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Electron magnetohydrodynamics
Grad–Shafranov reconstruction
of the magnetic reconnection
electron diffusion region
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M. Hosner1, D. Schmid1 and I. Ivanov2

1Space Research Institute, Austrian Academy of Sciences, Graz, Austria, 2Petersburg Nuclear Physics
Institute, St. Petersburg, Russia

Wepresent a study of the electronmagnetohydrodynamics Grad–Shafranov (GS)
reconstruction of the electron diffusion region (EDR) of magnetic reconnection.
Two-dimensionality of the magnetoplasma configuration and steady state are
the two basic assumptions of the GS reconstruction technique, which represent
the method’s fundamental limitations. The present study demonstrates that
the GS reconstruction can provide physically meaningful results even when
these two assumptions, which are hardly fulfilled in spacecraft observations,
are violated. This conclusion is supported by the reconstruction of magnetic
configurations of two EDRs, encountered by the Magnetospheric Multiscale
(MMS) Mission on July 11, 2017 and September 8, 2018. Here, the former
event exhibited a violation of two-dimensionality, and the latter event exhibited
a violation of steady state. In both cases, despite the deviations from the
ideal model configuration, reasonable reconstruction results are obtained by
implementing the herein introduced compressible GS reconstruction model. In
addition to the discussed fundamental limitations, all existing versions of the GS
reconstruction technique rely on a number of minor simplifying assumptions,
which restrict themodel scope and efficiency. We study the prospects for further
model improvement and generalization analytically. Our analysis reveals that
nearly all these minor limitations can be overcome by using a polynomial MMS-
tailored reconstruction technique in the space of rotationally invariant variables
instead of Cartesian coordinates.

KEYWORDS

magnetosphere, magnetotail, magnetic reconnection, diffusion region,
Grad–Shafranov, MMS, EMHD, polynomial reconstruction

1 Introduction

Magnetic reconnection is an explosive plasma process leading to topological
reconfiguration of magnetic fields and plasma heating and acceleration in laboratory and
space plasmas (Gonzalez et al., 2016). Since pioneering studies of Giovanelli (1946); Hoyle
(1949); andDungey (1953), analytical studies of the plasma accelerationmechanism resulted
in a number of analytical models, such as the Sweet–Parker annihilation (Parker, 1957;
Sweet, 1958), the tearing instability model (Furth et al., 1963), the fast reconnection model
of Petschek (1964), and other models (Sonnerup, 1970; Priest and Forbes, 1986; Priest
and Lee, 1990; Heyn and Semenov, 1996). Particularly, magnetic reconnection has been
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extensively studied in tokamak and spheromak plasmas
(Yamada et al., 2010), solar flares and coronal mass ejections
(Parker, 1979; Priest and Schrijver, 2000), planetarymagnetospheres
(Bagenal, 2013), and in other objects (Hesse and Cassak, 2020).
Being, in general, a three-dimensional (3D) time-dependent
process (Bhattacharjee, 2004; Xiao et al., 2006; Dorfman et al., 2013;
Cozzani et al., 2021), in some cases, magnetic reconnection operates
in modes that allow analytical studies in simpler frameworks.
Sometimes, it may be treated as a quasi-stationary process, e.g.,
at Earth’s dayside magnetopause (Gosling et al., 1982; Phan et al.,
2004; Retinò et al., 2005; Cassak and Fuselier, 2016) or in Earth’s
magnetotail. In the latter case, the reconnection of anti-parallel
magnetic fields (i.e., with a shear angle of about 180°) may
be often considered (Paschmann et al., 2013). In many cases, a
two-dimensional (2D) description seems to be also admissible
(Zeiler et al., 2002; Goldman et al., 2016). In the following, we
narrow our scope mainly to Earth’s magnetotail reconnection
(Øieroset et al., 2001; Egedal et al., 2005; Eastwood et al., 2010;
Liu et al., 2015).

