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The 3-day Kp forecast product is important and necessary for space weather
forecasts. There is some essential information that can be obtained from the 3-
day Kp forecast product, such as the start time of the geomagnetic storm, the
maximum storm level, and the storm duration. In this study, we aimed to predict
the next 3-day Kp index based on the previous Kp time series and SDO/AIA 193 Å
images. We prepared datasets from May 2010 to December 2019 for training
and datasets from January 2020 to October 2022 for testing. The similarity
parameters of the previous and current geomagnetic conditions between the
samples are calculated and analyzed. We assumed that the paired samples with
high-similarity parameters of the previous and current geomagnetic conditions
would also have high-similarity parameters of the next 3-day geomagnetic
conditions. Based on the assumption, we selected the three best similarity
parameters through the feature selection process and adopted the scalable tree
boosting system (XGBoost) to develop a prediction model. It took the similarity
parameters of the previous and current geomagnetic conditions as input and
provided the best match sample from the training subset as a forecast. For the
next 3-day non-storm (maximum Kp < 5) prediction period, our model reached
an F1-score of 0.96. For the next 3-day storm (maximum Kp ≥ 5) prediction
period, our model reached an F1-score of 0.82, a recall of 0.70, and a precision
of 0.98.

KEYWORDS

geomagnetic index, geomagnetic storm, spaceweather,machine learning, geomagnetic
activity

1 Introduction

A geomagnetic storm is the consequence of solar wind disturbances originating from
the Sun and impacting on geospace (Gonzalez et al., 1994; Perreault and Akasofu, 1978).
The solar and interplanetary sources of the geomagnetic storms are related to coronal mass
ejections [CMEs; (Gosling et al., 1991; Webb et al., 2000; Chen, 2011; Webb and Howard,
2012);] and the coronal hole high-speed stream (Tsurutani et al., 1995; Gonzalez et al., 1999;
Tsurutani et al., 2006; Zhang et al., 2007). Geomagnetic storms can last from hours to days
and sometimes lead to space weather effects, for example, the sudden enhancement of the
electric currents in the magnetosphere and ionosphere, the severe changes of the relativistic
electron fluxes in the Van Allen radiation belts, and the density enhancement in the
upper atmosphere (Ritter et al., 2010; Mansilla, 2011; Xiong et al., 2015; Zhang et al., 2019).
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Magnetic activity indices were designed to describe variations
in the geomagnetic field, including the Kp index, ap index,
and Ap index (Mayaud, 1980; Menvielle and Berthelier, 1991;
Bartels, 2013a; Bartels, 2013b; Zhang et al., 2019). The planetary
3-hour-range Kp index ranging from 0 to 9 is calculated from
13 geomagnetic observatories between 44° and 60° northern or
southern geomagnetic latitude. The 3-hour-range ap index is the
equivalent range of the Kp index. The 1-day-range Ap index is
calculated from an 8-point Ap index per day. Furthermore, Kp is a
good representative for geomagnetic activity and is used to classify
the geomagnetic conditions into categories (for example, minor
storm, moderate, and major storm) in the Space Weather Prediction
Center (SWPC) facilitated at theNational Oceanic andAtmospheric
Administration (NOAA) and the Space Environment Prediction
Center (SEPC) facilitated at the National Space Science Center and
the Chinese Academy of Sciences.

The Kp index and Ap index are also important inputs for
physical-based geospace models, such as magnetosphere and
plasmasphere models, and thermosphere and ionosphere models
(Matzka et al., 2021). Compared with the 1-day-range Ap index, the
3-hour-range Kp index can provide more refined information on
the geomagnetic activity, such as the start time of the geomagnetic
storm, the maximum storm level, and the duration of the storm.
Therefore, Kp index prediction is very important and necessary for
space weather forecasts.

There are many models developed to predict geomagnetic
activity on multiple time scales of hours to years based on
statistical and machine learning methods (Feynman and Gu, 1986;
Bala and Reiff, 2012; Wang et al., 2015; Luo et al., 2017; Tan et al.,
2018; Shprits et al., 2019; Zhelavskaya et al., 2019; Chakraborty and
Morley, 2020). However, only a few have been applied to the
operational space weather forecast. At present, SWPC routinely
provides products of a 45-day Ap index forecast1, 27-day Ap index
and the largest Kp index forecast2, and 3-day Kp index forecast3.
SEPC routinely provides products of a 27-day Ap index forecast4

and 3-h Kp index forecast in less than 3 h advance5. So far, there is
no public algorithm designed for a 3-day Kp index forecast, and the
conventional product of a 3-day Kp index forecast is only provided
by SWPC.

