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We present a reconstruction of radiation belt electron fluxes using data
assimilation with low-Earth-orbiting Polar Orbiting Environmental Satellites
(POES) measurements mapped to near equatorial regions. Such mapping is
a challenging task and the appropriate methodology should be selected.
To map POES measurements, we explore two machine learning methods:
multivariate linear regression (MLR) and neural network (NN). The reconstructed
flux is included in data assimilation with the Versatile Electron Radiation Belts
(VERB) model and compared with Van Allen Probes and GOES observations.
We demonstrate that data assimilation using MLR-based mapping provides
a reasonably good agreement with observations. Furthermore, the data
assimilation with the flux reconstructed by NN provides better performance in
comparison to the data assimilation using flux reconstructed by MLR. However,
the improvement by adding data assimilation is limited when compared to the
purely NN model which by itself already has a high performance of predicting
electron fluxes at high altitudes. In the case an optimizedmachine learningmodel
is not possible, our results suggest that data assimilation can be beneficial for
reconstructing outer belt electrons by correcting errors of a machine learning
based LEO-to-MEO mapping and by providing physics-based extrapolation to
the parameter space portion not included in the LEO-to-MEO mapping, such as
at the GEO orbit in this study.

KEYWORDS

radiation belts, neural network, multiple linear regression, VERB code, data assimilation,
machine learning

1 Introduction

The radiation belts consist of electrons and protons trapped by the Earth’s magnetic field
(Lyons and Thorne, 1973) and are a major source of damaging space weather effects on
near-Earth spacecraft. The inner electron belt is located typically between 1.2 and 2.0 Earth
radii RE, while the outer belt extends from about 3 to ∼8 RE. Relativistic electron fluxes in
the outer belt are highly variable; this variability is due to the competing effects of source and
loss processes, both of which are forced by solar-wind-drivenmagnetospheric dynamics and
by resonant interactions of plasma waves and particles (Thorne, 2010; Shprits et al., 2008a;
2008b).
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Understanding the mechanisms of build-up and decay of
radiation belt electron fluxes is one of the fundamental problems of
modern space physics having an important application in relation to
human technological systems. While significant progress has been
achieved in understanding the electron radiation belt dynamics
using physics-based models, it is still incomplete, due to the limited
number of satellites in mapping the global radiation environment
in space at any given time. Here, data assimilation techniques
become very important and helpful, as they combine measurements
that are irregularly distributed in space and time with a physics-
based model to estimate the evolution of the system’s state in
time; both the model and observations typically include errors. The
Kalman filter (K-filter, hereafter) (Kalman, 1960) technique of data
assimilation represents so-called sequential filtering or sequential
estimation, and its various generalizations have been successfully
applied in various engineering fields, including autonomous or
assisted navigation systems, as well as in atmospheric, oceanic, and
climate studies (Ghil and Malanotte-Rizzoli, 1991; Kalnay, 2003).
Data assimilation for radiation belts by K-filter techniques had
been pioneered at UCLA in collaboration with Richard Thorne
and Michael Ghil (Kondrashov et al., 2007; Shprits et al., 2007;
Daae et al., 2011; Kondrashov et al., 2011) starting with the Versatile
Electron Radiation Belt (VERB) 1-D code, where only radial
diffusion is included, similar to study of (Koller et al., 2007) about
the same time. For the VERB-3D code, where the state vector is of
a very large size O(106 − 107) and the computational requirements
of the standard K-filter become very large, Shprits et al. (2013)
developed a novel efficient approximation of a K-filter inspired
by the operator splitting technique. This method still applies the
standard formulation of a K-filter, but only for the 1D diffusion
operators of VERB-3D model in L-shell, energy, and pitch-angle,
thus operating sequentially onmatrices ofmuch smaller size for each
grid line. Utilizing the split-operator technique, the first operational
data-assimilative radiation belt forecast model was developed at
UCLA (e.g., Kellerman et al., 2014; Shprits et al., 2023). Additionally,
the approach of using data assimilation with the VERB model was
successfully used to study radiation belt source and lossmechanisms
(Cervantes et al., 2020a; Cervantes et al., 2020b), although so far no
reconstructed measurements based on LEO observations were used
for data assimilation. Recently, K-filter type approaches have been
extended into a complex high-dimensional magnetosphere model,
where it has been demonstrated that missing physics in globalMHD
models can be successfully compensated for by data assimilation,
namely that pressure gradients in the inner magnetosphere can be
generated via the imposition of an observed low-latitude current
system (Merkin et al., 2016).

Before the launch of the Van Allen Probes (Mauk et al.,
2013) that provided unprecedented measurements of the radiation
belts, several works attempted reconstruction of the electron flux
variation at geostationary orbit using a neural network (e.g.,
Koons and Gorney, 1991; Fukata et al., 2002; Ling et al., 2010;
Kitamura et al., 2011), which was important for space weather
applications and for the understanding of the physical processes
driving radiation belt dynamics.The neural network approach of the
electron flux prediction showed decent agreement with observations
and other models (Perry et al., 2010). Lately, machine learning
methods including neural networks became increasingly commonly
used in reconstructing and forecasting relativistic electrons in

radiation belts, using solar wind conditions, geomagnetic indices
and other inputs (e.g., Batusov et al., 2018; Pires de Lima et al., 2020;
Sarma et al., 2020; Chu et al., 2021; Landis et al., 2022; Ma et al.,
2022; Wing et al., 2022; Zhelavskaya et al., 2016; 2017; 2018; 2021).

