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The predictions of plasma parameters in the interplanetary medium are the
core of space weather forecasts, and the magnetohydrodynamics (MHD)
numerical simulation is an important tool in the prediction of plasma parameters.
Operational space weather forecasts are commonly produced by a heliosphere
model whose inner boundary is set at 18 Rs or beyond. Such predictions
typically use empirical/physics-based inner boundary conditions to solve the
MHD equations for numerical simulation. In recent years, significant progress
has been made in the numerical modeling of the inner heliosphere. In this paper,
the numerical modeling of solar wind and coronal mass ejection in the inner
heliosphere is reviewed. In particular, different inner boundary conditions used
in the simulation are investigated since the MHD solutions are predetermined by
the treatment of the inner boundary conditions to a large extent. Discussion is
made on further development of the heliosphere model.

KEYWORDS

numerical simulation, solar wind, coronal mass ejection, heliosphere,
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1 Introduction

Over the past few decades, the effects of space weather on technology have become an
important field of research. The most serious space weather impact in near-Earth space
is usually related to interplanetary coronal mass ejections (ICMEs), which are affected by
the surrounding solar wind when propagated to Earth orbit (Wu et al., 2006; Kilpua et al.,
2019; Li et al., 2020). For this reason, solar wind condition is a necessary prerequisite for the
propagation of CMEs, which governs the propagation of ICMEs in the interplanetary space.
The prediction of solar wind and ICME plasma properties plays a crucial role in the space
weather forecast. However, the in situ observations of plasma parameters are only applicable
to several points where spacecraft are located, for example, the Advanced Composition
Explorer (ACE) (Stone et al., 1998), Wind (Bochsler et al., 1995), Parker Solar Probe (PSP)
(Fox et al., 2016), Solar Orbiter (SO) (Müller et al., 2020), and Solar Terrestrial Relations
Observatory (STEREO) spacecraft (Howard et al., 2008; Kaiser et al., 2008). Therefore, we
have to rely on numerical technology to predict the plasma parameters.

Currently, a wide variety of techniques have been developed to generate plasma
parameters in the interplanetary space. In particular, magnetohydrodynamics (MHD)
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simulations are important tools in this endeavor (Pizzo, 1982;
Usmanov, 1993;Odstrcil, 2003;Detman et al., 2006;Nakamizo et al.,
2009; Hayashi, 2012; Riley et al., 2012; Feng et al., 2014; Zhang
and Feng, 2015; Shiota and Kataoka, 2016; Zhang and Xueshang,
2016; Pomoell and Poedts, 2018; Shen et al., 2018; Scolini et al.,
2019; Feng, 2020; Scolini et al., 2020; Singh et al., 2020). The MHD
simulations can be classified into two types: the full physics-based
models and the hybrid empirical/physics-based models. The full
physics-based models solve the MHD simulation from the solar
surface to 1 au or beyond, and on the other hand, the inner boundary
of the hybrid empirical/physics-based models is usually beyond
the corona region, with a set of empirical formulas to specify the
solar wind distribution at the lower boundary. Since the plasma
β in the lower corona is low, the time step determined by the
Courant–Friedrichs–Levy condition is small in the corona region.
In this sense, the full physics-based models are computationally
expensive and the hybrid empirical/physics-based models have
their merits from the perspective of forecasting application because
of the inexpensive computational cost and relative simplicity of
implementation. Also, Owens et al. (2008) showed that the hybrid
empirical/physics-based MHD model can reproduce large-scale
solar wind structures comparable with the full physics-based
models.Thepurpose of this study is to review the development status
of numerical simulation for solar wind and coronal mass ejection in
the inner heliosphere, and in particular, we investigate the different
inner boundary conditions used in the models.

2 Numerical simulation of solar wind
in the inner heliosphere

The lower boundary of the heliospheric models is usually
located around 0.1 au, where the solar wind becomes supersonic
and super-Alfvénic.Thus, the MHD solutions are predetermined by
the treatment of the inner boundary conditions to a large extent.
Different kinds of lower-boundary conditions existed in the inner
heliosphere models.

In general, the radial component of the magnetic field Br at
the lower boundary of the heliospheric models is usually obtained
by the potential field source surface (PFSS) model (Altschuler and
Newkirk, 1969; Schatten et al., 1969; Mackay and Yeates, 1999).
In the PFSS model, a source surface (around 2.5 Rs) is defined,
and the magnetic field between the solar surface and the source
surface is assumed to be current-free and becomes open and
purely radial above the source surface. With the magnetograph
observations of the photosphere as the input, the PFSS model can
rapidly extrapolate the large-scale coronal magnetic structures with
reasonable accuracy. However, magnetic fields derived from the
PFSSmodel have no thin heliospheric current sheet (HCS) or Parker
spiral in the interplanetary space. To solve this problem, some
authors combined the PFSS model with the Schatten current sheet
(SCS) model (Schatten, 1971). The SCS model takes the absolute
value of the (radial) field on the source surface obtained from the
PFSS solution as a new lower-boundary condition, the new potential
field is solved between the source surface and infinity, and then,
the proper sign is restored. Another method for reconstructing the
coronal magnetic field is the current sheet source surface (CSSS)
model (Zhao andHoeksema, 1995) that explicitly takes into account

additional sheet currents. The CSSS model includes a cusp surface
height RCS and a source surface height RSS, where the magnetic
field becomes open above RCS and becomes radial above RSS. The
Ulysses observations show that the strength of the interplanetary
magnetic fieldBr has no dependence on latitude. However, the large-
scale structures of the coronal magnetic field derived from the PFSS
model have a systematic gradient of Br in the latitudinal direction.
The CSSS model can better reproduce the latitude-invariant nature
of Br .

Based on the coronal magnetic topology parameters
obtained from the previous models, the Wang–Sheeley (WS) or
Wang–Sheeley–Arge (WSA)-type models (Arge and Pizzo, 2000;
Arge et al., 2004; Mcgregor et al., 2011) are the most widely used
empirical models that predict the solar wind velocity at the lower
boundary. The specific form of Vr (km/s) in the WS model can be
written as

Vr ( fs) = Vmin +
Vmax

f αs
, (1)

where fs is the magnetic expansion factor which reads fs = (
1
R
)2

BRs
BR
,

where BRs
and BR are the magnetic field strength at the solar surface

and at the source surface, respectively. The distribution of fs at
the lower boundary of the heliospheric models is the same as its
distribution at the source surface. Vmin sets the minimum possible
solar wind speed, while Vmax sets the maximum possible solar wind
speed. α determines the effect of fs onVr . By including an additional
variable θb, the specific form of Vr (km/s) in the WSAmodel can be
written as

Vr ( fs,θb) = Vmin +
Vmax

(1+ fs)
a1
[1− 0.8 exp(−(

θb
a2
)
a3
)]

a4
, (2)

where θb denotes the minimum angular separation between an
open-field foot point and its nearest coronal hole boundary. The
angle a2 and exponent a3 determine the angular extent and influence
of the open-flux boundary layer, respectively. Any of the parameters
in Eqs 1, 2 can be modified.

