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The Spaceweather HMI Active Region Patch (SHARP) parameters have been
widely used to develop flare prediction models. The relatively small number of
strong-flare events leads to an unbalanced dataset that predictionmodels can be
sensitive to the unbalanced data andmight lead to bias and limited performance.
In this study, we adopted the logistic regression algorithm to develop a flare
prediction model for the next 48 h based on the SHARP parameters. The
model was trained with five different inputs. The first input was the original
unbalanced dataset; the second and third inputs were obtained by using two
widely used sampling methods from the original dataset, while the fourth input
was the original dataset but accompanied by a weighted classifier. Based on the
distribution properties of strong-flare occurrences related to SHARP parameters,
we established a new selective up-sampling method and applied it to the mixed-
up region (referred to as the confusing distribution areas consisting of both the
strong-flare events and non-strong-flare events) to pick up the flare-related
samples and add small random values to them and finally create a large number
of flare-related samples that are very close to the ground truth. Thus, we obtained
the fifth balanced dataset aiming to 1) promote the forecast capability in the
mixed-up region and 2) increase the robustness of the model. We compared
the model performance and found that the selective up-sampling method has
potential to improve themodel performance in strong-flare prediction with its F1
score reaching 0.5501±0.1200, which is approximately 22% − 33% higher than
other imbalance mitigation schemes.

KEYWORDS

solar flare, solar active regions, solar photospheric magnetic parameters, up-sample,
machine learning

1 Introduction

Flare prediction plays an important role in space weather forecast. The photospheric
magnetic field information of active regions (ARs) is valuable (Yu et al., 2009), and the
data are helpful in accurately predicting solar flares, which can be extended up to less than
10 days before the eruption (Alipour et al., 2019). The solar flare might be accompanied by
the coronal mass ejection (CME). Furthermore, CMEs might impact the Earth and affect
the geospace such as by triggering geomagnetic storms, causing damage to the electricity
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transmission system (Quebec Blackout event in 1989 (Boteler,
2019)) and disabling the space satellite equipment.

Many photospheric magnetic parameters of ARs are highly
related to strong-flare occurrences, for example, SHARP
(Spaceweather HMI Active Region Patch) parameters, which are
available from the data product called Spaceweather HMI Active
Region Patches (Bobra et al., 2014), given by the Helioseismic and
Magnetic Imager (HMI) onboard the Solar Dynamics Observatory
(SDO).

Solar observations are used in different situations, such as
the HMI photospheric line-of-sight magnetic field and multi-
wavelength EUV filtergrams (Jarolim et al., 2022), SHARP
parameters (Zhang et al., 2022), critical scales of parameters under
the κ-scheme (Kusano et al., 2020), and HMI magnetograms (Bobra
and Couvidat, 2015), for predicting solar flares under different
conditions. Dhuri et al. (2019) showed that the SHARP parameters
are the leading contributors to the machine classification, so we
decided to use the SHARP parameters in the following experiments
for flare prediction as our initial research direction.

In recent years, machine learning algorithms have been applied
to solar physics and have made progress in flare prediction,
especially in extracting new predictors and developing effective
models (Liu et al., 2017; Wang et al., 2020; Chen et al., 2022;
Sun et al., 2022; Wang et al., 2022; Li et al., 2022; Nishizuka et al.,
2021; Sun et al., 2021). Liu et al. (2017) adopted the random forest
method for the multiclass classification of flares. Wang et al. (2020)
adopted the long short-term memory (LSTM) network to learn
from the time series of magnetic parameters. Sun et al. (2022)
adopted a stacking ensemble approach to combine the convolutional
neural network (CNN) and LSTM. Wang et al. (2022) extracted the
predictor MSE, the mean squared errors between the pictures of
the ARs and the corresponding reconstructed pictures derived by
an unsupervised auto-encoder network, from the radial magnetic
field of SHARPs. Li et al. (2022) adopted the knowledge-informed
CNN/fusion model to develop a classification model to predict
the strong flares in the next 48 h. Furthermore, Nishizuka et al.
(2021) developed the Deep Flare Net with an operable interface
to detect ARs, extract their features, and conduct a prediction of
the probability of flares within 24 h. Furthermore, Sun et al. (2021)
expanded their machine learning method to the interpretability of
its neural network.