Kanekal et al. (2001) have found a remarkable global coherency
in ultrarelativistic electron populations (>2MeV) throughout the
outer zone observed on satellites in distinct orbits, ranging from
polar low-Earth to geosynchronous altitudes. Recently, Chen et al.
(2016) have established cross-energy, cross-pitch-angle coherence
between the trapped MeV electrons observed by Van Allen-
Probes and precipitating 100 s of keV electrons at LEO. These
findings naturally motivated more studies and model development
on forecasting and nowcasting of outer belt electrons using LEO
measurements.

Chen et al. (2019) developed a linear filter model to predict
distributions of electrons within Earth’s outer radiation belt using
measurements from the Polar Operational Environmental Satellite
(POES) and LANLGEO.This PreMevEmodel provided a prediction
spanning several hours as well as a 1-day forecasts of the
spin-averaged ∼MeV radiation belt electrons near the equator.
The extended PreMevE 2.0 (Pires de Lima et al., 2020) and 2E
(Sinha et al., 2021) models further evaluated multiple machine
learning models that fall into four different classes of linear and
neural network architectures and utilized electron intensities from
Polar Operational Environmental Satellite (POES) and LANL GEO
to map into 1 MeV and >2MeV trapped spin-averaged electron
fluxes with the focus on extended prediction (up to 2 days), taking
as input also solar wind parameters.

Claudepierre and O’Brien (2020) also developed the neural net
SHELLSmodel nowcasting daily 350 keV and 1 MeV electron fluxes
in the outer radiation belt by using as input the electron fluxes
from the POES satellite, and the model was built for spin-averaged
flux. A new version of the SHELLS model was recently developed
by Boyd et al. (2023) which incorporates the radial, angular and
energy dependence as well as finer temporal resolution, and can
accurately nowcast the outer electron radiation belt dynamics
using both out-of-sample data from the Van Allen Probes and
GPS.

In this work, we use machine learning to enhance existing
satellite observations for data assimilation purposes. Our main goal
is to build a model that will map the low-Earth-orbit satellite data to
near-equatorial regions. Mapping the POES data to the equatorial
region enables data assimilation (DA) of the electron radiation
belts with the Versatile Electron Radiation Belt (VERB) code, in
particular providing the state of the radiation belts in the wide range
of equatorial pitch-angles and energies. The fully reconstructed
state of the radiation belts is particularly useful for space weather
applications, as it allows to fly virtual satellites with arbitrary orbital
parameters. Using POES data is ideal for this task because of its long
history and availability in the near future.

Our work extends earlier studies and is different in several
important ways. First, we use POES data for mapping (nowcasting)
the newly available Van Allen Probes ECT dataset (Boyd et al.,
2021) in an extended range of available energies and equatorial
pitch angles, which is essential for the DA and radiation belts
reconstruction because it is necessary for the computation of the
PSD in the adiabatic invariant space, that is used in the physics-
basedmodel, e.g. VERB. Secondly, we explore twomachine learning
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methods for mapping: multivariate linear regression (MLR) and
neural net (NN).

This is an initial study that is aimed to test if the considered
machine learning models (MLR and NN) can be used by data
assimilation to reconstruct radiation belts. We test the entire
workflow including first mapping to the equator and then
assimilating ML model results into the VERB model. In the
particular case described in this study, we only use POES satellites
(specifically, NOAA-15, NOAA-16, NOAA-18, and NOAA-19) for
mapping from LEO to MEO (Van Allen Probes), to reconstruct
the entire radiation belts and along any satellite trajectory, such
as GOES. Furthermore, data assimilation allows us to combine
measurements fromdifferent sources anddifferent satellites, and this
will be explored in future studies.

To summarize, the machine learning (ML) based mapping of
LEO to MEO can be interpreted as creating high-quality Van
Allen Probes-like satellite measurements even after the end of the
Van Allen Probes mission, and which can be used to reconstruct
radiation belts via data assimilation. Such use of ML-based “virtual
satellite” is a very powerful and novel concept that could be
potentially applied to other Earth sciences. Our approach represents
the combination of physics-based (via data assimilation with VERB)
and ML approaches, known as gray box (Camporeale, 2019), and
takes into account errors (uncertainties) in both.

2 Data and methods

2.1 Data

In this study, we utilize measurements from the National
Aeronautics and Space Administration (NASA) Van Allen Probes
(Mauk et al., 2013) and from theNational Oceanic andAtmospheric
Administration (NOAA) Polar Orbiting Environmental Satellites
(POES) (Evans and Greer, 2004).

The Van Allen Probes included two identical spacecraft (RBSP-
A and RBSP-B) that were orbiting through the Earth’s radiation
belts between a perigee and apogee of 1.1 and 5.8 RE (medium
Earth orbit, MEO), respectively, with a low inclination (∼10°).
Each probe maintains an orbital period of 9 h, providing near-
equatorial electron measurements. On board the satellites are
multiple instruments that are a part of the Energetic Particle,
Composition andThermal Plasma Suite (ECT) (Spence et al., 2013),
providing the measurements of electrons in a wide energy range
(from 1 eV up to 20 MeV). In this study, we use a new ECT data
product that incorporates the pitch-angle-resolved electron flux
measurements on a consistent cross-calibrated data set (Boyd et al.,
2021). Figure 1A illustrates 1 month of electron flux measurements
at local pitch angle αloc = 90° with corresponding equatorial pitch-
angle coverage on Figure 1B.