The other components of the magnetic field and velocity, such
as the meridional magnetic field Bθ and the meridional flow velocity
Vθ, are always set to 0. The azimuthal flow velocity Vϕ is always set
to zero in the inertial frame and set as ΩsRgb sin θ in the rotating
frame, with Ωs denoting the solar angular speed and Rgb standing
for the lower boundary of the heliospheric models. The azimuthal
magnetic field Bϕ is determined by Bϕ = (Br/Vr) (Vϕ −ΩsRgb sin θ).
Other solarwind parameters, including the density and temperature,
are always prescribed by an assumption of the constant momentum
flux and total pressure (sum of thermal and magnetic pressures). In
the following section, the lower-boundary conditions in the existing
inner heliospheric models are introduced in detail.

2.1 Boundary conditions based on the PFSS
model

Using the PFSS + WS model, Odstrcil (2003) modeled the
ambient solar wind from 0.1 au to 1 au using the WS-ENLIL
mode. The solar wind velocity at 0.1 au was calculated according to
Equation 1 with Vmin = 285 km/s, Vmax = 575 km/s, and α = 1/1.7.
The mass density ρ was determined by an assumption of the
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constant momentum flux, and the temperature T was chosen to
assure the total pressure is uniform on the source surface. Hayashi
(2003) reconstructed three-dimensional solar wind structure from
50 Rs to 1 au. The radial flow velocity Vr at the inner boundary
was determined by solar wind data obtained from interplanetary
scintillation (IPS) observations, and the number density and
temperature were determined by the empirical relation obtained
from the Helios data through least-squares fitting, N(Vr) = 62.98+
866.4(Vr−154.9

100
)−3.402 and T(Vr) = −0.455+

0.1943Vr
100

. They found that
the solar wind research and space weather prediction algorithms
can be enhanced by the combination of MHD simulation and IPS
tomography. Based on that work, Hayashi (2012) modeled time-
dependent solar wind from 50 Rs up to 1,250 Rs. The solar wind
was simulated with the time-dependent boundary condition. They
applied temporal linear interpolation from one Carrington rotation
to the next Carrington rotation. Shiota et al. (2014) developed an
inner heliospheric MHD solar wind model for practical use in
real-time space weather forecasting. The numerical domain was
set to 25Rs ≤ r ≤ 425Rs. The radial flow velocity was determined
using Equation 1 with Vmin = 267.5 km/s, Vmax = 410 km/s, and
α = 0.4. The number density and temperature were obtained using
empirical relationships that have been used by Hayashi (2003) and
Hayashi (2012), respectively. Since Hayashi (2003) and Hayashi
(2012) showed the relation at 50 Rs, their model specified the
boundary condition at 25 Rs. For modification, the number density
was multiplied by 4 assuming constant velocity propagation from
25 Rs to 50 Rs, and the temperature was multiplied by 4γ−1 with the
assumption of polytropic expansion.

Based on the PFSS + WSA model, Merkin et al. (2011);
Pahud et al. (2012); and Merkin et al. (2016) simulated the solar
wind from0.1 au to 1 au or beyondusing the Lyon–Fedder–Mobarry
(LFM) MHD simulation code. This new version of the code is
referred to as LFM-helio.Thevalues ofVr at the inner boundarywere
all calculated according to Equation 2 but with different parameters.
InMerkin et al. (2011),Vmin = 200 km/s,Vmax = 750 km/s, a1 = 2/9,
a2 = 3.8°, a3 = 3.6, and a4 = 3. The number density and temperature
were determined by using an empirical fit to Helios data:N[cm−3] =
112.64+ 9.49 ⋅ 107/(Vr[km/s])2, T = N0T0/N, where T0 = 8 ⋅ 105 K
and N0 = 300cm−3. Figure 1 shows the radial velocity and magnetic
field at the inner boundary of the simulation (0.1 au) (Merkin et al.,
2011). The magnetic field at 0.1 au was scaled down by a factor 2/3
× 100.

The inner boundary conditions used by Pahud et al. (2012)
were similar to those used by Merkin et al. (2011), except for the
following parameters: Vmin = 240 km/s, Vmax = 675 km/s, a1 = 2/9,
a2 = 2.8°, a3 = 1.25, and a4 = 3. By comparing the MHD results with
MESSENGER and ACE spacecraft observations, Pahud et al. (2012)
found that the uncertainty in the specification of the boundary
conditions, rather than a poor performance of the solar wind
model, led to the discrepancies between in situ measurements
and simulations. Merkin et al. (2016) used the LFM-helio MHD
model to explore the heliospheric consequences of time-dependent
changes at the Sun. The Air Force Data Assimilate Photospheric
flux Transport (ADAPT) model was used to obtain daily updated
photospheric magnetograms.These time-dependentmagnetograms
were then used to obtain the solar wind parameters at 21.5 Rs with
the WSA model. In particular, the changes of the longitudinal and
latitudinal components of the magnetic field at the inner boundary
were induced by the tangential electric fields, which were derived
by a Poisson equation. The Vr at the inner boundary was calculated
according to Equation 2 with Vmin = 240 km/s, Vmax = 675 km/s,
a1 = 2/9, a2 = 1.9°, a3 = 2, and a4 = 3. The number density
was determined in the same way as in Merkin et al. (2011). The
temperature was defined from the approximate full pressure balance
in the angular directions.

NkT+
B2
r

8π
= NslowkTslow, (3)

where k is the Boltzmann constant, Nslow =max(N), and
Tslow = 5 ⋅ 105 K is the nominal slow wind plasma temperature. In
some cases, one can specify the fast wind temperature parameter
Tfast instead to avoid a negative temperature:

NkT+
B2
r

8π
= N⋆kTfast +

B2
max

8π
, (4)

where Tfast = 106 K, Bmax is the maximum magnetic field located
somewhere in the fast solar wind, and N⋆ represents the plasma
density at that location.

Shen et al. (2018) and Wang et al. (2020) used a new boundary
treatment to model the solar wind in interplanetary space with
MHD equations. The magnetic field was derived by the PFSS model
combining with the OMNI database.

Br = sign(BPFSS) × 1
√2

mean(B1 au)(1au
Rgb
)
2
, (5)

FIGURE 1
Radial velocity (A) and magnetic field (B) at the inner boundary of the simulation (0.1 au) (Merkin et al., 2011).
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where Rgb = 0.1 au. The average value of the observed magnetic
field, mean(B1au), was determined by the past three Carrington
rotations (CRs) at 1 au from the OMNI database. The solar wind
velocity at 0.1 au was obtained from Equation 2. Vmax = 675 km/s,
a1 = 0.22 rad, a3 = 1.0, and a4 = 1.0 were constants over time, while
Vmin and a2 can be adjusted with different solar cycles. The number
density was calculated by assuming that the solar wind energy flux
is constant over the solar cycle.

N = N1au(
1 au
Rgb
)
2
V1au(

1
2
V2
1au +

GMs

Rs
)[Vr(

1
2
V2
r +

GMs

Rs
)]
−1
,

(6)

where V1au = 750 km/s is velocity at 1 au and N1au is deduced
from the average solar wind energy flux based on the OMNI
observations. Various studies showed that there are linear or
quadratic relationships between T and V at 1 au (Lopez and
Freeman, 1986; Richardson and Cane, 1995; Elliott et al., 2005;
Verbanac et al., 2011; Chat et al., 2012). The relationship of Tp and
Vr at the lower boundary could be obtained as follows:

Tp =
1
2
V2
r(

1 au
Rgb
)
2γ−1
. (7)

Then, the pressure was obtained by p = 2NKT. Figure 2 presents
themaps of solarwind parameters forCR2053 at the lower boundary
of 0.1 au (Shen et al., 2018).