As we all know, strong flares are rare events, which leads to
an unbalanced dataset consisting of a relatively small number of
positive samples (referred to as strong-flare events) and a large
number of negative samples (referred to as non-strong-flare events).
Prediction models trained by an unbalanced dataset might be
sensitive to the bias and achieve limited performance at last.
Therefore, how to balance positive and negative samples in the
dataset for flare prediction is considered one of the difficult and
crucial problems to tackle.

There are some widely used methods tackling unbalanced data
in machine learning, for example, the Synthetic Minority Over-
sampling Technique (SMOTE) up-sampling method (Chawla et al.,
2002), which is used to establish a balanced dataset by increasing
the number of minority samples; a random down-sampling method
(Japkowicz, 2000), which is used to randomly remove samples froma
majority to create a balanced dataset; and theweighted-classmethod
(Hashemi and Karimi, 2018), which is used to eliminate the bias of

the model that was trained on the unbalanced dataset by enlarging
the weight of low-probability categories.

However, the question arises whether those widely used
methods can be well applied to our dataset for flare prediction
and provide good results. On the one hand, randomly increasing
the positive samples might lead to too much noise and make the
generated samples away from the ground truth. On the other hand,
decreasing the negative samples will lead to a loss of a lot of
valid information. If we increase the number of positive samples
selectively considering the correlation between the flare occurrence
and magnetic parameters of ARs, will it help us obtain a better
classification model that is more accurate and more reliable?

In this study, we focused on tackling the unbalanced dataset
for flare prediction and developed a selective up-sampling method
by picking up more positive samples from the mixed-up region
(referred to as the confusing distribution areas consisting of both the
positive and negative samples). Then, we conducted a comparable
analysis of the influence of the input dataset on model performance.

The remainder of the paper is organized as follows: data
preparation is given in Section 2. In section 3, we introduce the
selective up-sampling method and develop a strong-flare prediction
model. Then, we conduct a comparable analysis of the model
performance based on different input datasets in Section 4. The
conclusion and discussion are given in Section 5.

2 Data preparation

The dataset was obtained from the Helioseismic and Magnetic
Imager data product on the Solar Dynamics Observatory, which is
called SHARPs.

The SHARP parameters, including 16 photospheric magnetic
parameters, such as the total magnetic flux, spatial gradients of
the field, characteristics of the vertical current density, current
helicity, and a proxy for the integrated free magnetic energy
(Bobra et al., 2014), were calculated per patch and were available
on a 12-min cadence. Furthermore, SHARP parameters have been
widely used to develop flare prediction models by statistical
and machine learning methods (Sinha et al., 2022) because many
previous studies showed that these parameters play an important
role in characterizing the properties and complexity of ARs (Leka
and Barnes, 2003; Georgoulis and Rust, 2007).

Active area parameters were stored in each SHARP series
as keywords (Bobra et al., 2014), and the data we used in this
paper were sampled from the hmi.sharp_720s dataset, verified
by Huang et al. (2018), and published on Alibaba Tianchi. The
dataset contained 10 photospheric magnetic parameters, whose
correlation coefficient matrix was calculated and is shown in
Figure 1 with a thermal heatmap. The meaning of photospheric
magnetic parameters has been described in detail by Bobra et al.
(2014), and we listed a brief description and formula of six keywords
of the parameters that have the greatest correlation with strong flares
in each activity area of the dataset in Table 1.

The strong-flare events (positive samples) included at least one
flare of the M and above class within 48 h. The non-strong-flare
events (negative samples) included no flares or only flares of the
C and below class. In this study, we focused on strong-flare events
because they are highly related to the geoeffectiveness.
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TABLE 1 Keywords for six active-region parameters in the SHARP series.