The POES are multiple Sun-synchronous low-orbiting satellites
(altitude of ∼800 km or lower Earth orbit, LEO), which provide
comprehensive coverage in L-shell and magnetic local time (MLT).
The orbital period of each satellite is ∼100 min. The satellites
provide measurements with two telescopes oriented to zenith (0°)
and perpendicular (90°). Two telescopes enable us to distinguish
between particles in the loss cone and trapped (or quasi-trapped)

population. In this study, we use 4 satellites: NOAA-15, NOAA-
16, NOAA-18, and NOAA-19. We use a contamination-corrected
dataset of differential electron flux that is available from 1998
until 11 May 2014 (Peck et al., 2015). In this study, we limit
the energy range in the selected dataset from ∼30 keV up to
∼1.9 MeV, providing 20 energy channels. Figure 1C shows electron
flux measurements from a single POES satellite (NOAA-15) using
the perpendicular telescope-maximizing corresponding equatorial
pitch-angle coverage on Figure 1D. In comparison to the Van Allen
Probes, observations from POES are limited in equatorial pitch-
angle coverage but have a much finer temporal resolution, which
makes them highly advantageous for the reconstruction of the
radiation belts.

GOES spacecraft at geosynchronous orbit measures electrons in
several integral flux channels using the Energetic Proton, Electron,
and Alpha particle Detector (EPEAD) (e.g., Rodriguez et al., 2014).
In this study we use >800 keV and >2 MeV channels and calculate
differential electron flux between those energies usingGaussian fit of
the spectrum. We use 2 spacecraft available for the time of interest,
GOES-13 and GOES-15.

For all missions, the adiabatic invariants μ, K, and L* (Roederer,
1970) are computed with The International Radiation Belt
Environment Modeling (IRBEM) library, utilizing the International
Geomagnetic Reference Field (IGRF) internal field model, and the
T89 external field model (Tsyganenko, 1989).

2.2 Versatile electron radiation belt (VERB)
code

Theadiabaticmotion of energetic charged particles in these belts
consists of three basic periodic components: gyro-motion about
Earth’s magnetic field lines; bounce motion of the gyration center
up and down a given magnetic field line; and the azimuthal drift of
particles around the Earth, perpendicular to the meridional planes
formed by the magnetic polar axis and the field lines. There are
three adiabatic invariants, each associatedwith one of thesemotions,
and by averaging over the gyro, bounce, and drift motions, we
can describe the evolution of the particles’ phase-space density
(PSD) solely in terms of these invariants — (μ, J,Φ), respectively.
In the collisionless magnetospheric plasma, resonant wave-particle
interactions provide the dominant mechanism for violation of the
adiabatic invariants, resulting in changes in the outer radiation belt
structure. For small wave amplitudes and a broad wave spectrum,
such resonant interaction can be described within a framework of
the quasi-linear (QL) theory, which is based on the 3-D Fokker-
Planck diffusion equation (Shultz and Lanzerotti, 1974). The three-
dimensional Versatile Electron Radiation Belt (VERB-3D) code
(Subbotin and Shprits, 2009) solves the Fokker-Planck equations for
PSD of electrons f written in term operators describing the radial
diffusion, equatorial pitch angle (αeq) and energy (or momentum p)
diffusion:

∂ f
∂t
= 1
G

∂
∂L*
(GDL*L*

∂ f
∂L*
)+ 1

G
∂
∂p
(GDpp

∂ f
∂p
)

+ 1
G

∂
∂αeq
(GDαeqαeq

∂ f
∂αeq
)−

f
τ
,

(1)
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FIGURE 1
Example of the data used in this study: (A) Van Allen Probes observation from RBSP-A satellite (ETC data set), 1 MeV electron flux and (B) corresponding
equatorial pitch angle αeq. (C) POES observations from NOAA-15 satellite (SEM2Peck data set), 0.97 MeV electron flux and (D) corresponding equatorial
pitch angle αeq. (E) Kp index.

where G = 8πR3
E

m0
ps sin(2αeq)L*

2T(sin(αeq)) is the Jacobian of the
transformation from an adiabatic invariant system (μ, J,Φ) to
(p,αeq,L*); L* is a form of the third invariant Φ; m0 is the
particle’s rest mass; RE is Earth’s radius; and T (sin(αeq)) is a
function corresponding to the bounce frequency Shultz and
Lanzerotti (1974). The diffusion coefficients DL*L* , Dpp, Dαeqαeq
of Eq. 1 incorporate radial and energy diffusion and pitch angle
scattering, respectively, and are estimated using QL diffusion
theory and statistical hiss and chorus wave properties (Brautigam
and Albert, 2000; Zhu et al., 2019). The mixed terms are not

included for simplicity of the use of the VERB code in data
assimilation (see Section 2.3). The lifetime parameter τ accounts
for electron losses due to collisions with neutral particles, which
is modeled by setting up lifetimes equal to the quarter bounce
time for electrons inside of the loss cone and infinite outside of
the loss cone. The VERB model was successfully validated on time
scales from several months to several years (e.g. Drozdov et al.,
2015; Drozdov et al., 2017; Zhu et al., 2019; Drozdov et al.,
2020; Wang et al., 2020; Drozdov et al., 2021; Saikin et al.,
2021).
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FIGURE 2
Observed and reconstructed using NOAA-15 satellite electron flux at 1 MeV and αeq =75° for the training/testing period of 1 year from 01 March 2013
until 01 March 2014. (A) Van Allen Probes observations. (B) Reconstructed with multivariate linear regression analysis flux. (C) Reconstructed with
neural network flux. (D) Kp index.

