reeves et al., 2013) and the propagation and growth of plasma waves which in turn
affect the distributions of energetic ions and electrons in radiation belts through wave-
particle interaction (Horne et al., 2005; Orlova et al., 2016; Shprits et al., 2016). In particular,
the plasmapause location separates different regions of hiss- and chorus-wave-induced
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scattering (Shprits et al., 2008; Li and Hudson, 2019). Therefore, the
modeling of the plasmasphere is crucial both for space weather
applications and as a scientific topic per se.

There has been a long history of research in plasmasphere
modelling. Early attempts consisted in developing empirical
models of the plasma density using statistical averages (Carpenter
and Anderson, 1992; Sheeley et al., 2001). The plasma density
was inferred from plasma-wave measurements from spacecrafts
(Carpenter and Anderson, 1992) and satellite (Sheeley et al.,
2001) missions and from ground-based whistler measurements
(Carpenter and Anderson, 1992).These models provide an accurate
description of the plasma density during quiet conditions and are
still extensively used in space-physics simulations, but they cannot
describe the dynamics during disturbed geomagnetic conditions
(Zhelavskaya et al., 2017; Shprits et al., 2022).

More recently, machine-learning models have been developed
in order to connect more closely the plasma density with the
geomagnetic conditions (Bortnik et al., 2016; Chu X. et al., 2017;
Chu X. N. et al., 2017; Zhelavskaya et al., 2017; Zhelavskaya et al.,
2021). These models are based on feedforward neural networks
(Haykin, 1994; Hassoun, 1995), which are machine learning models
able to capture non-linear relations between the inputs and the
target. The plasma density has been inferred from spacecraft
potential (Bortnik et al., 2016; Chu X. et al., 2017) and plasma-
wavemeasurements (Chu X. N. et al., 2017; Zhelavskaya et al., 2017;
Zhelavskaya et al., 2021). In particular (Zhelavskaya et al., 2017;
Zhelavskaya et al., 2021), developed the PINE (Plasma density
in the Inner magnetosphere Neural network-based Empirical)
model, describing the plasma density in the equatorial plane
(Zhelavskaya et al., 2017) performed a long-term validation of the
PINE model using in situ plasma density data inferred from the
plasma-wave measurements of the Van Allen Probes (Mauk et al.,
2013). Moreover they compared the global plasmaspheric
reconstructions of the PINE model to the plasmapause locations
extracted from the images provided by the IMAGE EUV
instrument (Sandel et al., 2000) for selected events. They found
that the PINE model is able to reproduce the plasma erosion,
the plasmapause location, the plumes and their rotation during
quiet geomagnetic conditions and moderate storms. Despite
the remarkable success, the machine-learning models face the
difficulty to describe accurately what happens during strong
geomagnetic storms, because these are rare events for which much
less data is available (Zhelavskaya et al., 2017; Zhelavskaya et al.,
2021).

There has also been extensive effort in developing physics-based
models, see e.g., (Bailey et al., 1997; Pierrard et al., 2008; Pierrard
and Stegen, 2008; Huba and Krall, 2013; Krall and Huba, 2013;
Ridley et al., 2014; Huba et al., 2017; Zhelavskaya et al., 2021; Haas
et al., 2023) and (Pierrard et al., 2009) for a review. These models
describe the physical processes with dynamical equations, relying
on parameters estimated empirically via statistical averages. These
parameters include the refilling-rates from the ionosphere and
the electric and magnetic fields driving the plasma dynamics. In
particular (Zhelavskaya et al., 2021), adopted the Versatile Electron
Radiation Belt Convection-Simplified (VERB-CS) model, which
was originally developed by (Aseev and Shprits, 2019) to model
the low energy electrons of the radiation belts (Zhelavskaya et al.,
2021) extensively compared the predictions of the VERB-CS

model to the PINE model results and showed that the VERB-
CS model describes the plasma dynamics better than the PINE
model during strong geomagnetic storms, but the PINE model is
more accurate during quiet conditions and moderate geomagnetic
storms.

The Prediction of Adverse effects of Geomagnetic storms and
Energetic Radiation (PAGER) project 1 aims at estimating the
risks of satellite charging1 2 days ahead in order to enable satellite
operators to respond to events that represent a significant threat.
Moreover, it provides several space-weather-forecasts products
that are made available in real-time through its website. The
backbone of the PAGER project is constituted by a pipeline of
algorithms connecting the solar activity with the satellite charging.
A crucial component of this pipeline is dedicated to forecast the
plasma density in the plasmasphere in the equatorial plane and
the plasmapause location. Having the objective of providing the
forecasts 1–2 days ahead, a possible way to provide the plasma
density forecast would be to have a nowcastmachine-learningmodel
whose inputs can be forecasted 1–2 days ahead. We note that the
PINE model can not be used in this respect, because it requires the
geomagnetic indices AE, Kp, Sym-H, and F10.7, the magnetic-shell
parameter L and the magnetic local time (MLT) as inputs, but the
forecasts of AE, Sym-H, and F10.7 are not provided by the PAGER
components. Instead there are PAGER components forecasting the
Kp index and the solar wind properties at the L1 Lagrange point.