Parameter Description Formula

TOTUSJH Total unsigned current helicity Hctotal ∝∑|Bz ⋅ Jz|

TOTPOT Total photospheric magnetic free-energy density ρ∝∑(BObs −BPot)2dA

TOTUSJZ Total unsigned vertical current Jztotal = ∑|Jz|dA

ABSNJZH Absolute value of the net current helicity Hcabs ∝ |∑Bz ⋅ Jz|

SAVNCPP Sum of the modulus of the net current per polarity Jzsum = |∑
B+z JzdA| + |∑B

−
z JzdA|

USFLUX Total unsigned flux Φ = ∑|Bz|dA

FIGURE 1
Correlation coefficient matrix heatmap of photospheric magnetic
parameters and event categories.

For the flare forecasting task, Ahmadzadeh et al. (2021)
suggested some rules on normalization, class imbalance, temporal
coherence, performance metrics, and comparison of models.
In this study, we adopted the data normalization method for
data preprocessing, proposed a selective up-sampling method
considering class imbalance and temporal coherence for model
training, and used an evaluation metrics (F1 score that should be
less biased through class imbalance) for model evaluation.

Furthermore, the rules for selecting data for this dataset are as
follows:

(1) The time range is from 16:00 on 4 May 2010 to 16:00 on 26
January 2019.

(2) The time interval for sampling the same event is 96 min (the
sampling frequency is lower than that of the SDO) in order to
guarantee enough variations between the closest AR images.

(3) The location range of SHARPs is within ±30 heliolongitude
degrees from the solar disk center to reduce the influence of
projection. Cui et al. (2007) evaluated this issue of the influence of
the AR projection effect on the solar flare productivity and found
that the projection effect can be ignored for ARs located within ±30°
from the solar disk center.

First, we need to divide the training set and testing set in a
scientific way. The rules are as follows:

(1) The ratio of positive to negative samples should be similar in
both training and testing sets. This has two purposes. First, to avoid
the situation where the number of positive examples in the testing
set is too small or even zero (very likely to occur if the datasets are
divided randomly). Second, as the proportion of positive cases in the
testing set is close to that in reality, the testing results can reflect the
real performance of the model when facing the actual situation.

(2) The data in the training and testing set cannot be from the
same event, which is to ensure that the testing and training sets
are independent of each other, and active regions with multiple
flares cannot appear in both training and testing sets simultaneously
(Dhuri et al., 2019).

In this study, we used only the photosphericmagnetic parameter
data that contain 73,810 samples (from 2,542 ARs) of photospheric
magnetic parameters. After the statistics, we found that there were
only 2,988 positive samples from 155 strong-flare ARs (the climate
probability≈ only 6%) and the remaining 70,822 samples from 2,387
non-strong-flare ARs were all negative, which makes it extremely
difficult formachine learningmethods to predict flares only through
these original and imbalanced data because the classifier can easily
learn the information of the majority of non-strong-flare events, but
there are not enough strong-flare events to learn from.

In each round of experiments, we divided the dataset into the
training set and the testing set randomly in a 9:1 ratio. At the
same time, in both training and testing sets, we ensured that the
ratio of positive to negative samples is approximately the same.
Furthermore, we ensured that the data in the testing set and the
training set come from different ARs for data independence.

3 Application of processing methods
upon unbalanced data for flare
prediction

In order to eliminate the negative impact of data imbalance,
there are some ways that are widely used in industrial applications,
which will also be used as control groups in the following data
training in this study:

(1) Random down-sampling method: Random sampling from
the majority samples (negative samples, as for flare prediction) to
make its number equal to the minority samples (positive samples, as
for flare prediction).

(2) SMOTE up-sampling method (Chawla et al., 2002): We took
one dataset from the minority samples (positive samples) and
named it xi, calculated and sorted it according to the Euclidean

Frontiers in Astronomy and Space Sciences 03 frontiersin.org

https://doi.org/10.3389/fspas.2023.1082694
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Liu et al. 10.3389/fspas.2023.1082694

FIGURE 2
Distribution of the photospheric magnetic parameter (taking TOTUSJH as an example). The Y-axis in (A) represents the frequency density, and the
Y-axis in (B) represents the number of samples at different intervals (since the negative samples are far more than the positive samples, the range of Y
only considers the positive sample to show the details). The green circular box indicates the mixed-up region of the two types of samples.