2.3 Data assimilation (DA)

By using common nomenclature for data assimilation (DA),
in the K-filter formulation for a numerically discretized model
(such as VERB-3D), the observational data yo and dynamically
evolving fields of the model forecast xf are combined into
analysis xa:

xak+1 =Mkx
f
k +Kk (y

o
k −Hkx

f
k) (2)

Here xk represents a state column vector composed of all model
variables on a numerical grid–for our case, it is PSD f in Eq. 1,
k is the time-stepping index, and the time-dependent matrix
Mk of the VERB numerical model is obtained by numerically
discretizing the partial differential equations that govern the physical
system under study, i.e. Fokker-Plank equations for PSD (Eq. (1)).
The use of the full Kalman filter for a three-dimensional model
is a challenging task, as it requires the operation of O(N3) in
computational complexity, where N is the number of all points in
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FIGURE 3
Observations and reconstruction using NOAA-15 satellite electron flux at 1 MeV and αeq =75° for the interval outside of the training/testing period, from
01 April 2014 until 01 May 2014. (A) Van Allen Probes observations. (B) Reconstructed with multivariate linear regression analysis flux. (C) Reconstructed
with neural network flux. (D) Kp index.

the grid. In this study, we use a 31 × 30 × 29 grid in the coordinates
of L*,p,αeq, respectively. Instead of using the full Kalman filter, we
use an alternative method of split-operator approach Shprits et al.
(2013), where the Kalman filter is applied for each grid direction.
ThemodelmatricesMk correspond to each of the diffusion operators
in Eq. 1. The grid is selected to cover the L* ∈ [1,7], with pitch
angle and energy covering αeq ∈ [0.3°,89.7°],E ∈ [0.01,10] MeV at
L* = 7.

The matrixHk represents a map between the model state xk and
the observations of that state.The last term on the right-hand side of
Eq. 2,

zk ≡ y
o
k −Hxfk, (3)

is the innovation vector that represents the mismatch between the
model and observations and is used to drive the model state closer
to the observations.
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Specifying the model and observational errors Q and R allows
us to follow the time evolution of the forecast-error Pf and analysis-
error Pa covariance matrices.

This knowledge of the error-covariance matrices provides, in
turn, the optimal Kalman gain matrix Kk, which gives the proper
weight to the observations vs. the model prediction:

P f
k =MkP

a
k−1M

T
k +Qk,

Pa
k = (I−KkHk)P

f
k,

Kk = P
f
kH

T
k(HkP

f
kH

T
k +Rk)

−1
.

(4)

Information obtained in the error-covariance matrices is crucial in
modifying the state vector xk in observation-void regions.

In the standard formulation of the Kalman filter, the noise
covariances Q and R are assumed to be known. This rarely
happens in practice, and usually, some simple approximations are
made. Assuming the log-normal distribution of errors for PSD
and uncorrelated errors in different locations, both Q and R are
specified as diagonal matrices, and the diagonal terms of Q and
R are taken simply as ζo,m f2o,m, where f2o,m is the observed or
modeled PSD value, and ζo,m is a specified factor corresponding
to observational or model error (Kondrashov et al., 2011). This
heuristic approach worked well in previous DA studies using
VERB. Note that the exact values of ζo,m are not important: it
is their respective ratio that determines the weight given to the
observations vs. the model solution in the analysis, or update,
the step of the data assimilation. In this study, we use ζo = 0.5
and ζm = 0.5.

2.4 Multivariate linear regression model
(MLR)

To map POES measurements to the high equatorial pitch-angle
region, we use the following data processing. Van Allen Probes data
is interpolated into the regular grid of equatorial pitch angles from
5° to 85° with a step of 10°. Then the data is interpolated onto the
same energy grid as the energy channels on the POES satellites. The
interpolated flux fromRBSP-A and RBSP-B is merged and binned in
time and L* (jbinnedRBSP ). For the binning, we use a time step of 3 h and a
L* step of 0.1.

Next, we calculated the standard deviation of the log10 of
POES flux (j) at all POES energies and found very high variations
as revealed by very high standard deviation values. The high
variation of the flux is considered to be an outlier of the
unrealistically low or high values of the measured fluxes. To remove
the unrealistic measurements, we exclude the data that is below
the threshold based on the visual inspection of measurements.
The threshold is calculated for the 1-year period of 01 March
2013–01 March 2014 for each energy channel for the entire
L* range

threshold = 10<log10(j)−std(log10(j))/4> (5)

The results of this method were inspected at all energies for
several months of POESmeasurements.The inspection included the
analysis of the flux vs. L* dependence with a determined threshold
level. The threshold level was selected to be significantly below the
reliable flux level.

To obtain the extrapolated pitch-angle distribution, we assume
a simplified functional dependence of the flux as shown by the
following equation:

j(αeq) = j0 ⋅ sin(αeq) (6)

where αeq is an equatorial pitch angle and j0 is the flux of the trapped
population at 90°. Then the POESmeasurements are extrapolated to
the equatorial pitch angles on the grid (αgrideq ) from 5° to 85° grid with
a fixed step of 10°:

j(t,E,αgrideq ) = sin(α
grid
eq )

j(t,E,αeq)

sin(αeq)
(7)

where j(t,E,αgrideq ) is flux extrapolated to the new equatorial pitch
angle grid, and j(t,E,αeq) is flux observed by POES at the time t,
energy E and equatorial pitch angle αeq. At each point in time, POES
provided flux measurements for two local pitch angles. We selected
one measurement of the flux that corresponded to the higher pitch
angle to calculate extrapolated flux values. The extrapolated POES
flux is binned in a similar manner as Van Allen Probes (jbinnedPOES ). The
simplified sin approximation is used to establish a baseline method
of that described in this section. As discussed in Section 4, the use
of advanced pitch-angle approximation will be a subject of future
research.