Gonzi et al. (2021) investigated the impact of inner heliospheric
boundary conditions on solar wind predictions at Earth. The radial

component Br was computed using two methods, the PFSS model
or the magnetofrictional (MF) model. The solar wind velocity was
obtained from three different methods. The first was the WSA
model in Equation 2 using Vmin = 240 km/s, Vmax = 675 km/s,
a1 = 2/9, a2 = 2.8°, a3 = 1.25, and a4 = 3. The second was a
modified DCHB model Vr(θb) = Vmin + (Vmax −Vmin)(θb ⋅ω)δ, and
the parameters were chosen by comparing model-predicted solar
wind speed histograms at 1 au with observations Vmin = 200 km/s,
Vmax = 700 km/s, ω = 7 radian, and δ = 1.25. The third was
determined by the interplanetary scintillation solar wind data.
The number density was determined from the interplanetary
scintillation solar wind data or the assumptions of the constant
momentum flux NV2, N = Ns(

Vs
Vr
)
2
. The temperature was set as T =

Ts
Ns
N
. Specifically, Vs = 300 km/s, Ns = 500cm−3, and Ts = 500 kK in

the slow stream.The results showed that the selection of the coronal
magnetic field model had a significant impact on the model results,
and IPS data had a high success rate in reproducing high-speed solar
wind.

2.2 Boundary conditions based on the PFSS
+ SCS model

Detman et al. (2006, 2011) introduced a Hybrid Heliospheric
Modeling System (HHMS) for background solar wind to aid in
the operational forecasting of geomagnetic activity, where the lower
boundary was also set at 0.1 au. The radial magnetic field was
provided by the PFSS + SCS model. The principle in determining
the solar wind speed at 0.1 au was similar to the WS model given by

FIGURE 2
Maps of solar wind parameters at the lower boundary of 0.1 au for CR 2053. (A–D) The panels show the radial velocity Vr (km/s), number density N
(cm−3), temperature T (K), and radial magnetic field Br (nT) (Shen et al., 2018).
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the equation

Vr ( fs) = Vmin + (Vmax −Vmin)/(1+
fs
f0
)
Vxp

, (8)

where Vmax and Vmin were set at 700 and 200 km/s, respectively.
The parameter Vxp = 1.5 determined the sharpness of the fast–slow
transition in the relationship.The parameter f0 scaled the parameter
fs, which was adjustable to match the observed solar wind speeds.
The mass density ρ = Fmass

Vr
was determined by the assumption of an

constant mass flux, Fmass was obtained by taking observed values of
ρVr at Earth and applying an r2 scaling to 0.1 au. The temperature

T =
ptotal−

B2

8π
2ρRgas

was determined by an assumption of the uniform total
pressure ptotal on the source surface, and ptotal was a free parameter
that required tuning. Figure 3 shows the block diagram of the
HHMS in Detman et al. (2006).

Narechania et al. (2021) described a 3D MHD-based
heliospheric model based on a semi-empirical data-driven
approach. The inner boundary of the heliospheric model was set at
25 Rs, the magnetic field was derived by the PFSS + SCS model as in
Detman et al. (2006), and the velocity was provided by Equation 2
with Vmin = 250 km/s, Vmax = 850 km/s, a1 = 0.2, a2 = 2.6°, a3 =
1.25, and a4 = 2.5. The remaining parameters were determined as in
Shiota et al. (2014).

Pomoell and Poedts (2018) presented a new space weather
forecasting-targeted inner EUropean Heliospheric FORecasting
Information Asset (EUHFORIA) model. The plasma parameters at
0.1 au were obtained by using the empirical solar wind model. The
radial component Br was computed as

Br = sgn(Bcorona)Bmax (Vr/Vmax) , (9)

where sgn(Bcorona) is the sign of the magnetic field as given by the
PFSS + SCS model. Bmax = 300 nT. The boundary value for the
solar wind velocity was calculated according to Equation 2 with
Vmin = 240 km/s,Vmax = 675 km/s, a1 = 2/9, a2 = 0.02 rad, a3 = 1.25,
and a4 = 3. A constant value of 50 km/s is subtracted from the solar
wind velocity to avoid systematically overestimating the wind speed.
The number density is given as follows:

N = Nfsw(Vmax/Vr)
2, (10)

where Nfsw = 300cm−3 is the number density of the fast solar wind.
The temperature is given as T = Tfsw(ρfsw/ρ)

2 with Tfsw = 0.8 MK.
Figure 4 shows the sequence of steps that provides the boundary
conditions for the heliospheric MHD model (Pomoell and Poedts,
2018).

2.3 Boundary conditions based on the
CSSS model

The inner heliospheric solar wind was simulated from 21.5
Rs to 1 au with the MHD code CRONOS in Wiengarten et al.
(2013) and Wiengarten et al. (2014). In Wiengarten et al. (2013),
the CSSS model was used to obtain Br at 21.5 Rs. The magnetic
flux at the solar surface was obtained by the solar surface flux
transport (SFT) model, which was then extrapolated to 10 solar
radii by the CSSS model with RCS = 1.55Rs and RSS = 10Rs. Then,

FIGURE 3
Block diagram of the HHMS (Detman et al., 2006).

the radial magnetic field at the source surface was scaled to the lower
boundary at 21.5Rs by using the scale factor r−2. InWiengarten et al.
(2014), the magnetic field at 0.1 au was derived by the PFSS + SCS
model as in Detman et al. (2006). A Finite Difference Iterative
Poisson Solver (FDIPS) was used to obtain the PFSS solution
to avoid the numerical artifacts generated by the usual spherical
harmonics expansion of the coronal potential field. At 0.1 au, the
radial magnetic field was given a value of 300 nT, while keeping the
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FIGURE 4
Sequence of steps that provide the boundary conditions for the heliospheric MHD model (Pomoell and Poedts, 2018).

orientation derived by the PFSS + SCS model. The radial velocity
at 0.1 au was obtained with different forms for Wiengarten et al.
(2013) and Wiengarten et al. (2014). Wiengarten et al. (2013)
used Vr = Vmin +

Vdel

f
Vxp
s

+ α1 ⋅ (
θb

f
Vxp/2
s

− α2), where Vmin = 154 km/s,

Vdel = 300 km/s, Vxp = 3, α1 = 7.4 km/s, and α2 = 3.5. The velocity
Vr in Wiengarten et al. (2014) was calculated according to
Equation 2 with Vmin = 200 km/s, Vmax = 675 km/s, a1 = 2/9,
a2 ∈ (2.8°,3.2°), a3 = 2, and a4 = 3. The remaining MHD quantities
at the inner boundary were all similar to that described in
Detman et al. (2006).