FIGURE 3
Wilson confidence intervals under different photospheric magnetic parameter values. The observation probability and its confidence intervals at
different intervals containing different sample numbers are shown.

distance between this sample and other samples, and then took the
first n samples (n is the sampling multiple number set according
to the sample imbalance ratio) as the selected nearest neighbors
x̂i1, x̂i2,…, x̂in. Furthermore, for each x̂ij, we constructed a new
sample xnew according to the following formula:

xnew = xi + rand (0,1) ⋅ (x̂ij − xi)

(3) Weighted classifier: This did not change the samples but
changed the weights corresponding to different categories in the
classifier. When there are mixed samples, the classifier will be more
inclined to retain more minority samples.

The three photospheric magnetic parameters that have
the greatest correlations with the strong-flare occurrence were
selected for this study, namely, the total unsigned current helicity
(TOTUSJH), the absolute value of net current helicity (ABSNJZH),
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FIGURE 4
Fitting curve of the flare occurrence probability and the mixed-up region division. The mixed-up regions are selected near the flare yield of 50%. The
green parts are the mixed-up regions divided based on three photospheric magnetic parameters (TOTUSJH, ABSNJZH, and SAVNCPP), and the depth
of their colors represents different probability ranges: 50±5%, 50%±10%, 50%±20%, and 50%±30% (from deep to light).

and the sum of the modulus of the net current per polarity
(SAVNCPP).

The frequency densities of the photosphericmagnetic parameter
in positive and negative samples are shown in Figure 2A (taking
TOTUSJH as an example), and the number distribution is shown
in Figure 2B. The statistical characteristics indicate that when the
values of these photospheric magnetic parameters are low, positive
samples are totally submerged by negative samples; on the contrary,
when the parameter values are high, almost all samples are positive.
It means that on the one hand, when creating new samples while
up-sampling in this region, a large number of negative samples
are likely to be classified as positive samples, thus seriously losing
the accuracy of the model; while, on the other hand, when the

parameter values are large, there are only positive samples, so it is
unnecessary to up-sample the positive samples here for themodel to
learn more. However, there is a mixed-up region referred to as the
confusing distribution areas consisting of both strong-flare events
and non-strong-flare events (as marked in Figure 2B). The mixed-
up region can be quantitatively described as the region near the
strong-flare probability of 50%. Here, the strong-flare probability is
the probability of a strong flare occurring within 48 h. In the mixed-
up regions, the number of positive samples and negative samples is
similar, so the characteristics are the most difficult to distinguish.
We assumed that it is worthwhile to up-sample the positive examples
in these mixed-up regions and proposed the selective up-sampling
method.
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FIGURE 5
Parameter distribution before and after resampling (taking TOTUSJH as an example). The four images show the distribution before sampling, after
down-sampling, SMOTE up-sampling, and selective up-sampling.

3.1 Probability function of flare
occurrences based on SHARP parameters

As we need a convincing method to identify the mixed-up
regions for the selective up-sampling method, it is necessary to
know the quantitative relationship between strong-flare probability
and photospheric magnetic parameters. We can see that the
photospheric magnetic parameters in strong-flare events and non-
strong-flare events both show the characteristics of a skewed
distribution, which can be fitted with the standard form of log-
normal function as follows:

f (x) = lognorm (x,σ) = 1
xlna√2πσ

e−
(logax)

2

2σ2 , a = e for the standard form.

(1)

The aforementioned formula represents the probability density
of the photospheric magnetic parameter when its value is x, which
has different σ values in positive and negative samples.