Then, we calculate the ratio r(t,E,αgrideq ) = jbinnedRBSP /j
binned
POES of the

binned Van Allen Probes and binned POES fluxes for a 1-year
period (01 March 2013–01 March 2014). We first take the median
of this ratio for each Kp value and then bin by Kp, L*, energy,
and equatorial pitch angle. Typically, inter-calibration coefficients
are used to describe differences between instruments. Here we use
obtained ratio r to capture not only the bias of the instrument but
also the bias of the extrapolation to the high pitch angles procedure
which may depend on Kp and L*.

TABLE 1 Coefficients of determination (r2) and correlation coefficients
calculated in logarithmic (rlog) and linear (rlin) space betweenVan Allen
Probes, RBSP-A and reconstituted from POES NOAA-15 data usingMLR and
NNmodels.

MLR NN

Energy/Pitch angle r2 rlog rlin r2 rlog rlin

Training period of 1 year, 01 March 2013–01 March 2014

 E = 1.0 MeV, αeq = 75° 0.78 0.86 0.79 0.91 0.92 0.88

 E = 1.0 MeV, αeq = 55° 0.82 0.88 0.82 0.91 0.92 0.89

 E = 1.0 MeV, αeq = 35° 0.83 0.88 0.82 0.91 0.92 0.90

 E = 0.5 MeV, αeq = 75° 0.47 0.85 0.81 0.82 0.89 0.88

 E = 1.5 MeV, αeq = 75° 0.71 0.78 0.72 0.85 0.87 0.85

Outside of the training period, 01 April 2014–01 May 2014

 E = 1.0 MeV, αeq = 75° 0.79 0.83 0.69 0.90 0.90 0.85

 E = 1.0 MeV, αeq = 55° 0.79 0.84 0.75 0.88 0.89 0.84

 E = 1.0 MeV, αeq = 35° 0.81 0.86 0.77 0.86 0.89 0.84

 E = 0.5 MeV, αeq = 75° 0.63 0.87 0.80 0.83 0.89 0.89

 E = 1.5 MeV, αeq = 75° 0.66 0.71 0.65 0.77 0.80 0.84
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FIGURE 4
Data assimilation using reconstructed with multivariate linear regression analysis data. Electron flux at 1 MeV and αeq =75° for the period from 01 April
2014 until 01 May 2014. (A) Binned Van Allen Probe observations. (B) Data assimilation using reconstructed flux from POES data. (C) Logarithmic
difference between flux from data assimilation and observations. (D) Kp index. (E) Comparison of fluxes between observations Fluxdata and DA results
Fluxda, (F) distribution of the logarithmic flux ratio.

Using the logarithm of the obtained ratio (log10(r)), we perform
a multivariate linear regression analysis. We obtain calibration
coefficients (ξ) that depend on Kp, L*, energy (E) and pitch angle
(αeq) based on this analysis:

ξ(Kp,L*,E,αeq) = b0 + b1 ⋅Kp+ b2 ⋅ L* + b3 ⋅E+ b4 ⋅ αeq (8)

where b0…b4 are regression coefficients.The calibration coefficients
ξ can be used to obtain the fluxes at given αeq, namely jαgrideq

= 10ξ ⋅

jPOES, for each of the αgrideq and POES energy. Figure 2 illustrates
that the flux resulted fromMLR method is in reasonable agreement
with Van Allen Probe measurements. The resulted flux for the
period from 01 April 2014 until 01 May 2014 (see Figure 3),
which is outside of the 1-year interval used to construct MLR

calibration coefficients, is included in the data assimilation in
Section 3.

2.5 Neural network (NN) model

The constructed neural network (NN)model predicts Van Allen
Probes ECT electron flux jRBSP for a specific energy channel and a
local pitch angle channel using one fully connected layer with 32
neurons and the rectified linear unit (“relu”) activation function
in the hidden layer. Our NN model design choices are generated
by using best practices and an extensive parameter search and
testing. We have compared various designs of NN model with
different number of hidden layers and neurons (not shown here),
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FIGURE 5
Data assimilation using reconstructed with neural network data. Electron flux at 1 MeV and αeq =75° for period from 01 April 2014 until 01 May 2014. (A)
Binned Van Allen Probe observations. (B) Data assimilation using reconstructed flux from POES data. (C) Logarithmic difference between flux from data
assimilation and observations. (D) Kp index, (E) comparison of fluxes between observations Fluxdata and DA results Fluxda, (F) distribution of the
logarithmic flux ratio.

and selected 32 hidden neurons based on the minimal validation
error.

Thus, in total, we independently trainNE *Nα = 180NNmodels,
where NE = 20 and Nα = 9 are the number of selected energy and
local pitch angle channels from the ECT dataset, respectively.The 20
selected energy channels from the ECTdataset are chosen to be close
to the selected energy channels from POES dataset by Peck et al.
(2015). The pitch angles are selected from 10° up to 90° with the
step of 10°. Thus, the single network input data consists of the POES
fluxes in all 20 energy channels (1.20), one POES equatorial pitch
angle (selected only from a perpendicular telescope), and one Van
Allen Probes equatorial pitch angle (selected from a local pitch angle
channel) andL* (as explained below and computedwithT89model),

as well as Kp index:

jRBSP (t,αloc,ERBSP)= NN(jPOES (t,E1.20) ,α
POES
eq (t) ,

αRBSPeq (t) ,L
* (t) ,Kp (t))