Li et al. (2020) simulated the interplanetary Bz using a data-
driven heliospheric solar wind model. Following Merkin et al.
(2016), the time-dependent boundary conditions were also used
in their study. The radial component Br at the inner boundary
was derived from the CSSS model with RCS = 2.5Rs and RSS = 15Rs.
The value of Br given by the CSSS model was scaled by a factor
bup =ΦOB/ΦCSSS to provide enough magnetic flux at the inner
boundary, whereΦCSSS was themagnetic flux from the original CSSS
solution andΦOB = 4πr

2
1aumean(B1 au)/√2was the observed average

magnetic flux at 1 au derived from OMNI data. The WSA model
(Equation 2) was used to determine the solar wind velocity with
Vmin = 240 km/s, Vmax = 560 km/s, a1 = 2/9, a2 = 2°, a3 = 1, and
a4 = 3. As in Detman et al. (2006), the density was obtained by an
assumption of a constant mass flux.The distribution of temperature
at the heliobase was similar to that used in Shen et al. (2018) and
Wang et al. (2020).

2.4 Boundary conditions based on in situ
measurements

Biondo et al. (2021) described a new approach to determine the
plasma parameters at the inner boundary of 0.1 au. This scheme

applied a back reconstruction technique to remap the in situ
measurements acquired at 1 au into the inner heliosphere. The
observation data at 1 au were thought as a ring of L cells.

[ϕi (rad) ,Ni (cm
−3) ,Vr,i (km/s) ,Br,i (nT) ,Bϕ,i (nT)] . (11)

The Parker Spiral can be used to obtain their respective cells of
origin (0.1au;ϕ′i ).

ϕ′i = ϕi +
Ωs

vr,i
(1au− 0.1au) . (12)

The radial speed and numerical densities at 0.1 au can be
obtained as follows:

V′r,i = Vr,i,

V′θ,i = 0,

V′ϕ,i = −Ωs, r

N′i = Ni(
1au
0.1au
)
2
.

The treatment of the magnetic field was similar.

B′r,i = Br,i(
1au
0.1au
)
2
,

B′θ,i = 0,

B′ϕ,i = Bϕ,i(
1au
0.1au
)+Br,i

Ωs

Vr,i
[(1au−Rss) − (0.1au−Rss)(

0.1au
1au
)
2
] .

This method could generate an interplanetary spiral
reconstruction well with observations, and additionally, many
small-scale features were also generated. Figure 5 presents the steps
involved in RIMAP for the reconstruction of heliospheric plasma
conditions (Biondo et al., 2021).
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FIGURE 5
Schematic of the steps involved in RIMAP for the reconstruction of heliospheric plasma conditions starting from in situ measurements (Biondo et al.,
2021).

2.5 Numerical simulation of solar wind
with the Heliospheric Upwind
eXtrapolation model

To provide a computationally efficient solution, theHeliospheric
Upwind eXtrapolation (HUX) model (Riley and Lionello, 2011) was
widely used to extrapolate velocity fromnear the Sun to 1 auwithout
providing physical insight. The HUX model was essentially a 1D
extrapolation with velocity in a radial direction.

Vr+1,ϕ = Vr,ϕ +
ΔrΩs

Vr,ϕ
(
Vr+1,ϕ −Vr,ϕ

Δϕ
), (13)

with Δr and Δϕ representing the grid spacing in radial and longitude
directions, respectively. A comparative study of extrapolation
models and empirical relations in forecasting solarwindwasmade in
Kumar et al. (2020). The PFSS + SCS model was used to extrapolate
magnetic fields. The velocity was obtained using the WS model
or the WSA model. Then, the HUX model and a physics-based
model PLUTO (Mignone et al., 2007) were used to extrapolate these
velocities into the inner heliosphere zone, and the differentmagnetic
field extrapolation models combined with velocity formulations
were compared to predict the solar wind properties at L1. Figure 6
shows the sequence of steps used for each of these models.

They showed that theWSAmodel captures the contrast between
the slow and fast solar wind better than theWSmodel. Additionally,
the PFSS + SCS magnetic field extrapolation model combined with
the WSA model had the best performance in all the cases.

Mayank et al. (2022) used a physics-based inner heliospheric
model to forecast the ambient solar wind from 0.1 au to 2.1 au. The
three-dimensional MHD equations were solved using the PLUTO
code. The properties in the inner heliospheric model were derived
from the PFSS + SCS model in combination with the WSA model
(Equation 2). Additionally, the HUX algorithm was used to find
the optimal set of values of independent parameters in the WSA
model. The following parameters were chosen: Vmin = 250 km/s,

Vmax = 650 km/s, a1 = 2/9, a2 = median of θbE, a3 = 1.25, and a4 =
3. θbE was calculated on the field lines that reached the location of
Earth. Then, the WSA speed profile was rotated in the longitudinal
direction by angle κ to account for solar rotation.

κ = 5+( 2π
Ωs
)(

21.5Rs

(Vr)min
). (14)

Ωs ranged from 27.21 to 27.34 days, depending on the location
of Earth in its orbit. The radial component Br and plasma number
densitywere similar to those used byPomoell andPoedts (2018).The
plasma thermal pressure was chosen to be constant on the boundary
and equal to p = 6.6 nPa. Figure 7 presents the process flow diagram
of the proposed solar wind model showing the range of numerical
models involved in the inner heliospheric model.

The time-dependent form of the HUX model, which was
referred to the HUXt model, was used to give solar wind velocity
at Earth in Owens et al. (2020) and Bunting and Morgan (2022).
Owens et al. (2020) set the inner boundary at 30 Rs, and the
computed Vr at 30 Rs from the Magnetohydrodynamics Algorithm
outside a Sphere (MAS) coronal model serves as the input to HUXt.
They suggested that HUXt can act as a surrogate for full three-
dimensional MHDmodels when very large ensembles are required.
In Bunting andMorgan (2022), the inner boundary condition of the
HUXt model was based on the coronal plasma density gained from
coronagraph observations. The solar wind velocity was obtained
using a simple linear relationship as follows:

V = Vmax −[(
N−Nmin

Nmax −Nmin
)(Vmax −Vmin)] , (15)

where Nmax and Nmin are the maximum and minimum densities in
the equatorial plane, respectively. The ambient solar wind velocity
at Earth was obtained by using the HUXt model. Compared to an
HUXtmodel with a traditionalMAS as the input, the results showed
that the tomography/HUXt model can predict solar wind velocity
much better.
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FIGURE 6
Flowchart of the models utilized in the work (Kumar et al., 2020).

FIGURE 7
Process flow diagram of the proposed solar wind model showing the range of numerical models involved in the inner heliospheric model
(Mayank et al., 2022).

Overall, various inner boundary conditions have been
developed in recent years, which provide important input conditions
for space weather prediction. Table 1 summarizes the various
methods to set the solar wind parameters at a lower boundary.
The MHD model and the HUX model have been widely used for
numerical simulation of solar wind. The HUX model can act as

a surrogate for full three-dimensional MHD models when very
large ensembles are required. However, it can only be used to
obtain the velocity in the interplanetary space. Thus, the MHD
model is necessary when we want to get other parameters, such
as magnetic field, temperature, and density. For MHD simulation,
these variables are all needed to be determined at the lower boundary
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initially.The magnetic field and velocity distribution are important
because temperature and density are always determined from them.
To calculate the magnetic field distribution, PFSS + SCS may be
a better choice because the magnetic fields derived from the PFSS
model have no thinHCS or Parker spiral in the interplanetary space.
To better reflect the latitude-invariant nature of Br , the CSSS model
can be used. For calculating velocity distribution, the WSA model
is better than the WS model in capturing the contrast between the
slow and fast solar wind. The IPS observation has also been used to
obtain velocity distribution, and the results show that IPS data has
high success rate in detecting high-speed solar wind and the space
weather prediction can be enhanced by the combination of MHD
simulation and the IPS data.