Furthermore, when the form of the probability density of
photospheric magnetic parameters in positive samples and that in
negative cases are known, we can derive the form of the probability
function of strong-flare occurrence (Pf ) based on Bayes’ theorem as
follows (Barnes and Leka, 2008):

Bayes’ theorem can be used to estimate the probability of a flare
occurring event. When the magnetic parameter is equal to x, the
probability of a strong flare occurring within 48 h is equal to

P (strong|x) =
P (x|strong) ⋅ P (strong)

P (x|strong) ⋅ P (strong) + P (x|not strong) ⋅ P (not strong)
(2)

Since P (x|strong) and P (x|not strong)→ 0, through L’Hôpital’s
rule, we can obtain

P (strong|x) =
f (x|strong) ⋅ P (strong)

f (x|strong) ⋅ P (strong) + f (x|not strong) ⋅ P (not strong)
(3)

By replacing f with Eq 1, P (class) with N (class)/N (total), we
can make the probability function of strong flare P (strong|x) as
a function of Pf with x as the input and two sigma parameters as
tuning parameters:

P f (x,σ1,σ0) =
lognorm (x,σ1) ⋅N1

lognorm (x,σ1) ⋅N1 + lognorm(x,σ0) ⋅N0
(4)

This indicates the probability of strong flares when the
photospheric magnetic parameter value is x, where σ1 and σ0
representing the standard deviation of lnx in positive samples and
negative samples, respectively, are the parameters we need to fit.
Moreover, N1 and N0 are the number of positive samples and
negative samples, respectively.

We can fit the observed strong-flare probability to the probability
function as previously mentioned. Dividing the photospheric
magnetic parameter into 16 bins according to Doane’s rule (Doane,
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TABLE 2 Confusionmatrix for binary classification.

Actual class (observations) Predicted class (forecasts)

Positive Negative

Positive TP (true positive) hit case FN (false negative) miss case

Negative FP (false positive) false alarm case TN (true negative) correct negative case

1976), the proportion of positive samples in each interval pi can be
used as the probability data to be fitted. By assuming each interval as
a separate sample population estimated to be normally distributed,
the Wilson confidence intervals (Wilson, 1927) in each interval can
be written as follows (Figure 3)

(ω−i ,ω
+
i ) ≡

pi + z
2/2n± z√pi (1− pi)/ni + z2/4n

2
i

1+ z2/ni
Here, ni represents the number of samples in the ith interval

and z = 1.96 under the 95% confidence interval. The advantage of
using the Wilson confidence intervals is that it can show confidence
intervals for any sample size without making specific assumptions
about the sample size. In addition, the method can also effectively
solve the deviation problem in binomial distribution parameter
estimation, thus improving the accuracy of the confidence interval.

In order to accelerate the convergence speed of fitting, we scaled
the input x. The values of the two sigma parameters in Eq. 4 and
scaling factor α (which means that the input value of the function
is αx) in fitting graphs of three different photospheric magnetic
parameters (Figure 4) are as follows: for TOTUSJH (G2m−1), the
best fitting parameters are σ1 = 3158.18,σ0 = 1.53,andα = 0.23;
for ABSNJZH (G2m−1), the best fitting parameters are
σ1 = 33.53,σ0 = 1.89,andα = 0.85; and for SAVNCPP (A), the best
fitting parameters are σ1 = 44.28,σ0 = 1.96,andα = 2.94e− 11.

After fitting the functional relationship between the strong-
flare probability and the photospheric magnetic parameters, we
divided four mix-up regions according to the fitting curve with “p =
50%” as the median line: 50±5%, 50%±10%, 50%±20%, 50%±30%,
as shown in detail in Figure 4. Furthermore, the selective up-
sampling method applied to low-probability positive samples in
these regions can then be realized.

3.2 Flare prediction model based on
sampling methods

The training information including the control groups is as
follows:

(1) Raw data group: The original unbalanced data are directly
sent to the logical regression model, which contains 56,869 negative
samples, 2,837 positive samples, and 66,428 samples in total.

(2) Random down-sampling group: After the down-sampling,
2,837 negative samples, 2,837 positive samples, and 5,674 samples
in total are sent to the logical regression model.

(3) SMOTE up-sampling group: After the up-sampling, 56,869
negative samples, 56,869 positive samples, and 1,13,738 samples in
total are sent to the logical regression model.