In the near-Earth space plasma, allowing, in general, a
magnetohydrodynamics (MHD) framework, the particle collisions
are rare enough (Cassak and Fuselier, 2016) to bring forth
the concept of collisionless reconnection (Birn et al., 2001;
Øieroset et al., 2001). Even in the simplest steady-state 2D
collisionless reconnection model, the reconnection region occurs
as a complex multiscale structure, surrounding the reconnection
neutral line, the X-line. In non-resistive plasma, the Hall effect
demagnetizes (Sonnerup, 1979) ions at the scale of the ion
inertial length, di, within the so-called ion diffusion region (IDR),
where the plasma obeys Hall MHD (HMHD) and the magnetic
field stays frozen in the electron fluid. In some interior of this
HMHD domain, the relation between typical values of the ion
and electron current densities, ji ≪ je, allows neglecting the ion
current, yielding the commonly used electron MHD (EMHD)
approximation (Bulanov et al., 1992; Biskamp, 2000; Ji et al., 2014).
At last, in the closest vicinity of the X-line, the electron diffusion
region (EDR), electrons are also demagnetized due to the electron
pressure anisotropy and electron inertia at the scale of the electron
inertial length, de (Vasyliunas, 1975; Kuznetsova et al., 1998;
Hesse et al., 1999; Egedal et al., 2013; 2019; Paschmann et al., 2013).
The EDR, in turn, is split in two parts, internal and external
(Daughton et al., 2006; Karimabadi et al., 2007; Shay et al., 2007),
carrying electron currents in the out-of-plane and longitudinal
directions, respectively.

The structure of the entire reconnection region has been
explored in numerous numerical simulations and in situdata studies,
providing a relatively detailed understanding of particular features
of the reconnection picture, such as the spatio-temporal evolution
of the reconnection X-line (Wang et al., 2018) reconnection energy
budget (Birn and Hesse, 2010; Aunai et al., 2011; Fu et al., 2017;
Genestreti et al., 2017; Du et al., 2018; Lu et al., 2018; Wang et al.,
2018; Fadanelli et al., 2021; Zaitsev et al., 2021) including the
electron acceleration (see Fu et al., 2019b, and references therein);
reconnection rate (Sonnerup, 1974; Yokoyama and Shibata, 1994;
Birn et al., 2001; Huba and Rudakov, 2004; Fujimoto, 2006;
Daughton et al., 2014; Comisso and Bhattacharjee, 2016; Liu et al.,
2017; Divin et al., 2019; Tenfjord et al., 2019); the structure of
electron pressure and distribution function in the EDR (Cai and

Lee, 1997; Hesse and Winske, 1998; Scudder and Daughton, 2008;
Divin et al., 2010; 2016; Ng et al., 2011; Le et al., 2013; Egedal et al.,
2013; 2016; Cassak et al., 2015; Swisdak, 2016; Wang et al.,
2018); the proper reconnection region waves (Khotyaintsev et al.,
2019) and instabilities (Roytershteyn et al., 2012), and the ion
dynamics (Hoshino et al., 1998; Nakamura et al., 1998; Drake et al.,
2009; Nagai et al., 2015; Hietala et al., 2017; Zhou et al., 2019b;
Runov et al., 2021).

The investigation of magnetotail reconnection is the main goal
of NASA’s Magnetospheric Multiscale (MMS) Mission (Burch et al.,
2016). It is the first mission that enabled measuring the full 3D
electron distribution function in a time scale of 30 ms by four
identical spacecraft separated by about 10–100 km. Together with
magnetic and electric field measurements, MMS data make it
possible to resolve the electron-scale physics during the crossing
of the magnetic reconnection EDRs. A number of proper MMS-
tailored techniques, including the first- and second-order Taylor
expansions (FOTE and SOTE), to find magnetic nulls and
reconstruct the 3D magnetic field topology were developed (Fu
et al., 2015, 2019a; Liu et al., 2019). A comparative study of FOTE
and other techniques’ efficiency is found in Fu et al. (2016).
For reconnection events with the near-2D geometry observed
in the magnetotail, the spatial structure of the current sheet
(CS) within the EDR, reconnection rate, pressure tensor, and its
divergence could be determined from observations (Torbert et al.,
2018; Genestreti et al., 2018a; b; Nakamura et al., 2019; Burch et al.,
2022). The characteristic pattern of the electron distribution
function, scale of the EDR CS, and reconnection rate were
well recovered in particle-in-cell (PIC) simulation runs using the
observed initial parameters (Nakamura et al., 2018; Bessho et al.,
2019; Egedal et al., 2019). MMS also found more complex features
of the EDR. These include the EDR in reconnection with the
guide field (Zhou et al., 2019a), containing a secondary island
(Denton et al., 2021) and wavy CSs associated with lower hybrid
waves (Chen et al., 2020; Cozzani et al., 2021). Furthermore, the
electron physics in the magnetic separatrix region, where complex
wave–particle interactions take place due to the mixing of cold
inflow and jetting outflow electrons, was also resolved by MMS
(Nakamura et al., 2016; Norgren et al., 2020; Holmes et al., 2021).