It can be seen that the distribution of the inner boundary is fixed
in many studies, the numerical processing on this fixed boundary
is simple, and the steady-state solar wind can well represent the
background conditions of the short-term transient phenomena
using this fixed boundary. Since some studies used time-dependent
boundary (Hayashi, 2012; Merkin et al., 2016; Li et al., 2020), it is
expected that time-dependent boundary conditions can simulate the
inner heliosphere more accurately and in real time. Fixed boundary
conditions can accommodate observational data made in only one
CR period. However, time-dependent boundary conditions can
determine the MHD state of the solar wind at distant regions from
the Sun, which are determined in a longer time period than one CR.
Also, the heliospheric consequences of time-dependent conditions
can be explored, that is, what kind of plasma and magnetic field
structures are created due to the changing boundaries of coronal
holes. Merkin et al. (2016) showed that time-dependent boundary
conditions can reproduce the gross-scale structure of the heliosphere
with higher fidelity, and provide important insights to interpret data
on smaller spatial and faster time scales (e.g., 1 day).Thus, the time-
dependent boundary condition is a promising direction of research
both for space weather applications and fundamental physics of the
heliosphere. For the time-dependent boundary, how tomaintain the
divergence-free condition is one difficulty. Since the time-dependent
radial magnetic field ∂Br

∂t
is always obtained by observations, we need

to derive an electric field tangential to the inner boundary spherical
surface that would evolve the radial magnetic field. To do that, the
Helmholtz theorem is applied on a sphere and the tangential electric
field is expressed as the sum of the curl and the gradient of scalar
potentials.

Et = ∇t ×ψr+∇tΦ. (16)

Here, ψ is determined by solving the Poisson equation following
Faraday’s law.

∇2
tψ =

∂Br

∂t
. (17)

Because there is no available information to determine Φ, Φ is
always set to 0. Then, the transverse components of the magnetic
field in the corotational frame can be calculated as follows:

Bϕ = Br
Vϕ

Vr
+
Eθ
Vr
, (18)

Bθ = −
Eϕ
Vr
. (19)

3 Numerical simulation of the coronal
mass ejection in the inner heliosphere

CMEs are giant clouds of magnetized plasma erupting from
the Sun. When CMEs propagate through the corona and the
interplanetary space, they interact with the solar wind plasma or
other ICMEs and undergo changes. At larger heliocentric distances,
CMEs are known to exhibit rotations and deflections, which can play
a crucial role in their geomagnetic impact (Maharana et al., 2022).
MHD simulations are often used forCMEmodeling purposes.There
are two categories of MHD simulation models, one is anchored to
the low corona and the other is fully embedded into the middle or
upper corona. The first category is built through a large number of
observations and enables the incorporation ofmore detailed physics,
but the total computation time is much larger. On the other hand,
the second category is suitable for space-weather forecasts because
of the inexpensive computational cost and relative simplicity of
implementation. Also, with the launch PSP and SO, the ICME
will be constrained by more observations. In the past decades,
many different models have been developed to simulate CME
propagation in the heliosphere, such as ENLIL (Odstrcil, 2003),
EUHFORIA (Pomoell and Poedts, 2018), SUSANOO-CME (Shiota
and Kataoka, 2016), and MS-FLUKSS (Singh et al., 2020). In these
models, CMEs are inserted at 0.1 au and evolved self-consistently by
solving theMHD equations and a suitable CME initializationmodel
is necessary. In this section, we focus on the initial CME parameters
that need to be determined and extrapolated to the lower boundary.

The initial CME parameters rely heavily on CME reconstruction
methods. The cone model (Zhao et al., 2002; Xie et al., 2004;
Michaek, 2006) and the graduated cylindrical shell (GCS) model
(Thernisien et al., 2006, 2009; Thernisien, 2011) are widely used to
estimate the CME kinematic and geometric parameters in the past
years. The cone model represents CME as a hydrodynamic pulse
with a constant angular width, propagation direction, and speed.
The angular width and source position of the CME are obtained
by matching the modeled halos with the observed halos. The radial
velocity and acceleration of the CME are determined by a series of
times and radial distances. Figure 8 shows the cone model topology
and relationship between the heliocentric coordinate system and
the cone coordinate system (Michaek, 2006). The heliocentric
coordinate system is defined such that xh points to Earth, zh points
north, and yh, zh defines the sky plane. The cone coordinate system
has the origin at the apex of the cone, zc is the cone axis, and xc,
yc defines the plane parallel to the base of the cone. The geometry
of the cone can be determined by heliographic longitude ϕ, latitude
θ, and angular width ω.For the GCS model, the CME is described
as a flux-rope-like structure that expands in a self-similar fashion.
The three-dimensional shape of the CME consists of two legs and a
curved front. Figure 9 shows a face-on schematic of the GCS model
(Thernisien et al., 2009) and schematic of the detailed geometric
parameter (Thernisien, 2011).Thedashed–dotted line shows the axis
of the model, and the solid line the represents of the shell where the
density is placed.The cross section of themodel is a group of circular
annuli with a gradually varying radii r1 = κr, where r is the distance
from a point on the shell to the center of the Sun and κ is a constant
depending on the studied event. The angle between the axes of two
conical legs is 2ω, and the height of the cone is h.The geometry of the
shell can be completely defined with these three parameters. In the
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FIGURE 8
Cone model topology and relationship between the heliocentric
coordinate system and the cone coordinate system (Michaek, 2006).

following section, lower boundary conditions in the existing inner
heliospheric models are introduced in detail.

3.1 Numerical simulation of coronal mass
ejection with hydrodynamic plasma cloud

Based on the conemodel, the ENLILmodel was used to simulate
transient heliosphere disturbances (Odstrcil, 2003; Odstrcil et al.,

2004; Odstrcil, 2005). A CME was simulated by launching a
time-dependent hydrodynamic plasma cloud through the inner
boundary of the heliospheric. The cone model was used to describe
the location, speed, and angular width of the CME. The CME
disturbance had uniform velocity, density, and temperature. The
CME’s density (temperature) was taken to be four times larger than
(equal to) the mean values in the fast stream. With the simple
geometry, the ENLIL model had been successfully used to study the
global evolution of CMEs in the heliosphere and predicted the CME
arrival times at Earth. Figure 10 presents the distribution of solar
wind parameters with the introduction of the input pulse on 12May
1997 at 1800 UT (Odstrcil, 2005).

With the development of the EUHFORIA heliospheric model
(Pomoell and Poedts, 2018), a new CME propagation model
simulation was performed. The cone CME model was used to
determine the CME angular width, propagation direction, and
speed. Then, the CME was introduced to the inner radial boundary
at 0.1 au as a time-dependent boundary condition. Specifically,
the velocity, density, and temperature for solar wind values were
replaced by constant values at Rgb = 0.1 au.