(9)

Both POES and Van Allen Probes fluxes are transformed into
logarithmic space and normalized before fitting the network. The
outliers of the unrealistically low or high values of the POES
flux measured are removed similarly as described in Section 2.4.
All of the inputs and output are aggregated to and averaged at
specific time t (within 1 hour) and L* location (within 0.1 L*) of
ECT output, and are also standardized to have zero mean and
unit variance. The network minimizes the mean-squared error loss
(MSE) function using the stochastic gradient descent ‘adam’method
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with initial learning rate as 0.005, piecewise learn rate schedule
for dropping the learning rate every 125 epochs by multiplying
by a factor of 0.2. In order to avoid overfitting, we have used
training, validation, and test datasets. We randomly select 90% of
data from 01 March 2013 until 01 March 2014 as training, and
10% as the validation set (see Figure 2). We have used validation-
based early stopping, that is the training process stops when the
MSE of the validation set stops improving for several consecutive
epochs.

The test period from 01 April 2014 until 01 May 2014 (see
Figure 3) is used to assess out-of-sample model performance and
is included into data assimilation (Section 3). Once the neural
network is trained, the Van Allen Probes data are no longer needed;
only the POES fluxes, locations in space and pitch angle, and the Kp
index are required to specify the outer electron belt environment.
While αRBSPeq (t) is changing in time during the training of the NN
model, we use a constant value from αgrideq (see Section 2.4) in
a predictive mode specific to assessment, comparison, and data
assimilation.TheNN that corresponds to the selected value of αgrideq is
chosen based on the timemedian for corresponding during training
αRBSPeq (t).

3 Results

3.1 POES-to-RBSP reconstruction by NN
and MLR models

Figure 2 shows the electron flux at 1 MeV and αeq = 75° for a 1-
year period (01 March 2013–01 March 2014). This period is used to
obtain calibration coefficients using the MLR method (Figure 2B)
and to train and validate the NN (Figure 2C). Figure 2 serves an
illustrative purpose and demonstrated both methods (MLR and
NN) provide a reasonable reconstruction of the electron flux at
a higher equatorial pitch angle than POES can observe. For the
testing of the methods and for the following data assimilation,
we use a different period (01 April 2014–01 May 2014), which is
shown in Figure 3. For the quantitative estimation of the MLR and
NN models, we use metrics presented in Claudepierre and O’Brien
(2020). Namely, we use coefficients of determination [r2; Eq. (1)
from (Claudepierre and O’Brien, 2020)] and correlation coefficients
calculated in logarithmic (rlog) and linear (rlin) space between Van
Allen Probes, RBSP-A and reconstituted flux from NOAA-15. The
metrics are calculated for the full range of L* and since RBSP-A and
NOAA-15 data have different time resolutions, the data is binned
with the time step of 4 h and L* step of 0.1 prior to calculating
the coefficients. The coefficients are presented in Table 1 and are
computed values for 3 energies (0.5, 1.0, 1.5 MeV) and separately for
3 different pitch-angle values (35°,55°,75°). Although the selection
of energy and pitch angle is limited, both models indicate similar
performance albeit the NN model is at least noticeably better than
MLR in term of r2.

3.2 VERB data assimilation using NN- and
MLR-reconstructed data

Thepredicted flux j byMLR andNNmodels is converted to PSD
f as f = j/(p ⋅ c)2 for convenience, where p is momentum, and c is the

speed of light. The first (μ) and second (K) invariants are calculated
from the energy and equatorial pitch angles using a dipole field and
preserving the third adiabatic invariant (L*) that is calculated using
the T89 magnetic field. The resulting PSD from POES-based MLR-
and NN- reconstructed fluxes at multiple energies based on POES
data and equatorial pitch angles (αgrideq ) are used as observations
(yo in Eq (2)) for assimilation with the VERB model. Hence, each
point reconstructed in time from a single POES satellite covering 20
energy values and 9 αgrideq values is interpolated to the simulation grid
and included in DA.

Next we compare DA results using POES-based NN- and
MLR-reconstructed fluxes in the validation period from 01
April 2014 until 01 May 2014. Figure 4A shows the binned
Van Allen Probes observations as a ground truth at 1 MeV and
αeq = 75°, in comparison to DA results using MLR-reconstructed
fluxes, shown in Figure 4B. Figure 4C show the logarithmic
difference between Van Allen Probes observations and DA
results.

Figure 4E shows a quantitative comparison of fluxes
between observations Fluxdata and data assimilation using
MLR-reconstructed fluxes Fluxda, with 62.3% of points being
within a factor of 2. Figure 4F shows a histogram of their
corresponding logarithmic ratio. The histogram is nearly normally
distributed with slight overestimation of Fluxda in comparison to
Fluxdata.

Figure 5 is in the same format as Figure 4 but shows DA
results with NN-reconstructed fluxes and indicating an improved
accuracy with 72.9% of points within the factor of 2 (Figure 5E).
The histogram on Figure 5F shows that data assimilation using NN-
reconstructed fluxes results in almost no overestimation larger than
a factor of 2, and its peak is shifted towards underestimation of
Fluxda in comparison to Fluxdata.

TABLE 2 Coefficients of determination (r2) and correlation coefficients
calculated in logarithmic (rlog) and linear (rlin) space betweenVan Allen
Probes, RBSP-A and reconstituted from POES NOAA-15 data usingMLR and
NNmodels (first 5 rows, similar to Table 1); and the same comparison with
data assimilation with POES NOAA-15 usingMLR and NNmodels (last 5
rows). The calculation of coefficients is limited to L*∈ [3.5,6.0], which
represents the heart of the radiation belts.