Evidently, in situ data analysis, numerical simulations, and their
combination represent the most powerful and the most relevant
ways for studying the complexmagnetic reconnection kernel region.
Particularly, utilizing MMS data in hybrid and PIC numerical
reconstruction models helps understand MMS observations of
the EDR and IDR in a dynamic 2D or 3D context. However,
numerical models own a number of drawbacks, which stem from
their setup limitations (not fully realistic distribution functions, ion-
to-electron mass ratio, and background and boundary conditions),
from complexity of computational algorithms and from available
high-performance computer resources limiting the size of the
simulation box. Moreover, the fundamental constrain is dictated by
mathematics, since four-point MMS measurements per se are still
not enough for specifying background configurations, even for 2D
numerical simulations. An intermediate step, an adequate analytical
model, should provide a physically consistent 2D magnetoplasma
configuration based on one-dimensional multi-probe MMS data. In
Section 2, we discuss a specific family of such models developed for
reconstructing magnetoplasma configuration in magnetotail-like
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(2D, steady-state) EDRs. The results of our study are summarized
in Section 3. Section 4 contains the discussion of the obtained
results and possibility of their application to studies of some other
structures, governed by electron physics.

2 EMHD Grad–Shafranov
reconstruction

As we have mentioned previously, from the mathematical
perspective, the accurate reconstruction of the 2D spatial magnetic
configuration, resting upon the spacecraft measurements, can be
performed only by means of a (quasi)-one-dimensional problem
solution, since boundary conditions (in situ data) represent a one-
dimensional manifold. It turns out that EMHD approximation
provides us with the necessary approach.

2.1 The basic approach and the first results

Let us consider the two-fluid problem of steady magnetic
reconnection in the collisionless non-resistive non-relativistic
compressible plasma in the vicinity of an infinite X-line. The
plasma is assumed to consist of two particle species, ions and
electrons, obeying the quasi-neutrality condition. The system of
coordinates is specified by the z-axis, directed normally to the
CS, the y-axis, coinciding with the static X-line and pointing in
the current direction, and the x-axis, completing the right-handed
Cartesian system. In magnetospheric applications, such a system
corresponds to a co-moving LMN coordinate system (Russell et al.,
1983; Denton et al., 2018).

Under EMHD approximation, the ions can be left aside
(Korovinskiy et al., 2020). Hence, the problem statement includes
a time-independent equation of the electron fluid motion (the
Ohm’s law),Maxwell’s equations, and the electronmass conservation
law and equation of state. For simplicity, these equations are
considered in dimensionless forms, where normalization constants
are {e,me,de,B0,n0,VAe,EAe,p0,T0, t*}. Here, e is the elementary
charge andme is the electronmass; electron inertial length de = c/ωe,
where c is the speed of light and ωe = √4πn0e2/me is the typical
electron plasma frequency; B0 and n0 are the typical magnetic
field value and number density, respectively; VAe = B0/√4πn0me
and EAe = (1/c)B0VAe are the typical electron Alfvén velocity and
electric field, respectively; p0 = B

2
0/(4π) and T0 = p0/n0 are the

typical pressure and temperature, respectively; and t* = ω−1e is the
time scale. So, without the equation of state, the problem is stated
as follows:

(Ve ⋅∇)Ve = −
1
n
∇ ⋅ P̂e − (E+Ve ×B) , (1)

∇×B = −nVe, (2)

∇×E = 0, (3)

∇ ⋅B = 0, (4)

∇ ⋅ (nVe) = 0, (5)

where subscript e stands for “electron”; E and B are the electric
and magnetic fields, respectively; V is the bulk velocity; n is the
number density; and P̂ is the pressure tensor. Ampère’s law (2) is
written in EMHDapproximation,where the ion current is neglected.
Since one assumes an infinite X-line, the y-axis becomes an
ignorable direction, i.e., ∂/∂y = 0 for all magnetoplasma quantities.
In particular, it means that according to Faraday’s law (3), the
electric field component Ey = const. Then, the in-plane magnetic
field is specified by a scalar magnetic potential (y-component of the
vector-potential, the only non-zero one) A(x,z),