In this study, we report the detailed derivation of a nowcast
machine-learning model of the plasma density in the equatorial
plane having only the Kp index and solar wind properties as
inputs. We call this model PINE-RT as it has been inspired by the
PINE model and it has been developed to run in real-time (RT).
We extensively validated the PINE-RT model and compared its
predictions with the predictions of the VERB-CS and the PINE
models. In order to evaluate the performance of the models, we
made use of the in situ plasma density inferred from the plasma-
wave measurements of the Van Allen Probes and the plasmapause
locations extracted from the images of the IMAGEEUV instrument.
We explored both the Volland-Stern electric field model (Volland,
1973; Stern, 1975) as in (Zhelavskaya et al., 2021) and the Weimer
(Weimer, 2005) electric field model as inputs for the VERB-
CS model. We chose to consider events characterized by quiet
conditions or moderate disturbances while the modeling of strong
geomagnetic storms is deferred to future studies. In fact strong
storms (Kp > 7) are rarer events and appropriate procedures must
be tailored to enable the machine-learning algorithms to accurately
describe them (Zhelavskaya et al., 2017; Zhelavskaya et al., 2021).
We found that our machine-learning model has a performance
slightly inferior to the one of the PINE model and slightly better
than the VERB-CS model driven by the Volland-Stern electric field
model, while the VERB-CS model driven by the Weimer electric
field model gives the worst performance. We implemented the
PINE-RT model to run in real-time and its output is available on
the PAGER project website and throught the iSWA service of the
Community Coordinated Modeling Center2.

1 https://www.spacepager.eu/.

2 https://iswa.gsfc.nasa.gov/IswaSystemWebApp/.
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We describe the derivation of the PINE-RT model and the
VERB-CS model in Section 2. In Section 3 we show the validation
and the comparison of ourmachine-learningmodel with the VERB-
CS and the PINEmodels. Finally, we summarize our findings andwe
point to ideas for future studies in Section 4.

2 Materials and methods

2.1 The PINE-RT model

2.1.1 Data
Following (Zhelavskaya et al., 2017; Zhelavskaya et al., 2021), we

used the in situ plasma density inferred from the upper-hybrid-
resonance frequency bands in the dynamic spectrograms of the
Electric andMagnetic Field Instrument Suite and Integrated Science
(EMFISIS) instrument (Kletzing et al., 2013) on board theVanAllen
Probes with the Neural-network-based Upper hybrid Resonance
Determination (NURD) algorithm (Zhelavskaya et al., 2016). This
data is provided by the German Research Centre for Geosciences
(GFZ) (Zhelavskaya et al., 2020). We also made use of the Kp index
provided by the GFZ (Matzka et al., 2021) and of the solar-wind
measurements at the L1 Lagrange point provided by the OMNIWeb
service3. We collected all the data for the period 01 October
2012—01 July 2016.

We divided the data into 6 parts, we used 5 of these to perform
the 5-fold cross validation formodel selection, see Subsection 2.1.4,
and one for testing the selected model. We partitioned the data
by randomly assigning blocks of 35 sequential days to one of the
6 parts. There are three reasons for this (Zhelavskaya et al., 2021).
First, the data points are temporally correlated and a completely
random split may lead to a correlation between the training and
the test data points, potentially leading to an optimistic estimation
of the performance on the test dataset. Second, a sequential split
encompassing large time periodsmay lead to a significantly different
distribution of the features and the target variable in the training and
in the test datasets. For example, due to the way the data is split,
it may occur that the training or the test datasets do not contain
periods of high geomagnetic activity. Finally, the reason for using
35-day blocks is to avoid the possible effect of the 27-day recurrence
caused by the solar rotation.

2.1.2 Feature engineering
In (Zhelavskaya et al., 2021) a machine-learning model based

only on solar wind features achieved a lower performance than
a model based on geomagnetic indices or on a combination of
solar wind and geomagnetic indices. Therefore, we decided to look
primarly for a model that has both the solar wind features and
the Kp index as input, but we also checked the performance of
models having only solar wind features as input (see Section 2.1.4).
Moreover, we decided to focus our attention in particular on
features that were shown to be relevant for the description of
the plasmasphere. In particular, the Kp index and vBs, where v is
the solar wind speed and Bs is the southward component of the

3 https://omniweb.gsfc.nasa.gov/hw.html.

TABLE 1 Timewindows considered to capture the effect of the time history
of Kp, vBs and ρp on the plasma density dynamics.