The 3-day Kp index forecast is an essential and basic product
in space weather forecasts. It contains 24 points in a 3-day period
and describes the geomagnetic conditions with a 3-hour-range
resolution. Considering the increasing demand for space weather
forecasts, it is still important and necessary for the space weather
community to develop predictionmodels that can provide the 3-day
Kp index forecast product.

In this study, we aim to develop a model for the next 3-
day Kp index time-series prediction. Here, we introduce the data
preparation in Section 2, then develop a classification model based

1 https://www.swpc.noaa.gov/products/usaf-45-day-ap-and-f107cm-flux-
forecast

2 https://www.swpc.noaa.gov/products/27-day-outlook-107-cm-radio-flux-
and-geomagnetic-indices

3 https://www.swpc.noaa.gov/products/3-day-geomagnetic-forecast

4 http://www.sepc.ac.cn/eng/ApForecast.php

5 http://www.sepc.ac.cn/eng/Kp3HPred.php

on machine-learning algorithms, and conduct prediction error
analysis in Section 3. The conclusion and discussion are presented
in Section 4.

2 Data and methodology

2.1 Data preparation

In this study, we used two kinds of data from May 2010 to
October 2022, including the 3-hour Kp index from the National
Oceanic and Atmospheric Administration (NOAA) and the 193Å
wavelength imagesmeasured at the SDO/AIA (O’Dwyer et al., 2010;
Lemen et al., 2012; Pesnell et al., 2012). They were divided into the
training subset (including data from May 2010 to December 2019)
and the testing subset (including data from January 2020 to October
2022). A prediction model was trained by the training subset and
tested by the independent testing subset.

It should be mentioned that we only focus on the background
solar wind (including the coronal hole high-speed streams and co-
rotating interaction regions) in this study. Therefore, we removed
the time periods when the geomagnetic conditions are affected by
interplanetary coronal mass ejections (ICMEs), according to the
near-Earth ICMEs list (Cane and Richardson, 2003; Richardson and
Cane, 2010). For each day, we selected two samples according to the
timepoints at 0:00 UTC and 12:00 UTC. Thus, we obtained 6,042
samples from the training subset and 1853 samples from the testing
subset.

As shown in the flow chart in Figure 1, we prepared the 54-day
Kp index time series before the current timepoint (T), and the AIA
193Å image was measured at T as inputs and we took the 3-day Kp
index time series after T as outputs. Figure 2 shows how to divide
the Kp time series into the previous 54-day Kp input and the next
3-day Kp output for the current T sample. Take the sample at 00:00
UTC on 22 Oct 2019 as an example, we took the Kp time series (432
points) from 00:00 UTC on August 29 to 00:00 UTC on October
22 as the input and the Kp time series (24 points) from 00:00 UTC
on October 22 to 00:00 UTC on October 25 as the output. Figure 3
shows how to prepare the AIA 193Å image measured at T as input
for the current T sample. Take the sample at 00:00 UTC on 22 Oct
2019 as an example, the observed image is shown in the top left panel.
Then, a slice covering the [S40,N40] and [E40,W40] areas was cut
from the observed image and shown in the top right panel. Amedian
value was calculated based on the previous monthly slices. After all
values above the median value in the slice at current Twere replaced
by 0, we obtained a slice as shown in the bottom left panel referring
to the properties of coronal holes. The slice in the bottom left panel
was then resized into a smaller size of 32× 32 pixels and used as one
of the inputs.

To compare the difference between the training and testing
subsets, we calculated the maximum value of the 3-day Kp output
and took it as a representative for each sample. Then, we draw the
sample distribution histogram in Figure 4. The blue and red bars
represent the training and testing subsets, respectively. It was found
that the maximum Kp of the samples in the two subsets had similar
distribution properties. There were 1,614 (26.7%) and 390 (21.0%)
storm samples (maximumKp≥ 5) in the training and testing subsets,
respectively.
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FIGURE 1
Flowchart of this study.