MLR NN

Energy/Pitch angle r2 rlog rlin r2 rlog rlin

FromML reconstruction, 01 April 2014–01 May 2014

 E = 1.0 MeV, αeq = 75° 0.60 0.79 0.66 0.86 0.89 0.83

 E = 1.0 MeV, αeq = 55° 0.61 0.80 0.72 0.84 0.89 0.83

 E = 1.0 MeV, αeq = 35° 0.67 0.83 0.75 0.82 0.88 0.83

 E = 0.5 MeV, αeq = 75° 0.51 0.87 0.78 0.85 0.90 0.88

 E = 1.5 MeV, αeq = 75° 0.22 0.68 0.62 0.84 0.89 0.82

From data assimilation reconstruction, 01 April 2014–01 May 2014

 E = 1.0 MeV, αeq = 75° 0.73 0.83 0.65 0.88 0.88 0.80

 E = 1.0 MeV, αeq = 55° 0.78 0.83 0.70 0.89 0.88 0.82

 E = 1.0 MeV, αeq = 35° 0.79 0.83 0.72 0.90 0.89 0.81

 E = 0.5 MeV, αeq = 75° 0.64 0.86 0.76 0.90 0.92 0.86

 E = 1.5 MeV, αeq = 75° 0.39 0.73 0.59 0.89 0.88 0.79
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FIGURE 6
Data assimilation using reconstructed with multivariate linear regression analysis data. Electron flux at 1 MeV and αeq =55° for the period from 01 April
2014 until 01 May 2014. (A) Binned GOES observations. (B) Data assimilation using reconstructed flux from POES data. (C) Logarithmic difference
between flux from data assimilation and observations. (D) Kp index. (E) Comparison of fluxes between observations Fluxdata and DA results Fluxda, (F)
distribution of the logarithmic flux ratio.

Furthermore, Table 2 shows that DA improves accuracy (as
measured by r2) of reconstructed fluxes in the heart of radiation
belts (L* ∈ [3.5,6.0], where election dynamics is themost significant)
in comparison with standalone machine learning model results.
Such improvement by DA is more pronounced when using MLR-
based fluxes, and accuracy is only marginally better when using
NN-based fluxes. We chose the narrower L* region because physics-
based VERB code simulation provides a very low PSD level
in the slot region in comparison to the observations for the
selected period as seen on Figure 3, which are defined by the
instrumental noise level. The similar comparison at lower L* < 3.5
(below heart of radiation belts Reeves et al. (2013)) results in fitting
to observations when DA is applied to NN-based fluxes (not
shown).

One of the main advantages of using DA is that it provides a full
and complete reconstruction of radiation belts.This enables a virtual
flyby of arbitrary satellites retrieving the accurate representation of
electron flux/PSD along the trajectory, similar to the Observing
System Simulation Experiments (OSSEs) study recently supported
by NOAA (Schiller et al., 2022) in so called “fraternal twin”
assimilation experiments (Kondrashov et al., 2007; Shprits et al.,
2007; Kondrashov et al., 2011), where synthetic data from virtual
satellites along different orbits (LEO, GTO, MEO) of VERB
simulation with one set of physical parameters is assimilated into
VERB with different physical parameter settings with a goal to
best reconstruct at GEO. We achieve such reconstruction using
physics-based extrapolation of LEO observations with VERB code
and machine learning. To demonstrate such capability, Figures 6,
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FIGURE 7
Data assimilation using reconstructed with neural network data. Electron flux at 1 MeV and αeq =55° for period from 01 April 2014 until 01 May 2014. (A)
Binned GOES observations. (B) Data assimilation using reconstructed flux from POES data. (C) Logarithmic difference between flux from data
assimilation and observations. (D) Kp index, (E) comparison of fluxes between observations Fluxdata and DA results Fluxda, (F) distribution of the
logarithmic flux ratio.

7 show DA results in comparison to GOES observations at 1 MeV
and αeq = 55° in the validation period from 01 April 2014 until 01
May 2014 and using the same format as in Figures 4, 5. As one can
see, the accuracy of DA reconstruction using NN-based fluxes is
significantly better than using the MLR method, such as 70.9% of
points being within a factor of 2 for the former vs. 55.1% for the
latter. In addition, we perform a comparison of the GOES fluxes
reconstructed from LEO using ML methods and DA. The wide L-
shell coverage provided by POES allow us to reconstruct the flux
level in the region of GEO. However, none of our ML models (MLR
and NN) were trained on the data outside of Van Allen Probes
spatial coverage in L*, which is below GEO. Hence, the physics-
based extrapolation imposed by DA may become more important
for such a task. Table 3 provides details of the comparison of DA
and our ML models at extrapolation to GEO at different energies

and pitch angles, in a format similar to Table 2. The agreement
of the observed and reconstructed fluxes at GEO using DA is
better than for our ML models, although the accuracy of the
DA-NN model is lower than in Table 2. This is expected result
because our ML models did not include training on GEO data.
Also, there already exist much better predictive ML models that
includes GEO electron data for training (e.g., Boynton et al., 2013;
Shin et al., 2016; Zhang et al., 2020; Wang et al., 2023). However,
such models usually rely on the knowledge of the solar wind data,
while demonstrated in this paper DA technique only use Kp-index
as a indicator of geomagnetic activity, with is available at near real-
time (e.g., Matzka et al., 2021). Also, the demonstrated method
of reconstruction of the fluxes at GEO using LEO measurements
is of an interest of the community (e.g., Drozdov et al.,
2022).
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TABLE 3 Coefficients of determination (r2) and correlation coefficients
calculated in logarithmic (rlog) and linear (rlin) space between GOES-13,
GOES-15 and reconstituted from POES NOAA-15 data usingMLR and NN
models (first 5 rows); and the same comparison with data assimilation with
POES NOAA-15 usingMLR and NNmodels (last 5 rows). The calculation of
coefficients is limited to L*∈ [5.0,7.0], the GOES coverage.