Features Time windows (in hours where not specified)

Kp 0–3, 3–6, 6–12, 12–24, 24–48, 48–72

vBs, ρp 0–30min, 30min-1, 1–2, 2–3, 3–6, 6–12, 12–24, 24–48, 48–72

interplanetary magnetic field (IMF), were found to be important
for the plasmapause dynamics (He et al., 2017). For this reason,
we decided to include these features. Finally, we also included the
proton density ρp, since it is an important property of the solar wind.

We computed aggregates of Kp, vBs and ρp over the time
windows in Table 1 in order to take into account the effect of
their time history. In particular, we computed the maximum value
for Kp and the mean for vBs and ρp.We note that the time
windows were chosen to be non-overlapping in order to avoid the
creation of correlated features. Moreover, the time windows were
selected differently for the features due to their different cadency. In
particular, the Kp index has a 3-h cadency, so aggregates below this
temporal window do not make sense, while the solar wind features
have a 1-min cadency to capture the short-term dynamics.

The solar wind features may have missing values, which most
often occurs during geomagnetic storms. When computing the
aggregates, we required at least 30% of the values to be present
in a given window. If that minimum percentage was not reached,
we assigned a NaN value to the aggregate. The machine-learning
algorithm cannot be fitted on those data points for which the
values of some features are missing. Therefore, one would need
either to find a strategy to fill the missing values or to exclude
those data points from the training dataset. Since the strategy for
filling the missing values would require a separate study, we decided
to exclude the data points with missing values from the training
dataset.

We considered up to 72-h time history in order to take into
account the plasmasphere refilling which happens on a time scale
of several days (Craig et al., 1993). We checked the perfomance of
models taking into account either up to 48-h or up to 72-h time
history (see Section 2.1.4).

Finally, we considered L andMLT to parametrize the equatorial
plane. Instead of providing MLT as input to the machine-learning
models, we employed sin(MLT) and cos(MLT) to provide the
information thatMLT is an angular variable.

2.1.3 Features scaling
When developing a machine-learning algorithm, it is generally

recommended to have all the features on the same order of
magnitude. This is why we applied a scaling procedure tailored
to the distributions of the features and chose to obtain values
between 0 and 1. L takes values between 1 and 6.5 (it is measured
in Earth radii), while sin(MLT) and cos(MLT), which ranges from
−1 and 1. Then we scaled these features with the MinMax scaler4,
which applies the following transformation to the features values

4 https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.MinMaxScaler.html.
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FIGURE 1
Distributions of the Kp index and of the mean of ρp and vBs over the last 3 hours computed using 4 of the 5 folds composing the training set.

xscaled = (x− xmin)/(xmax − xmin) and makes the values to be between
0 and 1. In Figure 1 we report the histograms of the Kp index and
of the mean of ρp and vBs over the last-three-hours period, since
the aggregates of the features over the other time windows show a
similar behaviour. The histograms are computed using 4 of the 5
folds composing the training data in order not to extract information
from the validation data.

We notice that the Kp index is distributed between 0 and 8, with
the majority of values being below 3.Then, we scaled the Kp-related
features with the MinMax scaler, bringing the values of the features
between 0 and 1. The last-three-hours mean of ρp has values greater
than 0 and lower than 70, with themajority of values being below 20,
and shows a quite light tail. For this reason, we scaled the density-
related features by first applying a logarithmic transformation in
natural base. Since the resulting distributions looked gaussian-like
we applied a standard scaler5making the distribution to have 0mean
and a variance of 1. Finally, we applied a MinMax scaler, making
the values of the features to be between 0 and 1. The last-three-
hours mean of vBs takes values from roughly −12,000 and 0, with
the majority of values being above −4,000, and shows a lighter tail
than the ρ-related features. Moreover, it takes negative values and
also 0. For these reasons, we first multiplied the vBs-related features
by −1 and shifted by 1, then we took the logarithm in base 10 and
finally we applied the MinMax scaler.

Both the standard scaler and MinMax scaler have parameters
that need to be computed during the training process of the
machine-learning model. For the standard scaler one has to fit

5 https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.StandardScaler.html.

compute the mean and the variance of the feature values, while for
theMinMax scaler has to compute the minimum and the maximum
value of the feature values. Once these parameters have been
computed during the training process, the scaling transformations
can be applied both to the training data and to new unseen
data.

In Figure 2 we show the distributions of the features considered
in Figure 1 after applying the scaling procedure. We notice that all
the features have value between 0 and 1 after the scaling. Moreover
when looking at the scaled distribution of the last-three hours mean
of vBs, we can clearly distinguish the cases in which the magnetic
field was positive or negative on average.

2.1.4 Features selection and model selection
Starting from the features described in Section 2.1.2, we looked

for the best features set among those defined in Table 2.To do this,
we evaluated the performance of the features sets as inputs of the
machine-machine learning model we intended to use to model the
plasma density, which is a feedforward neural network.