FIGURE 2
Illustration of preparing the 3-h Kp index time series for the current T at 00:00 UTC on 22 Oct 2019. The 3-h Kp index is represented by a blue (red) bar
if it is related to the non-storm (geomagnetic storm) period. The black vertical line refers to the current time point T. The left side of the line refers to
the previous 54-day Kp index time series (one of the model inputs). The right side of the line refers to the next 3-day Kp index time series (the model
outputs).

2.2 Similarity calculation and labeling of
sample pairs

Two samples at timepoints Ti and Tj from the training subset
were called a pair (where the timepoint Ti was more than 3 days
farther fromTj). For each sample at timepointTi, we picked upmore
than 5,000 other samples from the training subset to form sample
pairs with it. All the samples that were within a 2-month interval of

the current timepoint were excluded. As a result, we obtained more
than 25 million sample pairs from the training subset.

We assume that if the inputs of two samples in a pair have
high similarity (that is, their previous and current geomagnetic
conditions are similar), their geomagnetic conditions in the next
3 days should be similar too. In this case, the two samples in
the pair are similar to each other so that one sample can be a
proper representative of the other one. In this study, the similarity
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FIGURE 3
Illustration of preparing the AIA 193Å images. The upper left shows the 193Å images at 00:00:04 UTC on 22 Oct 2019 measured using SDO/AIA. The
upper right shows the cut slice covering the [S40,N40] and [E40,W40] areas. After all values above the median in the slice are replaced by 0, the
pre-processed slice referring to the coronal holes is shown in the bottom left.

parameters of the pair inputs were calculated and used to develop a
model for the 3-day Kp forecast based on this assumption.

Figure 1 shows that based on the 54-day Kp time-series inputs,
we derived 11 similarity parameters for each pair. The first two
parameters were the mean absolute error (MAEKp) and the root
mean square error (RMSEKp). They were calculated by the following
formulas, where x and y represent the inputs of a pair at timepoints
Ti and Tj, respectively:

MAE (x,y) = 1
N

N

∑
i=1
|xi − yi| , (1)

RMSE (x,y) = √ 1
N

N

∑
i=1
(xi − yi)

2. (2)

The next two parameters were the maximum absolute error
(MaxDiffKp) and the sum of the absolute error for the storm (Kp
≥ 5) period (SDiffKp). Also, four spatial distances were calculated,
namely, the Euclidean distance (D (Euclidean)Kp), cosine distance
(D (Cosine)Kp), correlation (D (Correlation)Kp), and Hamming

distance (D (Hamming)Kp), by the following formulas and were
taken as similarity parameters. The SciPy package6 was used to
calculate these spatial distances.

D (Euclidean) = √
N

∑
i=1
(xi − yi)

2 (3)

D (Cosine) = 1−
x ⋅ y
‖x‖2‖y‖2

, (4)

D (Correlation) = 1−
(x− x̄) ⋅ (y− ȳ)
‖(x− x̄)‖2‖(y− ȳ)‖2

. (5)

We also derived three features (FeatureKPCA(linear),
FeatureKPCA(rbf), FeatureKPCA(cosine)) from each Kp time-series
input using the kernel principle component analysis (KPCA)
algorithm with the “linear,” “rbf,” and “cosine” kernel using the

6 https://docs.scipy.org/doc/scipy/index.html
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FIGURE 4
Sample distribution histogram at the training and testing subsets. The
x-axis represents the maximum value of the 3-day Kp output for each
sample. The y-axis represents the sample number.

Scikit-learn package7. Through the KPCA algorithm, a Kp time-
series input can be represented by a number (the feature). So,
for each pair, we obtained two numbers (Featurex, KPCA(kernel) and
Featurey, KPCA(kernel)) representing the Kp time-series pair inputs (x
and y). Then, we calculated the absolute error of the two numbers
and took it as the similarity parameter for the pair. In this way, we
obtain three similarity parameters, namely, F (linear)Kp, F (rbf)Kp,
and F (cosine)Kp, by the following formula:

F (kernel) = Featurex,KPCA(kernel)
− Featurey,KPCA(kernel),kernel ∈ {linear, rgb,cosine} . (6)

Figure 1 shows that based on the coronal holes image inputs, we
derived another seven similarity parameters for each pair. The first
two parameters were the mean absolute error (MAECH) and root
mean square error (RMSECH), and were calculated by Formulas 1
and 2. The next two were the widely used image similarity
parameters, such as structural index similarity (SSIMCH) and peak
signal-to-noise ratio (PSNRCH), which were calculated using the
Scikit-image package8. Then, in a similar way, we calculated the
absolute error of the KPCA features derived by the image pair inputs
using Formula 6 and took them as the similarity parameters, such
as F (linear)CH , F (rbf)CH , and F (cosine)CH .