Bx = −
∂A
∂z
, Bz = +

∂A
∂x
, (6)

whileBy(x,z) appears to be a stream function of the in-plane electron
flow:

nVex = +
∂By

∂z
, nVez = −

∂By

∂x
. (7)

The simplest consideration of the problem (1–5), assuming
the uniform number density and neglecting electron inertia and
pressure anisotropy, was performed by Uzdensky and Kulsrud
(2006), who have derived (see Eq. B16 of the cited paper) that
under the specified conditions, the magnetic potential satisfies the
Grad–Shafranov (GS) equation (Grad and Rubin, 1958; Shafranov,
1966), which, in our notations, takes the form

ΔA = −jey (A) . (8)

Here, Δ stands for the Laplace operator (note that ∂/∂y = 0) and
jey = −nVey is the out-of-plane component of the electron current.
The same result was obtained independently in the study of
Korovinskiy et al. (2006). Thus, the GS equation, well-known in
MHD and HMHD reconstruction problems (see Hu, 2017; Chen
and Hu, 2022; and references therein) since Sonnerup and Guo
(1996) and Hau and Sonnerup (1999) studies, occurred viable in
EMHD also.

The EMHD GS reconstruction model, under the same
simplifying assumptions, was developed in the studies of
Korovinskiy et al. (2006, 2008), where the authors made use
of the specific geometry of the reconnection region, exhibiting
pronounced stretching in the x-direction due to the small typical
value of the reconnection rate ER ∼ 0.1 (Comisso and Bhattacharjee,
2016; Cassak et al., 2017; Liu et al., 2017). Due to the smallness of
this quantity, the ill-posed problem, stated by Eq. 8 with boundary
conditions specified at a single line, allows regularization by
neglecting the term ∂2A/∂x2 ∼ ϵ2 in comparison with the main
term ∂2A/∂z2 ∼ 1, where ϵ ∼ ER is a unit-independent scaling factor.
Applying this boundary layer approximation (BLA) (Schlichting,
1979), the authors arrived at a well-posed quasi-one-dimensional
reconstruction problem. The study of Korovinskiy et al. (2008)
revealed three important features of this simplified problem: a)
the equation for By is easily solved, when the solution of Eq. 8 is
found; b) the Jakobian |∂(A,By)/∂(x,z)| = ɛ ≠ 0, where ɛ is the unit-
dependent normalized value of Ey; hence, the potentials (A,By) can
be considered as a pair of independent variables instead of (x,z)
and all other quantities can be considered as functions of (A,By);
and c) as like Cartesian variables (x,z), the variables (A,By) are also
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not peer in terms of the derivative scaling ratio |∂/∂A|≫ |∂/∂By|
[see Eqs 30, 31 of Korovinskiy et al. (2008)]. In spite of the excessive
simplicity of this first model, where most part of the electron-scale
physics (compressibility, inertia, and anisotropy) was neglected,
these results prove useful for the following studies. Notably, the
variables (A,By) are invariant with respect to the in-plane rotations
of the coordinate system.

2.2 Recent advances: Two approaches

The further development of the EMHD GS reconstruction
models wended the way for the gradual release of the severe
simplifying assumptions. Considerable progress was achieved in
the study of Sonnerup et al. (2016), where scalar electron pressure
pe = nTe was replaced by the more complicated model:

∇ ⋅ P̂e = ∇pe + (∇ ⋅ P̂e)yey, (9)

where ey is the unit vector of the y-axis. Eq. 9 states aminimalmodel
for the reconnection problem, since only the non-zero y-component
of the pressure tensor divergencemay provide (Vasyliunas, 1975) the
non-zero electric field Ey in the X-point (the projection of the X-
line onto the reconnection plane) vicinity. It should be noted that
the direct usage of Eq. 9 encounters considerable difficulties, since
the exact analytical expression for its rightmost term is unknown.
In the study of Sonnerup et al. (2016), this problem was coped
by using the approximation given in Eq. 14 of Hesse et al. (1999).
Meanwhile, the validity of this approximation outside the internal
EDR is debatable (Korovinskiy et al., 2020), since it is based on a
number of simplifying assumptions.