A feedforward neural network (Haykin, 1994; Hassoun, 1995)
is a neural network wherein connections between the nodes do
not form a cycle. It is constituted by an input layer, one or more
hidden layers and an output layer, with several neurons in each
layer. In a given layer, each neuron receives inputs from the neurons
of the previous layer and gives an output to the neurons of the
next layer. Interestingly, feedforward neural networks are able to
capture non-linear relations between the features and the target, and
they were successfully used in space physics (Bortnik et al., 2016;
Zhelavskaya et al., 2016; Chu X. et al., 2017; Zhelavskaya et al., 2017;
Zhelavskaya et al., 2021). In particular (Zhelavskaya et al., 2017),
showed that a feedforward neural network with one hidden layer is
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FIGURE 2
Scaled distributions of the Kp index and of the mean of ρp and vBs over the last 3 hours using 4 of the 5 folds composing the training set.

TABLE 2 The features sets for which we evaluated the performance.

Features set name Features

Set0 Kp, ρp and vBs and their time history as in Table 1, L, sin(MLT) and cos(MLT)

Set1 ρp and vBs and their time history as in Table 1, L, sin(MLT) and cos(MLT)

Set2 ρp and vBs and their time history as in Table 1 but without the time window 48–72, L, sin(MLT) and cos(MLT)

Set3 Kp, vBs and ρp as in Table 1 but without the time window 48–72, L, sin(MLT) and cos(MLT)

able to accurately predict the plasma density in the equatorial plane
of the plasmasphere. Therefore we chose to select our model within
this class of models.

We considered 7, 15, 20, 25, and 30 as possible choices for
the numbers of neurons in the hidden layer. To evaluate which
architecture performs best, we performed a 5-fold cross validation
using the 5 datasets contained in the training dataset. K-fold cross
validation is used for model selection, because it avoids the choose
a model on the basis of its performance on a particular dataset
(Zhelavskaya et al., 2017, 2021). In this procedure the training
dataset is split in K-folds, where one fold is considered as the
validation dataset and the remaining ones are used as training
dataset to train the model. We notice that the training concerns all
the parts of the model that need to be fixed, i.e., also the scalers
described in Subsection 2.1.3. The performance is evaluated both
on the training and validation datasets. This procedure is repeated
for all the K-possibilities providing K performance values on the
training and the validation datasets, fromwhich statistical quantities
can be computed.

In our case, we have 5 folds and therefore 5 couples of training
and validation datasets on which we computed the performance. In

particular, we used the root mean squared error (RMSE), which is
defined as

RMSE =
√

N

∑
i=1
(ni,true − ni,pred)

2

N
, (1)

where ni,true and ni,pred are the log10 of the plasma density data
extracted with the NURD algorithm and of the plasma density
predicted by the neural network for the i-data point, respectively.
N is the total number of data points for which we predicted within
a given dataset. In Figure 3, we show the mean and the standard
deviation of the RMSEs obtained during the 5-fold cross validation
for the features Set0. One can see that the RMSE on the training
dataset reduces as we increase the number of neurons, which is
expected since the model becomes more complex and is able to
fit better to the training data. Instead the RMSE on the validation
dataset first decreases and then starts to oscillate after 15 neurons.
In machine learning, it is expected that there is a gap between the
performance on the training and on the validation dataset, since the
algorithm is fitted on the training dataset. However, when that gap
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FIGURE 3
Plot of the mean and standard deviation of the RMSE derived from the
cross validation procedure for the features set 0.

TABLE 3 Best results obtained for the features sets of Table 2.

Model RMSE train RMSE validation

best result with Set0 0.340± 0.004 0.362± 0.016

best result with Set1 0.394± 0.008 0.425± 0.028

best result with Set2 0.411± 0.007 0.431± 0.022

best result with Set3 0.343± 0.004 0.368± 0.013

increases as the complexity of the model increases, it means that the
model starts to specialize more to the training data and has not the
same prediction power on unseen data. In our case, the gap between
the RMSE on the training and the validation dataset increases when
the number of neurons is above 15, we then chose to have 15 neurons
in the hidden layer and this fixed the model.

We have performed this procedure for each features set in
Table 2 and we report the best results obtained in Table 3. We can
see that the features sets with only solarwind features achieve a lower
performance than the ones containing also the Kp index, similarly to
what was found in (Zhelavskaya et al., 2021). Moreover, the features
Set 0, which uses up to 72-h of time history, performs slightly better
than Set 3 containing up to 48-h of time history. For these reasons,
we adopted the features Set 0 and a hidden layer with 15 neurons,
which gave the best result with Set 0.

2.1.5 Performance on the test dataset and final
model

We evaluated the performance of the model selected in
Section 2.1.4 on the test dataset, which was not part of the training
data. To do this, we fitted the scalers defined in Subsection 2.1.3
and the model Section 2.1.4 on the whole training dataset and we
computed the RMSE both on the training and the test datasets. We
foundRMSE = 0.34 on the training data andRMSE = 0.35 on the test
data, which is compatible with the cross validation results ofTable 3.