Then, we obtained 18 similarity parameters from the
pair inputs in the training subsets. Except for the correlation
(D (Correlation)Kp), structural index similarity (SSIMCH), and
peak signal-to-noise ratio (PSNRCH), the larger the other 15

7 https://scikit-learn.org

8 https://scikit-image.org/docs/stable/api/skimage.html

parameters, the higher similarity the pair inputs reach. Hence, it
is the opposite for the correlation (D (Correlation)Kp), structural
index similarity (SSIMCH), andpeak signal-to-noise ratio (PSNRCH).
Then, we standardized the 18 similarity parameters independently
by computing the relevant statistics on the pairs in the training
subsets using the Scikit-learn package.

As we established the pair inputs and calculated the similarity
parameters, the pair outputs (3-day Kp time series) should be
analyzed and labeled as a number (1 or 0). Here, we adopted a batch
labeling method according to the following principles:

1) For each sample at timepoint Ti, if the next 3-day geomagnetic
conditions reached the storm level (maximum value of Kp ≥ 5), it
is a storm sample. Otherwise, it is a non-storm sample.

2) For each sample at timepoint Ti, we picked up more than 5,000
other samples and formed pairs with them (denoted by Ti pairs).
If a pair contains one storm sample and one non-storm sample,
we considered the pair as a bad match and labeled the pair output
as 0.

3) For each sample at timepointTi, we selected the top 100 pairs with
the least mean absolute errors between their outputs (the next 3-
day Kp time series) from the remaining Ti pairs. We considered
those 100 pairs as good matches and labeled their pair outputs as
1. The remaining pairs were labeled as 0.

Finally, we prepared our dataset into a standard form consisting
of inputs (18 similarity parameters) and output (binary labels) that
is suitable for a binary classification task.

2.3 Feature selection of similarity
parameters

Feature selection is a widely used approach in the machine
learning community to select the best features from the dataset in
which the model can perform better with less training time. In
this study, we selected the best features by comparing the Pearson’s
correlation of the 18 similarity parameters with the binary labels
of the pairs using the SelectKBest from the Scikit-learn package.
The correlations were standardized to scores ranging from 0 to 1,
as shown in Figure 5.

It was found that there were three best features that had
a significantly higher score than others. The top three best
features were the Euclidean distance of the 54-day Kp time
series (D (Euclidean)Kp), the Hamming distance of the 54-day Kp
time series (D (Hamming)Kp), and the differences between the
KPCA features of the current coronal hole images for each pair
(F (linear)CH). They were selected from the dataset and used for
model development, as shown in the flowchart in Figure 1.

3 Model development and result
analysis

3.1 Development of a classification model
for sample pairs

After the three best features had been selected by feature
selection, we determined to develop a classification model for pairs

Frontiers in Astronomy and Space Sciences 05 frontiersin.org

https://doi.org/10.3389/fspas.2023.1082737
https://scikit-learn.org
https://scikit-image.org/docs/stable/api/skimage.html
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Wang et al. 10.3389/fspas.2023.1082737

FIGURE 5
Scores of similarity of input pairs at the training dataset by feature
selection.

in the training subset to predict whether a pair of two samples is a
good match or not. If the pair is a good match, their geomagnetic
conditions are similar to each other so that one sample can be
considered as a forecast of the other.

The scalable tree boosting system (XGBoost) is a widely
used machine learning algorithm for binary classification tasks.
It implements gradient boosting which performs additive
optimization in functional space and incorporates a regularized
model to prevent over-fitting (Chen and Guestrin, 2016).

We applied the XGBoost algorithm to develop a classification
model using the Scikit-learn package9 to predict whether a pair of
two samples is a good match or not. If the pair is a good match, their
geomagnetic conditions are similar to each other so that one sample
can be considered as a forecast of the other. Considering the “f1-
weighted” (it is a balanced score of a standard binary classification
task) as metrics, the best hyper-parameters of the XGBoost model
are nestimators = 0.01 and max depth = 20.