The model, utilizing Eq. 9, was successfully applied to the
reconstruction of EDRs, encountered by MMS, in the studies of
Hasegawa et al. (2017, 2019). In the study of Korovinskiy et al.
(2021), in addition to Eq. 9, the electron inertia term in Eq. 1
was kept and the assumption of the uniform electron temperature
was released. The authors suggested an alternative approach
avoiding the direct application of Eq. 9. For the magnetoplasma
quantities, specifying the reconstruction model, the following
assumptions were adopted: n = const,Te = Te(A),Vey = Vey(A,By).
In the following study of Hasegawa et al. (2021), the assumption
of the uniform number density was also released, and all three
model functions n,Te,Vey were treated as functions of magnetic
potential A. The equation for the electric potential, introduced in
Korovinskiy et al. (2008), was also generalized for this more realistic
model setup.

In spite of the seeming similarity, the approach, adopted in the
study of Hasegawa et al. (2021), which we, for the shortness, call
A1, and the approach, formulated by Model 2 of Korovinskiy et al.
(2021), which we call A2, have a number of important distinctions,
which we deem are worth discussing. The comparison of A2 and
the simplified version of A1 efficiencies can be found in the recent
studies of Korovinskiy et al. (2020, 2021).

2.2.1 Regularization
A1 and A2 utilize different methods of problem regularization

and, in general, different coordinate systems. The best performance
of A2 is gained in a co-moving LMN coordinate system, since
problem regularization is achieved by omitting the second

derivatives on x as compared with those on z (maximal variance
direction); i.e., integration is ever performed in the CS normal
direction. Theoretically, the accuracy of this method does not
depend on the satellite trajectory inclination angle with respect
to EDR (except for vertical crossings, when model fails). A1 utilizes
a rotated coordinate system, which one can call the “satellite
coordinate system” (SCS), where the longitudinal axis coincides
with the satellite trajectory. Integration is performed in the trajectory
normal direction, while the longitudinal derivatives are evaluated
numerically at each integration step. Problem regularization is
achieved by numerical filtering (Sonnerup et al., 2016) to suppress
the exponentially growing distortions (Hadamard, 1923). The
accuracy of this method should decrease with the increasing
trajectory inclination angle, i.e., the rotation angle LMN → SCS.
Apparently, the approach of A2 is simpler, while the approach of A1
ismore universal, since in contrast with A2, it is appropriate not only
for oblique but also for the vertical crossings. For the longitudinal
crossings, the accuracies of these two methods seem to be nearly the
same (Korovinskiy et al., 2020).

2.2.2 Boundary conditions
In terms of the boundary conditions setup, A1 represents

a family of more universal models, since it demands a single
spacecraft’s data for initiating reconstruction, while A2 is an MMS-
tailored method, requiring data of at least two satellites separated in
the xz plane. This discrepancy results in very different techniques of
solving the equation for By. With equalities (7), the quantity ΔBy can
be written as follows:

ΔBy = Q+Vex
∂n
∂z
−Vez

∂n
∂x
, (10)

where we introduce the notation Q,

Q = nωey = n(
∂Vex

∂z
−
∂Vez

∂x
), (11)

and ωey stands for the out-of-plane component of the electron
vorticity:

ωe = ∇×Ve. (12)

It should be reminded that definition (Eq. 11) is written in
dimensionless units. The corresponding normalization constant
Q0 = n0Ω0e, where Ω0e = eB0/(mec) is the typical electron cyclotron
frequency. In A2, the assumption Q = Q(A) was adopted, and the
functional dependency is obtained frommulti-spacecraft data. Since
for n = const two rightmost terms of Eq. 10 vanish, the model
equation takes the form ΔBy = Q(A). Apparently, the neglect of the
dependence of Q on By is a simplifying assumption, i.e., the model
limitation.

In A1, the term ΔBy (in our notations) is calculated from Eq. 21
of Hasegawa et al. (2021). The drawback of this method (stated in
their model “Case 1”) stems from the fact that this equation contains
a small alternating-sign quantity (the normal electron velocity
component) in the denominator. When that equation becomes
singular, the authors switch to another model (“Case 2”), which
does not contain this singular equation. However, this approach is
also not free of obstacles. First, instead of singular equation (21),
the authors are forced to use again the modified approximation of
Hesse et al. (1999) for the pressure anisotropy term, stated in their
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Eq. (24). Second, the combination of these twomethods (Case 1 and
Case 2) in a single reconstruction requires, apparently, some rather
non-trivial technique of matching the corresponding solutions.