(4) Weighted classifier: The input data are not changed, but the
weight of different categories in the classifier is changed according
to the number of samples. In this training set, the ratio of majority
samples to minority samples is 20, so the weight of the minority
category (strong flare) should be 20 times that of the majority
samples (non-strong flare). The input data of the model contain
56,869 negative samples, 2,837 positive samples, and 66,428 samples
in total.

(5) Selective up-sampling group: We determine the mixed-up
regions through the method introduced in the previous section
and expand the positive samples by repeating them in the mix-
up region until it has size as same as the negative samples. The
input data from the first round of experiments contain 56,869
negative samples, 56,869 positive samples, and 1,13,738 samples in
total.

We obtained the parameter distributions before and after
resampling, as shown in Figure 5 (we take TOTUSJH as an
example). The KL divergence value of strong-flare events before
and after sampling was calculated as follows: KL (random down-
sampling) = 0; KL (SMOTE up-sampling) = 0.02; and KL (selective
up-sampling) = 1.70. It can be seen that the selective up-sampling
method has the greatest impact on the parameter distribution of
strong-flare events.

Furthermore, for each newborn sample, we added a random
perturbation (±5%) to each value separately, as small random
differences can improve the performance of themodel.The reason of
not using the SMOTEmethod is that the distribution of the newborn
samples supplemented by the SMOTE method may be quite
different from the original minority samples, which will weaken
the characteristics of this region where we need to strengthen the
recognition, but the method in Section 3.2 (5) will not have this
negative effect.

After feeding the data to each logistic regression model, the
logistic regression algorithm will adjust the model parameters
through the gradient descent method to reduce the cross entropy
loss round by round until it reaches a certain threshold (we set it at
0.001), as a sign of the end of training.

The models in different groups are tested on the same testing
set and we give the evaluation results in Section 4, while evaluation
indicators are introduced in Section 3.3.

3.3 Evaluation metrics

For a binary classification task like flare prediction, the
confusion matrix is listed in Table 2. The true positive (TP) is the
hit case, where the strong-flare events are correctly classified in the
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FIGURE 6
Model testing results, where SUS refers to the method of selective
up-sampling. The dotted line represents the equivalent curve of the F1
score. The more the curve deviates to the upper right, the greater the
value of the F1 score is. We can find that most of the results of the
selective up-sampling method on mixed-up regions are better than
those of the original data and other sampling methods. (The
dark-yellow dotted line represents the best result of the F1 score
sampled in the mixed-up regions, while the orange dotted line
represents the result of training the raw data without sampling.
Furthermore, the color depth of the point represents the width
selected for the sampling region near the strong-flare yield of 50%).

strong-flare category. The false positive (FP) is the false alarm case,
where the non-strong-flare events are falsely classified as the strong-
flare category.The false negative (FN) is the miss case, where strong-
flare events are falsely classified as the non-strong-flare category.The
true negative (TN) is the correct negative sample, where the non-
strong-flare samples are correctly classified as the non-strong-flare
category.

Based on the confusion matrix, we adopted three evaluation
metrics: recall, precision, and F1 score, which are computed as
follows:

recall = TP
TP+ FN

precision = TP
TP+ FP

F1 =
2× precision× recall
precision+ recall

Because the samples are unbalanced, and we only focus on the
prediction of samples with flares, we do not need to calculate the
evaluation results of negative samples and the accuracy of positive
samples. (In fact, they are all close to 1 because of data imbalance).
The scikit-learn package (https://scikit-learn.org) is used to calculate
the aforementioned metrics.

TABLE 3 Prediction results of themodel on the testing dataset (average ±
standard deviation).