As shown in Figure 1, to predict the 3-day Kp time series at Ti,
we give a forecast of the 3-day Kp time series following the steps:

1) We pick up a sample at Tj to establish a pair and calculate the
similarity parameters of the pair.

2) For the pair at Ti and Tj, the three similarity parameters are fed
into the classification model. If the model predicts 1, the pair is
a good match, whereas if the model predicts 0, it is not a good
match.

3) If we find a good match, we take the 3-day Kp time series after Tj
as forecast at Ti. Otherwise, we repeat the aforementioned steps.

We developed a prediction model using the training subset
and applied the model on the testing subset from January 2020 to
October 2022 and evaluated its performance. Both the geomagnetic
storm prediction (maximum Kp ≥ 5) and non-storm (maximum

9 https://scikit-learn.org

Kp < 5) prediction are important in space weather forecasts. Thus,
we will evaluate the model for the geomagnetic storm prediction
(maximum Kp ≥ 5) as well as the non-storm (maximum Kp < 5)
prediction tasks.

3.2 Evaluation metrics and model
performance

For a binary classification task like the next 3-day geomagnetic
storm (maximumKp ≥ 5) prediction, the confusionmatrix is shown
in Table 1. The model is evaluated by its ability to predict the next
3-day geomagnetic storm, the first day (day 1) geomagnetic storm,
the second day (day 2) geomagnetic storm, and the third day (day 3)
geomagnetic storm. We also evaluate the model’s ability to predict
the next 3-day non-storm conditions, the first day (day 1) of non-
storm conditions, the second day (day 2) of non-storm conditions,
and the third day (day 3) of non-storm conditions.

There are threemetrics for binary classification used in the study,
including precision, recall, and F1-score. They are calculated by the
following formulas:

recall = TP
TP+ FN

, (7)

precision = TP
TP+ FP

, (8)

F1 =
2× precision× recall
precision+ recall

, (9)

where the true positive (TP), false positive (FP), false negative
(FN), and true negative (TN) are calculated following the confusion
matrix, as shown in Table 1 for storm prediction and Table 2 for
non-storm prediction. For example, for storm prediction, the higher
the recall, the more storm samples have been correctly predicted.
The higher the precision, the fewer false alarms have been made.
An F1-score is a balance metric for recall and precision. A larger
F1-score shows a better ability to classify a sample into the correct
category.

The three metrics, recall, precision, and F1-score for the
geomagnetic storm prediction task (considering the storm samples
as positive samples) were listed as “For storm category (maximum
Kp ≥ 5),” as shown in Table 3. The metrics for the non-storm
prediction task (considering the non-storm samples as positive
samples) were listed as “For non-storm category (maximum Kp <
5),” as shown in Table 3. We found that

1) Our model reaches an F1-score of 0.96, a recall of 0.99, and
a precision of 0.93 for the next 3-day period of non-storm category
prediction and an F1-score of 0.82, a recall of 0.70, and a precision
of 0.98 for the next 3-day period of storm category prediction.

2) However, both for the non-storm category and storm
category, the three metrics (F1-score, recall, and precision) by our
model are lower at the first day, second day, and third day period
prediction than that in the next 3-day period prediction. It indicates
that it is difficult to accurately predict the storm periods in a shorter
time period (less than 3 days).

We also conducted an error analysis of the model forecasts with
the observations in the testing dataset. For each sample (containing
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TABLE 1 Confusionmatrix for binary classification of the geomagnetic storm.

Actual geomagnetic storm (observation)

Predicted geomagnetic storm (forecasts) True positive (TP)hit case False positive (FP)false alarm case

False negative (FN)missed case True negative (TN)correct non-storm case

TABLE 2 Confusionmatrix for the binary classification of non-storm.