MLR NN

Energy/Pitch angle r2 rlog rlin r2 rlog rlin

FromML reconstruction, 01 April 2014–01 May 2014

 E = 1.0 MeV, αeq = 75° −0.09 0.60 0.53 0.48 0.64 0.71

 E = 1.0 MeV, αeq = 55° 0.12 0.63 0.49 0.73 0.59 0.66

 E = 1.0 MeV, αeq = 35° −0.01 0.53 0.42 0.64 0.52 0.70

 E = 0.5 MeV, αeq = 75° −3.03 0.50 0.59 0.45 0.57 0.68

 E = 1.5 MeV, αeq = 75° −1.85 0.67 0.40 0.61 0.75 0.70

From data assimilation reconstruction, 01 April 2014–01 May 2014

 E = 1.0 MeV, αeq = 75° 0.29 0.57 0.44 0.76 0.75 0.80

 E = 1.0 MeV, αeq = 55° 0.38 0.54 0.41 0.66 0.66 0.70

 E = 1.0 MeV, αeq = 35° 0.29 0.53 0.45 0.69 0.71 0.75

 E = 0.5 MeV, αeq = 75° −1.01 0.58 0.64 0.70 0.65 0.72

 E = 1.5 MeV, αeq = 75° −1.62 0.60 0.24 0.83 0.83 0.77

4 Conclusion

In this work, we demonstrated that electron radiation belt flux
observed by the MEO satellite can be successfully reconstructed
using LEO POES measurements with various machine learning
methods. We used 2 ML methods: multivariate linear regression
analysis (MLR) and neural network (NN). The reconstructed flux
was included in data assimilation (DA) with VERB code and
compared with Van Allen Probes and GOES observations. The
MLR method represents a reference model which is easy to
implement in space weather applications that require reconstruction
of the radiation belt dynamics. We found that data assimilation
using MLR-reconstructed flux can provide a reasonable agreement
with observations. However, the data assimilation with the flux
reconstructed using a NN provided only a limited improvement.
Therefore, our main conclusion is that, in the case an optimized
machine learning model is not possible, our preliminary results
suggest that data assimilation can be beneficial for reconstructing
outer belt electrons by correcting errors of a subpar machine
learning based LEO-to-MEO mapping (e.g., the MLR case), as well
as by providing physics-based extrapolation to the parameter space
portion that is inadequately covered by existing measurements (e.g.,
GEO is used as the pretended case here). Meanwhile, when a well-
trained ML model is feasible (e.g., the NN case), the application of
DA shows only limited improvement.

Although both methods (MLR and NN) in combination with
DA showed applicability in the reconstruction of radiation belts,
this study includes several assumptions and limitations.The selected
implementation of theMLR reconstructed flux has limitations, as we
used a simplified sin-function extrapolation of electron flux.The use
of the more realistic reconstruction of the pitch-angle distribution

(e.g., Allison et al., 2018; Zhao et al., 2018; Smirnov et al., 2022),
as well as MLT dependence, may be used in future studies to
improve the results. Additionally, we used the convenient for this
study POES data set presented by Peck et al. (2015), which has
limited temporal coverage (1998–2014) and thus short overlap
with Van-Allen Probes to allow for robust comparison of DA-
MLR and DA-NN results between quiet and disturbed geomagnetic
activity, including extreme geomagnetic storms.The futureworkwill
consider the near real-time POES measurements, a comprehensive
analysis of PSD (e.g., Wing et al., 2022), as well as, the detailed
analysis of a wider range of energies and pitch angles remains a
subject of future research. In addition, future work will include the
combination of different measurements with various errors into a
data assimilative model.

The main advantage of data assimilation is that it can help with
the reduction of the errors that can arise from the inaccuracies
of measurements, inaccuracies associated with the mixing of
trapped and quasi-trapped populations, and inaccuracies associated
with extrapolation to the equator. In the case an optimized
machine learning model is not possible, our results suggest that
data assimilation can be beneficial for reconstructing outer belt
electrons by correcting errors of a machine learning based LEO-
to-MEO mapping and by providing physics-based extrapolation
to the parameter space portion not included in the LEO-to-
MEO mapping, such as at GEO orbit. Machine learning models
can be also inaccurate especially when applied outside of the
training interval and during extreme geomagnetic conditions. In
these situations, we may consider rebalancing using a similar
approach as by Shprits et al. (2019) or using different machine
learningmodels (e.g., MLR andNN) depending on the geomagnetic
activity, whenDA can compensate for the possible machine learning
errors during extreme geomagnetic storms (see Zhelavskaya et al.,
2021).

The ML and DA-based reconstruction of the radiation belts
with the presented methodology enables continuous monitoring
of the radiation belt state even without in situ near-equatorial
radiation belt measurements. This is particularly crucial for
space weather applications and space weather prediction. Such
an approach can also be used to study the global long-term
dynamics of radiation belts. Furthermore, analysis of the pitch-
angle distributions of the reconstructed from LEO measurements
radiation belts can inform about the dominant physical mechanism
that drives radiation belts dynamics and will be addressed in future
research.
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