In order to obtain the final PINE-RT model, we combined
the training and the test data and we retrained our scalers and

neural-network model using both datasets. The neural-network
model has a random_state parameter, which determines the random
initialization of the weights and the bias parameters of the model6.
These are the parameters of the neural-network that are fitted
during the training process. While training the final model, we fixed
the random_state to eliminate the randomness from the training
process of the neural network and ensure the reproducibility of the
model. We present the extensive validation of the PINE-RT model
in Section 3, where we also compare its performance with the one
of the VERB-CS model of Section 2.2.

2.1.6 Implementation of the real-time runs
We deployed the PINE-RT model described in Section 2.1.5

to run in real-time. The input data for the real-time runs are
downloaded or generated by the PAGER components. In particular,
we combine the real-time solar-wind measurements at L1 provided
by the ACE spacecraft7, which are regularly downloaded on the
PAGER servers, with the solar wind forecasted by the SWIFT
code8. As for the Kp index, we combine several sources. First, we
use the Kp index measurements provided by GFZ (Matzka et al.,
2021), which is downloaded on the PAGER servers. Second, we use
two forecasts of the Kp index, that are generated in the context
of the PAGER project. One forecast is based on the algorithm of
(Shprits et al., 2019) and is driven by the solar-wind measurements
at L1. The other forecast is obtained by providing the solar-wind
forecast of SWIFT to the Kp nowcast algorithm of (Shprits et al.,
2019). Finally, we make use of the Kp index forecast provided by the
Space Weather Prediction Center9 as a backup solution. The real-
time plots of the Kp index sources available in PAGER can be found
here10.

The PINE-RT model runs every hour and predicts the next-
day forecast of the plasma density in the equatorial plane and the
plasmapause location with 1-h cadency. A movie of the output
is publicly available on the PAGER website11 and the nowcast
is also available throught the iSWA service of the Community
Coordinated Modeling Center12. Finally the PINE-RT model runs
in a Docker container13 to ensure cross-platform portability and
resilience, the latter in light of a possible future integration with
Kubernetes14.

2.2 The VERB-CS model

During active geomagnetic periods, Birkland currents (Stern,
1983) will form, which cause a strong dawn-to-dusk electric field.

6 https://scikit-learn.org/stable/modules/generated/
sklearn.neural_network.MLPRegressor.html.

7 https://www.swpc.noaa.gov/products/ace-real-time-solar-wind.

8 https://www.spacepager.eu/work-packages/wp2.

9 https://www.swpc.noaa.gov/products/3-day-geomagnetic-forecast.

10 https://www.spacepager.eu/data-products/forecast-of-the-kp-index.

11 https://www.spacepager.eu/data-products/forecast-of-plasma-density.

12 https://iswa.gsfc.nasa.gov/IswaSystemWebApp/.

13 https://www.docker.com/resources/what-container.

14 https://kubernetes.io/.
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FIGURE 4
Schematic comparison between electrons on open and closed drift
paths.

This field transports particles from the plasma sheet across the
inner magnetosphere towards the magnetopause on the dayside.
Such trajectories are known as open-drift shells. If the co-rotational
electric field, which is seen by an observer outside the co-rotational
inertial reference frame of the Earth, is strong enough to close this
trajectory before the particles encounter themagnetopause, particles
will be trapped. Depending on the spatial location, the particles
will either be on a closed or an open drift path (see Figure 4).
The outermost closed drift path of zero energy particles assuming
static electric and magnetic fields is known as the Alfvén layer. As
a zero-order approximation, the Alfvén layer roughly predicts the
plasmapause location.

The physics-based model describing convection and refilling
from the ionosphere is based on the Versatile Electron Radiation
Belt (VERB) model, which is capable of simulating the electron
population within the Earth’s radiation belts (Shprits et al.,
2008; Subbotin and Shprits, 2009; Subbotin et al., 2011) in three
dimensions and electron ring current population in four dimensions
(Shprits et al., 2015; Aseev and Shprits, 2019) by describing the
particles in a convective-diffusive manner (Schulz and Lanzerotti,
1974). Low energy electrons are dominated by the convective
transport, making it possible to neglect the diffusion terms, resulting
in the VERB-CS (Convection Simplified) model (Aseev and Shprits,
2019)

∂ne
∂t
+ vΦ

∂ne
∂Φ
+ vR

∂ne
∂R
= S− L. (2)

The VERB-CS model has been previously used to model the
plasma density ne in the plasmasphere in the equatorial plane