(θ− θCME)
2 + (ϕ−ϕCME)

2 < α(t)2,

where the width as a function of time is

α (t) =
ωCME

2
sin[π

2
(t− tonset)/thalf] ,

where thalf = Rgb tan (ωCME/2)/vCME, θCME, and ϕCME were the co-
latitude and longitude of the propagation direction of the CME
center, ωCME was the angular width of the CME, and vCME was
the velocity of the CME. These parameters were provided by the
cone model. For simplicity, the density and temperature of the
modeled CMEs were taken to be density ρCME = 10−18kgm−3 and

FIGURE 9
(A) Face-on schematic of the graduated cylindrical shell model (Thernisien et al., 2009), (B) Schematic of the detailed geometric parameter (Thernisien,
2011).
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FIGURE 10
Distribution of solar wind parameters with the introduction of the input pulse on 12 May 1997 at 1800 UT (Odstrcil, 2005).

temperature TCME = 0.8MK, respectively. Scolini et al. (2018) used
the EUHFORIA heliospheric model to test the effect of different
CME shapes on simulation outputs, such as CME radius, the CME
cross-section, and velocity initialization at the inner boundary.
They showed that these geometrical parameters particularly affect
predictions at locations hit by the CME, and the definition of
the CME radius was the parameter having the greatest impact on
simulation outputs. Verbeke et al. (2022) presented a new inner
heliospheric model, ICARUS, for the simulation of the propagation
and evolution of superposedCMEs.The coneCMEmodel described
in Scolini et al. (2018) was employed. For both scientific and
forecasting purposes, the authors showed that the properties of
radial grid stretching and solution adaptive mesh refinement were
useful to save computational time.

3.2 Numerical simulation of coronal mass
ejection with the flux-rope model

Thegeoeffectiveness of a CME is largely due to itsmagnetic field.
If the CME contains a positive Bz component, it will be favorable for
magnetic reconnection with Earth’s magnetosphere and results in a
strong geomagnetic storms. The model described so far has not yet
predicted the magnetic field structure of CMEs arriving at Earth. In
order to overcome the limitations of the cone model, recent work
has focused on modeling the CME using more realistic flux-rope
models, such as spheromaks or toroidal-like structures.

The SUSANOO-CME model, developed by Shiota and Kataoka
(2016), was used to simulate the interplanetary propagation of
multiple CMEs with an internal magnetic flux-rope structure. The
CME passed through the inner boundary at 30 Rs as the time
evolution of the MHD variables. They adopted a spheromak-type
magnetic flux rope, and radial compression was adopted for the
flux rope to make the CME pass quickly. First, the CME model was
defined as a simple linear force-free spheromak model near the Sun.

B̃ ̃r ( ̃r, θ̃, ϕ̃) = (2B0/α ̃r) j1 (α ̃r)cosθ̃,

B̃θ̃ ( ̃r, θ̃, ϕ̃) = −B0[
j1 (α ̃r)
α ̃r
+ j′1 (α ̃r)] sinθ̃,

B̃ϕ̃ ( ̃r, θ̃, ϕ̃) =H ⋅B0j1 (α ̃r) sinθ̃,

where j1 and j0 are the first-order and zero-order spherical Bessel
function, respectively. The CME was defined in local spherical
coordinates ( ̃r, θ̃, ϕ̃), the center of the CME was chosen to be
the origin. Then, the CME model was shifted outward in the
radial direction from the Sun to the inner boundary. The spherical
cut R′cut of the shifted magnetic configuration moved across the
computational boundary as

R′cut (t) = R
′
cut (t0) − vCME (t− t0) ,

where R′cut(t0) = 30Rs defines the nose of the deformed spheromak.
t0 = tonset +

(30Rs−rmc)
vCME

is the start time when the CME appeared at the
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TABLE 2 Initial parameters of the CME (Liu et al., 2019).

ρmax(kgm−3) vmax(km/s) Tmax(K) Hm(Mx2) h(Rs) ω(°) δ(°)

1.15× 10−18 1,200 6 × 106 1 × 1042 25 20 20

inner boundary. Finally, at the inner boundary, the magnetic field is
given as

B′ (30, θ̃, ϕ̃) = B′ (R′cut (t) , θ̃, ϕ̃) = B̃(R
′
cut (t) − a, θ̃, ϕ̃) ,

where a = 30Rs − r0 − rmc is the radial shift. The CME radius was
rmc = 1Rs ⋅ sinω/2, and r0 = 1Rs + rmc was the distance between the
central position of the spheromak and the heliospheric center.
The model had 10 free parameters. tonset was the onset time and
vCME was the propagation speed, which can be found from the
LASCO CME catalog; λs and ϕs were heliographic latitude and
longitude, respectively, which came from the flare list in National
Geophysical Data Center (NGDC, https://www.ngdc.noaa.gov/stp/
spaceweather.html); τwas the tilt angle of the spheromak (±90°with
Hale–Nicholson law), χ was the inclination angle of the spheromak,
Hwas the chirality of helicity in the spheromak (1, set −1 if opposite
to the Bothmer–Schwenn rule), Φmag was the magnetic flux within
CME, andw = 60°was the angular width of CME.The density inside
the CME was in proportion to the magnetic field strength. The
CME pressure was assumed to be a constant, which was defined as
ρ(vCME − vSW)2/2. Because of the constant pressure and high density,
the temperature was the lowest at the center of the flux rope.

Liu et al. (2019) used a three-dimensional flux-rope CME
initialization model based on the GCS model to simulate the
propagation and deflection of a CME from 21.5 Rs to 244 Rs. The
Lundquist force-free CME model in a cylindrical geometry (r,ϕ,z)
was used.

Br = 0,

Bϕ =HB0j1 (α ̃r) ,

Bz = B0j1 (α ̃r) .

The axial component of the magnetic field was assumed to be
zero at the edge of the flux rope; thus, they could get

αR = 2.405,

where R stands for the radius of the cylindrical shell, which was
obtained from the GCS model. The maximum of magnetic field B0
is defined as

B0 = √
2.405Hm

4πLRj
,

with j = ∫R0 j
2
1(α ̃r)dr,Hm is themagnetic helicity of the Lundquist flux

rope and L = 2ω(Hfront −Rfront) is the flux-rope length, and Hfront
andRfront are themaximumheight andmaximumradius of the front,
respectively, that were obtained from the GCS model. The initial
density, velocity, and temperature at point P in the CME are given
as follows:

ρCME = ρmax(1−
d2

(2r)2
),

FIGURE 11
Magnetic field lines depicting the structure of the LFFS CME model
with a 90.0° tilt (Verbeke et al., 2019).

vCME = vmax(1−
d2

(2r)2
),

TCME = Tmax(1−
d2

(2r)2
).

Within the GCS model, r represents the radius of the cross
section and d stands for distance from point P to the center point
at the front part, while defined as the distance from point P to the
inner side of the cone in the cross-section plane. Table 2 shows the
initial CME parameters (Liu et al., 2019).