Actual non-storm (observation)

Predicted non-storm (forecasts) True positive (TP)hit case
False positive (FP)

false alarm case

False negative (FN)missed case
True negative (TN)

correct storm case

24 points of the 3-hourKp values) in the testing subset, we compared
the forecasts with the observations by four statistics, including the
mean absolute error (MAE), the root mean square error (RMSE),
the maximum of the absolute error (MaxDiff), and the sum of
the absolute error for the storm (Kp ≥ 5) period (SDiff). For 1853
samples in the testing subset, we calculated the average and standard
deviation of the four statistics by the following formulas:

Average (x) = 1
N

N

∑
i=1

xi, (10)

StdDev (x) = √ 1
N− 1

N

∑
i=1
(xi − x̄). (11)

The eight statistics of the 3-day period, namely, day 1, day 2, and
day 3 predictions, for all samples in the testing subset by our model
are shown in Table 3. It was found that

1) The average and standard deviation of the mean error for the next
3-day Kp prediction is 0.03 and 0.65, respectively.The average and
standard deviation of the mean absolute error for the next 3-day
Kp prediction is 1.06 and 0.32, respectively.

2) The average and standard deviation of MaxDiff (the maximum
absolute error of the 3-day Kp time-series) is 2.87 and 0.78,
respectively.

Moreover, we compared ourmodel results with the daily product
of the 3-dayKp index forecasts provided by SWPC from30Nov 2020
to 27 Oct 2022. After we had removed the time-periods when the
geomagnetic conditions are affected by interplanetary coronal mass
ejections (ICMEs), there were 50 storm samples and 548 non-storm
samples. Evaluation metrics for SWPC’s 3-day Kp index forecast
products and results obtained by our model are shown in Table 4.
It was found that

1) For the next 3-day prediction, our model provides a positive
mean error average, while SWPC provides a negative mean error
average. It indicates that statistically, our results are usually higher

TABLE 3 Evaluationmetrics for the best 3-day Kp index predictionmodel.

Metric 3-daya Day 1b Day 2c Day 3d

For all samples in the test dataset

Mean error (ME) average 0.03 0.06 0.01 0.01

ME standard deviation 0.65 0.92 0.88 0.87

Mean absolute error (MAE) average 1.06 1.04 1.08 1.05

MAE standard deviation 0.32 0.47 0.43 0.44

Root mean square error (RMSE) average 1.31 1.24 1.31 1.27

RMSE standard deviation 0.37 0.50 0.45 0.47

MaxDiff e average 2.87 2.15 2.42 2.26

MaxDiff standard deviation 0.78 0.82 0.77 0.80

SDiff f average 2.29 1.00 1.22 1.22

SDiff standard deviation 7.56 3.72 4.44 3.77

For non-storm category (Kp < 5)g

  Precision 0.93 0.92 0.92 0.95

  Recall 0.99 0.99 0.97 0.92

  F1-score 0.96 0.95 0.95 0.93

For storm category (Kp ≥ 5)h

  Precision 0.98 0.53 0.45 0.37

  Recall 0.70 0.17 0.19 0.48

  F1-score 0.82 0.25 0.27 0.41

aMetrics based on the 3-day Kp index observations and forecasts.
bMetrics of the first day (day 1) based on the 3-day Kp index observations and forecasts.
cMetrics of the second day (day 2) based on the 3-day Kp index observations and forecasts.
dMetrics of the third day (day 3) based on the 3-day Kp index observations and forecasts.
eMaxDiff is the maximum absolute error of the Kp index observation and forecast.
f SDiff is the sum of the absolute error of the Kp index observation and forecast for the
storm period (Kp ≥ 5).
gCorresponding to the confusion matrix shown in Table 1.
hCorresponding to the confusion matrix shown in Table 2.

than the observations and SWPC’s products are usually lower than
the observations.

2) For the next 3-day prediction, our model provides a mean error
average of 1.13. It is slightly higher than the mean error average of
1.03 calculated from SWPC’s product.

3) Our model performs better than SWPC’s product for the
three metrics (recall, precision, and F1-score) in the 3-
day prediction. However, compared with SWPC’s results,
our model had less recall and higher precision for the
storm category in the first-day, second-day, and third-day
predictions.
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TABLE 4 Evaluationmetrics for SWPC’s 3-day Kp index forecast products and our model.