(Zhelavskaya et al., 2021) by solving Equation 2, where Φ is the
magnetic local time (MLT), R is the radial distance from the Earth
in the equatorial plane, vΦ and vR are drift velocities respectively
in MLT and radial distance, S represents the source and L the loss
of charged particles. Good results during geomagnetic storms have
been reported in (Zhelavskaya et al., 2021) by driving the convection
with the Volland-Stern electric field model (Volland, 1973; Stern,
1975) in combinationwith a sub-auroral polarization stream (SAPS)
module (Goldstein et al., 2005). For the full model description, we
refer to Zhelavskaya et al. (2021), as the model used in our study
only deviates in the electric and magnetic fields driving convection.
Instead of using the simple dipole approximation to describe the
ambient magnetic field as in Zhelavskaya et al. (2021), we use the
Kp-dependent T89 magnetic field model (Tsyganenko, 1989), since
the dipole approximation does not hold at large radial distances,
especially during geomagnetic disturbed times (Tsyganenko, 1989).
It should be noted that the T89 model overestimates the magnetic
field, but it is relatively easy to implement as it uses only the Kp index
as an input. Regarding the ambient electric field, we use the Volland-
Stern model parameterized by Kp (Chen et al., 1975; Maynard
and Chen, 1975) using a gamma factor of 1.8 (Zhelavskaya et al.,
2021) and including the SAPS module (Goldstein et al., 2005).
Additionally, we report results using theWeimer electric fieldmodel
Weimer (2005), which takes solar wind parameters as input and
calculates the polar cap potential, which is mapped along magnetic
field lines down to the equatorial plane. Afterwards, the electric
field is calculated at the equatorial plane numerically using a central
differencing scheme. Solar wind parameters are binned to 15-
min intervals and fed to the Weimer model, resulting in a much
higher time resolution compared to the 3-h cadence of the Volland-
Stern model. As a result, the Weimer model promises to describe
finer and quicker changes of the shape and strength of the convection
electric field.

3 Results

Herewe show the results of the validation of the PINE-RTmodel
and its comparison with the VERB-CS and the PINE models. In
order to compare the models, we considered the predictions of the
models for the same events. We performed a long-term comparison
using the equatorial plasma density inferred with the NURD
algorithm from theVanAllen Probe RBSP-A in situ data. To perform
an unbiased evaluation, this was done using data which were not
included in the training dataset of the machine-learning model.
Moreover, we evaluated the global plasmapheric reconstructions
of the models on selected events using the plasmapause extracted
from the images of the IMAGE EUV instrument (Sandel et al.,
2000). We consider events related to quiet conditions and moderate
geomagnetic storms characterized by Kp <= 7, postponing the
evaluation of the models on strong storms with Kp > 7 to future
work.

We used the Kp index provided by GFZ (Matzka et al., 2021)
and the solar wind measurements at L1 and the geomagnetic
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FIGURE 5
In the top panel we plot the Kp index for the period 1 September 2016–1 May 2017. In the other panels, we report the predictions of the
machine-learning and physics-based models and the equatorial plasma density, extracted from RBSP-A data with the NURD algorithm
(Zhelavskaya et al., 2016), using a log10 logarithmic scale.

indices for the PINE model from OMNIWeb15. The features for the
PINE-RT model were constructed with the same procedure as in
Subsection 2.1.2 and scaled as in Subsection 2.1.3 with the scalers
fitted in Subsection 2.1.5.

15 https://omniweb.gsfc.nasa.gov/hw.html.

3.1 Validation with Van Allen Probes data

We chose to consider the equatorial plasma density
inferred from the Van Allen Probe RBSP A data for the
period 1 September 2016–1 May 2017, which was not
included in the training dataset of the machine-learning
model. We generated the predictions of the VERB-CS and the
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FIGURE 6
In the top panel we plot the Kp index for the period 1 September 2016–1 May 2017. In the other panels, we report the absolute logarithmic differences
between the predictions of the machine-learning and physics-based models and the equatorial plasma density extracted from the RBSP-A data with
the NURD algorithm (Zhelavskaya et al., 2016).

machine-learning models on a spatio-temporal grid of L, MLT
and time. In fact VERB-CS has it is own grid which does not exactly
match the locations of the RBSP-A observations in L, MLT, and
time. For the machine learning models we make predictions on the
VERB-CS grid to be able to easily compare with the physics-based
models. The spatial grid was between 1.5 and 6.5 Earth radii at
steps of 0.25 Earth radii and between 0 and 24 at steps of 0.5 for

MLT, while we had a 15 min resolution in time. The predictions
of all the models are then lineary interpolated in L, MLT and
time to match the L-, MLT- and time-coordinates of the RBSP-A
observations.