Shen et al. (2021) made a numerical research on how the initial
CME parameters can affect simulation results. They found that the
initial density and geometric size of the CME both had an effect on
its arrival time at Earth. The initial magnetic field had a large effect
on the CME’s geomagnetic effect. All of these results confirmed that
the initial geometric and physical parameters had an important role
on space-weather research and forecasts.
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FIGURE 12
Three-dimensional view of the magnetic field for CASE-1 and CASE-2 at different times (Zhang et al., 2021).

TheEUHFORIA CMEmodel in Pomoell and Poedts (2018) and
Scolini et al. (2018) did not contain an intrinsic magnetic field and
was injected at the inner radial boundary with the enhancement
of velocity, density, and pressure. Verbeke et al. (2019) introduced
a linear force-free spheromak (LFFS) solution to the EUHFORIA
CME model. The CME was considered to be a sphere with a radius
rmc = 0.1au ⋅ sinω/2. The CME latitude and longitude (θCME,ϕCME),
angular width ω, and speed vCME were the same as in Pomoell and
Poedts (2018). Located at (0.1au− rmc,θCME,ϕCME), the CMEmoved
through the 0.1 au boundarywith speed vCME. A point at (0.1au,θ,ϕ)
satisfied the following formula was inside the CME

(xCME − xbound)
2 + (yCME − ybound)

2 + (zCME − zbound)
2 ≤ rmc, (20)

where (xCME; yCME; zCME) and (xbound; ybound; zbound) were the
coordinates of the CME center and the considered point on
the boundary in Cartesian HEEQ coordinates, respectively. The
magnetic field was defined in a local spherical coordinate system
( ̃r, θ̃, ϕ̃) as in Shiota and Kataoka (2016), with the center of the
spheromak as the origin. As in Pomoell and Poedts (2018), density
ρCME = 10−18kgm−3 and temperature TCME = 0.8MK. The initial

speed required for the spheromak CME model should reflect only
the radial speed.

vrad = vcme ⋅
[[

[

1− 1

1+ 1
2
(1+ cotw)

]]

]

. (21)

The remaining magnetic input parameters required in the
spheromak CMEmodel were the flux-rope handedness, tilt, and the
toroidal magnetic flux at 0.1 au. The total toroidal flux Φ was used
to define the magnetic field strength B0.

Φ =∬ B̃ϕ̃ ̃rd ̃rdθ̃ =
2B0

α2
⋅ [−sin(αr0) +∫

αr0

0

sin t
t

dt] . (22)

In that paper, a +1 handedness with a 90.0° tilt angle were
selected to obtain a negative Bz magnetic field when the CME was
arriving at Earth. Lastly, the total toroidal flux was set to be 1014 Wb
to produce the best results they performed so far. Figure 11 shows
the magnetic field lines depicting the structure of the LFFS CME
model with a 90.0° tilt (Verbeke et al., 2019).
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FIGURE 13
FRi3D flux rope emerging out of the EUHFORIA’s inner heliospheric
boundary at 0.1 AU (Maharana et al., 2022).

Zhang et al. (2021) performed a numerical study of two
injection methods for CME in the inner heliosphere, where CASE-
1 CME was introduced into the inner boundary with a radial
compression (Shiota and Kataoka, 2016) and CASE-2 CME was
introduced into the inner boundary without a radial compression
(Scolini et al., 2019; Scolini et al., 2020; Verbeke et al., 2019). The
CME angular width was obtained by using the sky-plane-projected
speed range (Gopalswamy et al., 2010). The CME mass density
and temperature were set to be homogeneous as in Pomoell and
Poedts (2018); Verbeke et al. (2019).TheCMEposition, velocity, and
magnetic input parameters were estimated from image modeling
and geometric triangulation analysis following Liu et al. (2010).
They found that CASE-2 CME overestimated the radial extension at
1 au and the modeled magnetic fields at 1 au were lower compared
to CASE-1CME. Figure 12 shows the three-dimensional view of the
magnetic field for CASE-1 and CASE-2 at different times. The top
row shows the three-dimensional view of the magnetic field at 0.4 h
(left), 2.0 h (right) after the addition of the CME into the ambient
solar wind for CASE-1, while the bottom row shows the magnetic
field at 5 h (left), 15 h (right) after the addition of the CME into
the ambient solar wind for CASE-2. Solid black lines display the
magnetic field lines and the color code represents the magnetic field
B in units of 105 T.The blue sphere represents the 20 Rs (Zhang et al.,
2021).

Cone CMEs in Pomoell and Poedts (2018) were initialized
using a set of seven input parameters during the CME insertion
at the inner boundary of the heliospheric model. For example, the
CME insertion time, speed vCME, source (θCME,ϕCME), and half
angular width ω/2 at 0.1 au were usually derived from cone model.
In addition, the CME mass density and temperature were set to
be homogeneous with density ρCME = 10−18kgm−3 and temperature
TCME = 0.8 MK. When simulated CMEs use the spheromak model
as in Verbeke et al. (2019), three additional input parameters were
needed: the helicity sign (chirality), the tilt, and the toroidal

magnetic flux at 0.1 au. Since the spheromak CME in Verbeke et al.
(2019) was initialized from observations partially, Scolini et al.
(2019, 2020) aimed to constrain all the CME input parameters from
remote-sensing observations. The CME geometric and kinematic
parameters were derived using the GCS model: the CME direction,
the height of the CME apex hfront, the tilt angle around the axis
of symmetry γ (with respect to the solar equator), the half angle
between the legs ω, and the half angle of the cone δ related to the
“aspect ratio” κ by the relation κ = sin δ. The 3D speed at the CME
apex was derived from the GCS model with a sequence of images.

vCME =
dhfront
dt
.

Then, the radial and expansion contribution were obtained as
follows:

vrad =
1

1+ κ
dhfront
dt
,

vexp =
κ

1+ κ
dhfront
dt
.

The flux-rope handedness was determined from pre-eruption
EUV sigmoids observations. The flux-rope tilt angle/orientation
was inferred from the orientation of the source region polarity
inversion line (PIL) and/or from the orientation of the post-eruption
arcades (PEAs). The flux-rope toroidal magnetic flux was based on
the reconnected flux, which was computed by the FRED method
described by Gopalswamy et al. (2017). Using the PEA area, the
FRED method computed the total (unsigned) magnetic flux from
line-of-sight magnetic field data. Then, the reconnected flux ϕRC
could be obtained as follows:

ϕRC =
1
2
∫
PEA
|Blos|dA =

1
2
|Blos|totAPEA.

The axial field strength B0 was estimated with the following
formula:

B0 =
α3

2π

ϕp (r⋆) r⋆
(sin (αr⋆) − αr⋆ cos (αr⋆))

,

where r⋆ is the distance from the center of the spheromak, on the
plane θ = π

2
, where the magnetic field becomes completely axial.

ϕp (r⋆) was the poloidal magnetic flux that is transferred from the
reconnected flux.