2.2.3 Compressibility
The uniformity of the number density is a rigid limitation,

bounding any model to the internal EDR only, where this
assumption seems to be approved and commonly used (Hesse et al.,
1999; Sonnerup et al., 2016; Hasegawa et al., 2017; 2019). This
limitation of A2 is easily overcome. Indeed, substituting the
representation

∇n = ∂n
∂A

∇A+ ∂n
∂By

∇By (13)

in (10) and assuming n = n(A), Eqs 21, 22 of Korovinskiy et al.
(2021) take the following form:

ΔA = n (A)Vey (A) , (14)

ΔBy = Q (A) +
1
n
dn
dA
(∇A ⋅∇By) . (15)

Notably, the out-of-plane magnetic field can be presented as a
sum of two parts, the uniform part Bg (guide field) and the Hall
magnetic field B̃y,

By (x,z) = Bg + B̃y (x,z) . (16)

Since By and B̃y differ from each other for a constant,
these quantities are apparently identical with respect to derivative
operators.

To introduce and test our incompressible model A2, we
have addressed the MMS event of July 11, 2017 (Torbert et al.,
2018), when MMS crossed the internal EDR during reconnection
in the magnetotail at around 22:34 UT. Considering the same
event and using the same setup (Korovinskiy et al., 2021),
we applied the compressible model (Eq. 14 and Eq. 15) to
perform the reconstruction in the three times extended interval
22:34:01.70—22:34:10.92 UT, during which the number density
demonstrated the pronounced non-uniformity. As previously
mentioned, we focus not on the event study but at the model
benchmarking, since the event itself has been rigorously studied
in the previous works (Genestreti K. et al., 2018; Egedal et al., 2019;
Nakamura et al., 2019; Denton et al., 2021; Hasegawa et al., 2021).
The validity of EMHD approximation within the reconstruction
interval is demonstrated in Figure 1A, where the ratios of
the electron and full current densities for parallel (black) and
perpendicular (red) in-plane current components are plotted at
the reconstruction domain boundary (MMS3 trajectory) vs. the
spacecraft travel distance x. It is seen that except for some local
gaps appearing due to local drops of the parallel current je‖, these
ratios are close to 1 (the same as the ratio |jey|/|jy| ≈ 1, which is not
shown). In panels (B)–(E) of Figure 1, the normalized values of the
electron temperature, number density, out-of-plane velocity, and
function Q are plotted, respectively, vs. the magnetic potential. The
measured (n, Te, and Vey) or evaluated (Q) values are plotted by
blue curves, while the red curves plot the interpolating functions.
The reconstructed configuration of the in-plane magnetic field in
SCS is exhibited in Figure 2, where the spacecraft trajectories are

plotted by black color for MMS1, red for MMS2, green for MMS3,
and blue for MMS4. It is seen that trajectories of MMS2 and MMS4
are extremely close to each other in the xz plane. Figure 3 shows the
reconstruction results as compared to the measured values vs. x for
the quantities Bx (A), B̃y (B), Bz (C), Vex (D), Vey (E), Vez (F), and n
(G). In Figure 3, green curves plot theMMS3 data (dotted) and their
interpolations (boundary conditions, solid), and the red dotted and
solid curves plot, respectively, the measured and the reconstructed
values at the most remote (from MMS3) probe MMS2. The other
reconstruction results are not shown for better visibility. The plots
of Vey and n confirm the accuracy of the chosen approximations
for the model functions Vey(A) and n(A), respectively. Comparing
other plots of Figure 3 with Figures 7 and 12 of Korovinskiy et al.
(2021), one can see that within the extended reconstruction region,
the compressible model (Eqs 14, 15) performs as good as the
incompressible one within the internal EDR. In the first half
of the reconstruction interval, the reconstruction of Vez is as
bad as it is seen in Figure 12C of Korovinskiy et al. (2021) and
Figure 5 of Hasegawa et al. (2019). It demonstrates much better
data resemblance in the second half. Curiously, in this second part
(x > 37), the vertical magnetic component Bz (Figure 3C) exceeds
in magnitude the longitudinal component Bx (Figure 3A). This
should not be perceived as a violation of the BLA assumptions, since
not the first but the second derivatives of the magnetic potential
contribute to the GS equation. As for the latter ones, the calculation
of the quantity δ = |∂Bz/∂x|/√(∂Bz/∂x)2 + (∂Bx/∂z)2 revealed that at
the MMS spacecraft location (between the green and red horizontal
lines in Figure 2), the value of δ amounts mainly to 0.01–0.1 or
less, except for the very leftmost (x < 0) and the very rightmost
(x > 70) intervals. The same estimate of δ is valid for most parts of
the entire reconstruction region shown in Figure 2. Thus, neglect
of the term ∂2A/∂x2 does not cause any remarkable inaccuracy of
the presented extended-interval reconstruction [see also Figure 6 of
Korovinskiy et al. (2021)].