In Figure 5 we show the predictions of the models and the
equatorial plasma density extracted from the RBSP-A data with
the NURD algorithm. In Figures 6, 7 we show respectively the
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FIGURE 7
In the top panel we plot the Kp index for the period 1 September 2016–1 May 2017. In the other panels, we report the logarithmic differences between
the predictions of the machine-learning and physics-based models and the equatorial plasma density extracted from the RBSP-A data with the NURD
algorithm (Zhelavskaya et al., 2016).

absolute logarithmic differences and the logarithimic differences
between the predictions of the models and the equatorial plasma
density data. Finally, in Figure 8 we plot the histograms of the
logarithmic differences and we report the RMSE and mean error
(ME) of the predictions. We notice that the PINE model has the
best performance both in terms of RMSE and ME, followed by the
PINE-RT model which outperforms the VERB-CS model driven

by the Volland-Stern electric field in terms of RMSE. Finally, the
VERB-CS model driven by the Weimer electric field gives the worst
performance both in terms of RMSE andME. Looking at theME, we
notice that themodels have a tendency to underestimate the density,
which is more pronounced for the model driven by the Weimer
electric field. Interestingly, looking at Figure 5 we qualitatively see
that the VERB-CS model tends to underestimates the density for
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FIGURE 8
We report the histograms of the logarithmic differences between the predictions of the machine-learning and physics-based models and the equatorial
plasma density data inferred from the RBSP-A data with the NURD algorithm (Zhelavskaya et al., 2016) for the period 1 September 2016–1 May 2017.

L < 4, while in this region the machine-learning models appears
to be less biased. Finally, the machine-learning models have the
most gaussian-like distributions of the errors, as it can be seen in
Figure 8.

In order to have a closer look into the comparison
between the predictions of the models and the observations,
we show the predictions of the models and the equatorial
plasma density extracted from the RBSP-A data with the
NURD algorithm for the period 17 April 2017–24 April 2017
in Figure 9. This period is characterized by quiet times and
moderate geomagnetic disturbances as one can see from the Kp
index. We notice that all the models reproduce quite well the
observations.

3.2 Validation with Image EUV data

In addition to compare with the equatorial plasma density
inferred from the Van Allen Probes data, it is important to check
the consistency of the global plasmapheric predicted by our
models. The images produced by the IMAGE EUV instrument

(Sandel et al., 2000) on board of the IMAGEmission16 show theHe+

distribution in the plasmasphere (Goldstein et al., 2003b) showed
that the sharp edges in the IMAGE EUV images coincide with the
actual plasmapause locations. This fact makes the IMAGE EUV
images unique in providing insights into the global plasmaspheric
dynamics, see e.g., (Goldstein et al., 2003a; Spasojević et al.,
2003).

The IMAGE mission operated during a different solar cycle
than the one we used while training the machine-learning
model. Therefore we consider the IMAGE EUV images one of
the best sources of data available to validate the consistency
of the global plasmaspheric reconstructions of our models. We
compare the plasmapause predictions of the models against
the plasmapause locations manually extracted from the IMAGE
EUV images and provided by17, which is based on the method
developed in (Goldstein et al., 2003b). We identify the plasmapause

16 https://image.gsfc.nasa.gov/.

17 https://enarc.space.swri.edu/EUV/.
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FIGURE 9
In the top panel we plot the Kp index for the period 17 April 2017–24 April 2017. In the other panels, we report the predictions of the machine-learning
and physics-based models and the equatorial plasma density, extracted from RBSP-A data with the NURD algorithm (Zhelavskaya et al., 2016), using a
log10 logarithmic scale.
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FIGURE 10
Comparison of the outputs of the PINE-RT model, of the PINE model and of the physics-based model driven by the Vollad-Stern and by the Weimer
electric field models for events characterized by different levels of geomagnetic activity and occurred in the period March 2001 - June 2001. The color
indicates the log10 of the plasma density (the scale of the colorbar is the same for all models and all times). The black-and-white dots show the
location of the plasmapause derived from the IMAGE EUV images. The gray and black section of the colorbar indicates the density threshold of
40 ± 10el/cm3, which is considered as an approximation of the plasmapause location. The Sun is to the left. Event (A): 11 Apr 2001 00:14 UT, Kp = 3.
Event (B): 18 June 2001 03:45 UT, Kp = 4+. Event (C): 09 May 2001 18:13 UT, Kp = 5. Event (D): 20 March 2001 09:33 UT, Kp = 5.7.

locations predicted by the models considered here following
(Zhelavskaya et al., 2017; Zhelavskaya et al., 2021), which considers
the lower sensitivity threshold of the IMAGE EUV instrument
40± 10el/cm3 (Goldstein et al., 2003b) as an approximation of the
plasmapause location.

In Figure 10, we consider several events between the 20th
March and the 18 June 2001, which correspond to different
levels of moderate geomagnetic activity and were considered in
(Zhelavskaya et al., 2021). Event (a) is characterized by a mild
geomagnetic activity (Kp = 3), while events (b), (c) and (d) are
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related tomoderate storms (Kp= 4.3, Kp= 5 andKp=5.7). Generally
we note that the models can capture quiet well the plasmapause
locations, and there is not a model clearly outperforming the others.
We consider remarkable the performance of the PINE-RTmachine-
learning model and the PINE model, since they are able to produce
accurate global reconstructions despite of being trained on sparse
data.