Maharana et al. (2022) introduced a fully analytical “Flux Rope
in 3D” (FRi3D) CME model to EUHFORIA (Pomoell and Poedts,
2018) to improve the modeling of CME flank encounters. The
geometrical parameters for the FRi3D flux rope contained the
half-width φhw in the azimuthal direction, the angular half-height
φhh in the polar direction, the toroidal height Rt defined the
heliocentric distance to the apex of the CME axis, a coefficient n
defined the deformation at the CME front, pancaking φp meant
the deformation due to radial expansion, and skew φs defined the
deformation due to solar rotation.The geometrical parameters were
obtained by using the forward modeling tool of FRi3D to remote
multi-viewpoint observations. The Lundquist model in cylindrical
geometry was used to get the magnetic field configuration of
the CME. The magnetic field parameters, such as the tilt, the
magnetic flux, the twist, the chirality, and the polarity, were obtained
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FIGURE 14
Magnetic field line configuration of the modified spheromak inserted at the inner boundary R = 0.1 AU, shown with the red sphere (Singh et al., 2020).

by fitting the FRi3D CME model to WIND spacecraft at 1 au
(Isavnin, 2016).The FRi3DCMEmodel was also filled with uniform
density plasma with density ρCME = 10−17kgm−3 and temperature
TCME = 0.8 MK. Figure 13 shows a FRi3D flux rope emerging out
of EUHFORIA’s inner heliospheric boundary at 0.1 au. The color

of the field lines is based on the magnetic field strength. The field
lines are twisted and deformed as per a particular CME geometry
and have maximum strength close to the axis which reduces
outward (typical Lundquist model characteristics) (Maharana et al.,
2022).
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Singh et al. (2020) applied a modified spheromak model for
simulations of the CME in the inner heliosphere. The simulations
were carried out using a MultiScale Fluid-Kinetic Simulation Suite
(MS-FLUKSS) code. They introduced a modified spheromak flux
rope into the solar wind, where the poloidal and toroidal fluxes were
set up independently.

b⃗ = 1
r sinθ
(ζ1

r
∂A
∂θ
̂r− ζ ∂A

∂r
θ̂+Hα0Aϕ̂),

A =
4πa1
α20
[

r20
g(α0r)
− r2] sin2 θ,

g(α0r) =
sin(α0r)

α0r
− cos(α0r) ,

where α0rmc = 5.763,459. The origin of the spherical coordinate
system was placed at the spheromak center. The flux-rope
parameters were introduced into the solar wind as follows:

b⃗final = b⃗FR,

ρfinal = ρFR + ρSW,

efinal = ξeFR + eSW,

where ξ was related to plasma β as β ∼ (γ− 1) (ξ− 1) indicated
that the magnetic pressure in the flux rope was larger than the
pressure in the solar wind. The mass inside the spheromak was a
constant with 1.65× 1015 g. The thermal pressure was assumed to
be proportional to the magnetic pressure. The poloidal flux and the
toroidal fluxwere set to be 2× 1022 Mx and 5× 1021 Mx, respectively.
A positive helicity sign was used. Figure 14 shows themagnetic field
line configuration of the modified spheromak inserted at the inner
boundary (Singh et al., 2020).

Table 3 summarizes the various methods to set the CME
parameters at lower boundary. Since the ability of a CME to
disturb the near-Earth space is largely due to its magnetic fields,
the flux-rope model is widely used in recent years because of its
internal magnetic fields structure. How to constrain the initial
CME parameters by observations is one difficulty. The cone model
and GCS model are widely used to estimate the CME kinematic
and geometric parameters. The magnetic field parameters, such
as handedness, tilt, and toroidal magnetic flux, are deduced from
remote-sensing observations in Scolini et al. (2019, 2020). With the
launch of the PSP and SO into the inner heliosphere, the ICME will
be constrained by more observations.

4 Conclusion and discussion

Overall, the three-dimensional MHD numerical model has
become an important tool to report interplanetary solar wind and
the CME.The MHD heliospheric model is relatively cheap in terms
of calculation, and it takes tens of minutes to hours to simulate the
CME propagation from the Sun to Earth. The operational space-
weather forecast is usually generated by the heliospheric model.The
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resulting forecast errors are largely dependent on the uncertainty of
the inner boundary conditions, rather than the heliospheric model.

For the solar wind simulation in the inner heliosphere, the
solar wind density and temperature at the inner boundary are
always derived as a function of the solar wind speed and magnetic
field; thus, the speed and magnetic field can significantly affect
the accuracy of the simulated results. The speed specified by the
WSA formula given in Eq. 2 seems to be the most efficient formula.
However, there are several free parameters in theWSAmodel, whose
uncertainties may result in the deviations between the simulated
results and observations.Thus, how tomake parameter optimization
is a major problem. The dynamic time warping (DTW) algorithm
described in Bunting and Morgan (2022) can be used to derive the
optimized values for the speed in theWSA formula. DTWalgorithm
is effective to quantify the agreement between two time series and
has recently been used in a variety of fields such as economics,
biology, and space weather. Here, DTW distance is used to measure
the difference between the model and in situ solar wind velocities,
and a smaller DTWdistancemeans that themodeled data is in good
agreement with the in situ data. The initial parameters of the WSA
formula were adjusted to minimize the DTW distance, and then, we
can obtain the optimized parameters inWSA formula. Also, the IPS
observation is a good choice to obtain the velocity distribution, and
the results show that IPS data have a high success rate in detecting
high-speed solar wind and the space-weather prediction can be
enhanced by the combination of MHD simulation and the IPS data.
For the magnetic field at the inner boundary, the PFSS model is
always used.However, the PFSSmodel underestimated themagnetic
flux in the heliosphere. Shen et al. (2018) only kept the polarity of
the magnetic field from the PFSS model and used the observational
data at 1 au in the immediate past to limit the value of the magnetic
field, and the results showed that the modeled magnetic field at 1 au
agrees with the in situ observations much better. Additionally, the
magnetic fields derived from the PFSS model have no thin HCS or
Parker spiral in the interplanetary space; thus, the PFSS + SCSmodel
may be a good choice.

For the CME simulation in the inner heliosphere, CMEs are
always initialized by flux-rope models, such as spheromaks or
toroidal-like structures, and the CMEs are introduced to the inner
radial boundary as a time-dependent boundary. Scolini et al. (2019,
2020) suggested that the prediction of the CME arrival time at Earth
was found to be highly dependent on the CME model and CME
input parameters used. Thus, how to obtain the CME parameters
at the inner boundary is important. At present, CME geometric and
kinematic parameters, such as CME position, radius, and velocity,
are always derived from the GCS model or the cone model. The
density and temperature of the CMEs are assumed to be constant. To
improve the prediction of the CME internal magnetic field at Earth,
it is necessary to constrain the flux-rope magnetic parameters from
the remote-sensing observations of the corona. Scolini et al. (2019,
2020) constrained flux-rope magnetic parameters from remote-
sensing observations, and the results showed that the current model

can improve the predictions of Bz up to 22–40 percentage points
compared to a cone model.

At present, the numerical simulation in the inner heliosphere
has a large dependence on the empirical model. How to use the
observations to constrain the uncertainties in the empirical models
is something we must consider in future. Maybe we can use the in
situ data in the past CR to correct the uncertainties in the empirical
models at the current CR, but this can only be applicable to the solar
wind. With the multi-spacecraft observations in the future, such as
SO and PSP, the detailed measurements of the inner heliosphere
will be provided. All of these will provide us with more realistic
inner boundary conditions, andwewill have a deeper understanding
of the triggering and propagation evolution of solar wind and
disturbance.
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