Metric SWPC’s daily result Our model result

3-day Day 1 Day 2 Day 3 3-day Day 1 Day 2 Day 3

For samples in the same test dataset

ME average -0.22 -0.26 -0.22 -0.17 0.12 0.18 0.09 0.09

ME standard deviation 0.60 0.80 0.87 0.86 0.67 0.97 0.93 0.91

Mean absolute error (MAE) average 1.03 1.01 1.04 1.03 1.13 1.11 1.15 1.32

MAE standard deviation 0.29 0.42 0.45 0.43 0.34 0.51 0.45 0.47

RMSE average 1.26 1.21 1.24 1.21 1.39 1.32 1.39 1.36

RMSE standard deviation 0.34 0.46 0.48 0.46 0.39 0.54 0.48 0.51

MaxDiff average 2.68 2.11 2.15 2.10 3.03 2.30 2.52 2.38

MaxDiff standard deviation 0.75 0.76 0.79 0.73 0.84 0.88 0.80 0.88

SDiff average 3.69 1.48 1.48 1.16 3.12 1.38 1.65 1.62

SDiff standard deviation 7.17 3.82 3.95 3.31 8.60 4.46 4.81 4.02

For non-storm category (Kp < 5)

Precision 0.79 0.92 0.90 0.90 0.89 0.89 0.90 0.93

Recall 0.89 0.93 0.94 0.97 0.99 0.98 0.97 0.88

F1-score 0.84 0.92 0.92 0.93 0.94 0.93 0.93 0.90

For storm category (Kp ≥ 5)

Precision 0.60 0.43 0.46 0.50 0.98 0.50 0.53 0.37

Recall 0.42 0.41 0.32 0.24 0.71 0.15 0.26 0.50

F1-score 0.49 0.42 0.38 0.33 0.82 0.23 0.34 0.43

4 Conclusion and discussion

In this study, we aimed to develop a model for the next 3-day
Kp index time-series prediction based on the previous 54-day Kp
time series and SDO/AIA 193 Å images. We prepared a dataset
(6,042 samples) from May 2010 to December 2019 for training, and
a dataset (1853 samples) from January 2020 to October 2022 for
testing.

The similarity parameters of the previous and current
geomagnetic conditions between the samples are calculated and
analyzed, as well as the similarity parameters of the next 3-day
geomagnetic conditions. We assumed that the paired samples with
high similarity for the previous and current geomagnetic conditions
would also have high similarity for the next 3-day geomagnetic
conditions. Based on the assumption, we first selected the three best
similarity parameters through the feature selection process and then
adopted the XGBoost algorithm to develop a prediction model for
the next 3-day Kp forecast. The model took the best three similarity
parameters of the previous and current geomagnetic conditions as
input and provided the best match sample from the training subset
as a forecast for the next 3-day Kp time-series.

A prediction error analysis by ourmodel was conducted. For the
non-storm prediction, ourmodel reached an F1-score of 0.96 for the
next 3-day period and an F1-score over 0.92 for the first day, second
day, and third day period. For the storm prediction, it reached an

F1-score of 0.82, a recall of 0.70, and a precision of 0.98 for the next
3-day period.

We also compared our model results with the daily product of
the 3-day Kp index forecasts provided by SWPC from 30 Nov 2020
to 27 Oct 2022. In statistics, our results were usually higher than
the observations and SWPC’s products were usually lower than the
observations. Compared with SWPC’s products for the next 3-day
prediction, our model reached higher metrics (recall, precision, and
F1-score). However, our model showed a higher mean error average
in the next 3-day prediction, and less recall and higher precision
for the storm category in the first-day, second-day, and third-day
predictions.

This study established a prediction model that can be used to
provide the 3-day Kp forecast product, which is important and
necessary for space weather forecasts. There is some essential
information that can be obtained from the 3-day Kp forecast
product, such as the start time of the geomagnetic storm, the
maximum storm level, and the duration of the storm. Therefore,
it is a more refined product than the 3-day Ap forecast product.
So far, the 3-day Kp forecast product is routinely provided
by the Space Weather Prediction Center facilitated by the
National Oceanic and Atmospheric Administration. Considering
the increasing demand for space weather forecasts, more
prediction models that can provide essential products should be
developed.
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However, the current model has limitations in accurately
predicting the storm periods in a shorter time period (less than 3
days) which lead to lower evaluation metrics (recall, precision, and
F1-score) in the first-day, second-day, and third-day predictions. In
the future, we would like to improve the 3-day Kp forecast model
by deriving more relevant similarity parameters of the geomagnetic
conditions and adopting a complex machine learning algorithm
such as a convolution neural network and long short-term memory.
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