Sampling method F1 score Recall Precision

Raw data 0.4459 ± 0.0804 0.3072 ± 0.0770 0.8133 ± 0.1453

Random down-sampling 0.4488 ± 0.0855 0.8216 ± 0.0711 0.3087 ± 0.0736

SMOTE up-sampling 0.4122 ± 0.0790 0.8504 ± 0.0604 0.2721 ± 0.0661

Weighted classifier 0.4455 ± 0.0788 0.8187 ± 0.0792 0.3060 ± 0.0676

Overlap up-sampling (best) 0.5501 ± 0.1200 0.6197 ± 0.1750 0.4945 ± 0.1185

4 Comparison analysis of model
performance

For such flare data samples, due to the imbalance of data, we
chose not to consider the accuracy rate because its results are greatly
affected by TN, and as the number of negative samples is large,
the effect of training on negative samples (non-strong-flare events)
is good, which makes the accuracy of the model close to 1 at any
time.Thus, the recall and precision references are compared for their
model performance.

After 10 rounds of random experiments, the evaluation results
of the same logistic regression model sampled in different ways are
shown in Figure 6. The mean and standard deviation of the results
are listed in Table 3.

It can be found that although the precision of themodels trained
on the original data is high, the recall is extremely low (about
0.3). On the contrary, after SMOTE up-sampling, random down-
sampling, or training using a weighted classifier, although the recall
is improved, the precision is seriously reduced at the same time
(from 0.8 to 0.3).

By up-sampling the positive samples related to strong-flare
events in the mixed-up region before training, the best F1 score
reaches 0.5501± 0.1200, which is approximately 22−33% higher
than other methods. In this simple comparison, we can draw
the conclusion that the performance of the model significantly
improved.

The reason for the improvement is that the categories of
events cannot be distinguished by a certain photospheric magnetic
parameter in its mixed-up region.Therefore, the classifiermay lose a
dimension of information in this region. By repeatedly up-sampling
minority samples in the mixed-up region, we can strengthen the
information here for the classifier. Furthermore, by adding some
random disturbances, we not only avoid over fitting but also make
newborn data close to the real situation.

5 Conclusion and discussion

In this study, we focused on tackling the unbalanced dataset
based on SHARP parameters. After repeatedly up-sampling the
minority samples in the mixed-up region and adding some random
disturbances, we compared their model performances.Themethods
used in the comparison are as follows: 1) raw data (no processing); 2)
random down-sampling; 3) SMOTE up-sampling; and 4) weighted
classifier; which are all described in detail in Section 3. Furthermore,
the result shows that the forecast capability is promoted in the
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mixed-up region, the robustness of the model is increased, and
the selective up-sampling method has potential to improve the
model performance in strong-flare prediction as its F1 score reaches
0.5501± 0.1200, which is approximately 22−33% higher than the
other methods.

The purpose of increasing the number of samples from the
mixed-up region of positive strong-flare samples (selective up-
sampling) is to better distinguish the previous “difficult to predict”
events. Furthermore, the method of adding samples is based on
the original samples plus random values, which is close to the
ground truth, while it is likely that the created physical parameter
values might deviate significantly from the ground truth if we
use SMOTE or other up-sampling methods. The selective up-
sampling method we proposed could provide a new suggestion
on the preparation of data for the machine learning model
in the future, especially when we expand data for unbalanced
samples.

This study also presents the characteristics of interdisciplinary.
On the one hand, the application modeling of the AI method
is valuable, while on the other hand, it also requires manual
improvements based ondata characteristics rather than simply using
it directly.

Although the proposed sampling method reaches a higher
F1 score than the other three sampling methods, it is consistent
with the other existing methods. The main reason is that in this
experiment we developed a flare forecasting model based on only
three parameters adopting a relatively simple algorithm (logistic
regression) for classification. In this study, we highlighted the
importance of the sampling method tackling the class-imbalance
problem. We found that the selective up-sampling method has
potential to improve the flare forecasting performance. Considering
that many complex machine learning models can help boost the
model performance significantly compared to simple statistical
models, in the future, we would like to adopt other models (for
example, CNN + LSTM) and investigate comparable studies on flare
forecasting.

Moreover, as the time resolution of SHARP data is high
enough (sampling every 12 min), timing information of continuous
samples will be used as well, which will increase the amount of
information contained in the photospheric magnetic parameters
by another dimension, so as to assist solar-flare forecast better.
We are currently working on applying this method for combining
continuous magnetograms and photospheric magnetic parameters
with the time dimension.
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