It is also of interest the Event (b), for which the Weimer electric
fieldmodel leads to an underestimation of the density in line of what
was found on the Van Allen Probes data in Subsection 3.1. Despite
the fact that theWeimermodel promises amore detailed description
of the electric field with its higher time resolution and its ability to
showmore complex field patterns, our simulations do not show that
it also leads to more accurate results.

Finally we note that the VERB-CSmodel predicts plumes where
we do not have the plasmapause data. The statistical evaluation of
the performance of the models with regard to the prediction of the
plumes is deferred to future studies and has not been the subject of
this investigation.

4 Discussion

We reported here our efforts in developing a nowcast machine-
learning model of the plasma density in the plasmasphere in the
context of the PAGER project. We followed the approach of the
PINE model (Zhelavskaya et al., 2017; Zhelavskaya et al., 2021) and
we developed a feedforward neural network model of the plasma
density in the equatorial plane. We explored several combinations
of input features whose measurements and forecasts are available
in the PAGER project, which are the Kp index and the solar wind
properties at the L1 Lagrange point. We selected the best model,
which is a neural-network model which takes the Kp index, vBs, ρp
and their last-three-days time history as input. The resulting model,
which we call PINE-RT, is quite simple since it is composed of just
one hidden layer with 15 neurons.

We validated the PINE-RT machine-learning model
and compared it to the VERB-CS and PINE models of
(Zhelavskaya et al., 2021). For this scope we performed a long-term
study using in situ plasma density inferred from the plasma-wave
measurements of the Van Allen Probes. Moreover, we evaluated
the global plasmaspheric reconstructions against the plasmapause
locations extracted from IMAGE EUV images on selected events.
The PINE-RT model shows a performance comparable to the ones
of the PINE model and of the VERB-CS model driven by the
Volland-Stern electric field. In particular, it has a performance
slightly worse than the one of the PINE model, which uses the
geomagnetic indices AE, Kp, Sym-H, and F10.7 as inputs, and
slightly better than the one of the VERB-CS model. The PAGER
project is close to its end, but in a possible follow-up project
we will explore the availability or the development of models
predicting AE, Sym-H, and F10.7, such as Siciliano et al. (2021);
Iong et al. (2022); Pallocchia et al. (2008); Pallocchia et al. (2021).
In case of their availability, it will be interesting to compare the
performances of the PINE-RT model with the one of the PINE
model when driven by the respective predicted inputs. However, it

should be noted that it remains to be seen if the latter model will
be successful as the predicted AE, Sym-H, and F10.7 will have their
own uncertainties. Moreover we believe that the PINE-RT model
represents an important step towards having a plasmasphere model
depending only on solar-wind features, which are the drivers of
geomagnetic disturbances.

We considered quiet geomagnetic conditions and moderate
storms (Kp <= 7). As future work, we want to broaden the
applicability of the PINE-RT model to strong storms (Kp > 7) and
perform a statistical study on plumes prediction. For this scope,
data augmentation techniques will be needed in order to overcome
the data scarcity. An interesting technique in this respective is the
rebalancing, which was successfully applied for the Kp prediction in
(Shprits et al., 2019). Another interesting idea is to add simulation
results of the physics-based model to the training dataset of the
machine-learning model, since (Zhelavskaya et al., 2021) showed
that the physics-based model is able to describe some events with
Kp >= 8. By doing this, we also expect to improve the capability of
the PINE-RT model in reproducing the plume structures, since the
physics-based model predicts the plume structures in all storms of
our knownledge as a consequence of the convection mechanism.

Wedeployed themachine-learningmodel on the PAGER servers
and it currently runs every hour predicting the next-day forecast
of the plasma density in the equatorial plane. It combines the
sources of the Kp index and of the solar wind features which are
available in the PAGER project, using both the measurements and
the forecasts available. The forecast of the model is available as
a movie, which is updated every hour on the PAGER website18

and the nowcast is also available in near-real time throught
the iSWA service of the Community Coordinated Modeling
Center.

Even if beyond the needs of the PAGER project, it is of interest
to consider whether our model of the plasma density in the
equatorial plane can be extended to the whole plasmasphere. One
way would be to use the model of Denton et al., 2002; Denton et al.,
2004) or any other empirical model to extrapolate the density
along the geomagnetic field lines. One can also train a full 3D
model (e.g., Chu X. N. et al. (2017) and include in the training
data observations far from the equatorial plane. However, such
model will have much less training data and will have more
degrees of freedom. The careful validation of such model would be
critical to identify if there is sufficient data to derive the latitudinal
distribution. Alternatively, one can train an empirical model of the
latitudinal distribution that would depend on MLT and other input
parameters. Such approach would still require a lot of data from
different latitudes and the satellites would need to be carefully inter
calibrated.
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