2.3 The fundamental limitations of the
EMHD GS reconstruction technique

2.3.1 Two-dimensionality
All the discussed EMHD GS reconstruction techniques possess

the obvious fundamental limitations—they assume the 2D steady-
state configuration, which can be hardly found in nature. In
particular, the abovementioned failure of reconstruction of the
normal component of the electron velocity (Vez in our notations)
within the internal EDR was claimed a signature of the CS
two-dimensionality violation at the ground of simple qualitative
speculations (Korovinskiy et al., 2021). Indeed, according to
Ampère’s law (2), nVez = ∂Bx/∂y− ∂By/∂x. In the 2D model, the
term ∂Bx/∂y is omitted, which can result in considerable error if, in
reality, this term is non-zero, because we omit the derivative of Bx
– the major magnetic field component (in the LMN coordinate
system). This 3D effect should be much less pronounced for
the component Vex = (1/n) (∂By/∂z− ∂Bz/∂y) because, here, we
neglect the derivative of Bz – the minor magnetic field component.
Obviously, the direct evaluation of the derivative ∂Bx/∂y would be
the best way to make sure that the failure of Vez reconstruction is
caused by the CS three-dimensionality. Such evaluation is hardly
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FIGURE 1
Reconstruction of the event of July 11, 2017. The model functions
evaluated at the reconstruction region boundary (MMS3 trajectory).
Panel (A) represents the ratio of the electron and full currents for
parallel (black) and perpendicular (red) in-plane current components
vs. the spacecraft travel distance x. Panels (B–E) represent electron
temperature, number density, out-of-plane velocity, and the function
Q, respectively, vs. magnetic potential, as they were measured (blue)
and interpolated (red). The values of the normalization constants,
except for Q0, are provided in Section 3.1 of Korovinskiy et al. (2021),
while the corresponding value of Q0 = 18.5 s−1cm−3.

FIGURE 2
Reconstruction of the event of July 11, 2017. The calculations were
initiated at the MMS3 trajectory in SCS. The magnetic potential A(x,z)
is shown by color, and contour lines plot the in-plane magnetic field
lines. The spacecraft trajectories are plotted by black color for MMS1,
red for MMS2, green for MMS3, and blue for MMS4. White lines plot
the SCS coordinate system. Spacecraft move from the left to the right.

FIGURE 3
Reconstruction of the event of July 11, 2017. The calculations were
initiated at the MMS3 trajectory in SCS. The measured values (red and
dotted) and the reconstruction results (red and solid) vs. x for Bx (A), B̃y

(B), Bz (C), Vex (D), Vey (E), Vez (F), and n (G) at the MMS2 trajectory,
where B̃y stands for the non-uniform part of By. The plots of MMS3
data and corresponding interpolations (boundary conditions) are
shown in panels (A,B) by green dotted and solid curves, respectively.
The data of MMS1 and MMS4 and corresponding reconstruction
results are not shown for better visibility [the same for MMS3 in panels
(C–G)].

possible; however, the following scaling analysis supports the
aforementioned speculations. Fortunately, during this particular
event, two coordinate systems, SCS and LMN, were very close,
differing from each other for 5.8° only (Korovinskiy et al., 2021).
This allows adopting the LMN scaling ratios in SCS.

The spacecraft trajectories represent parallel linear segments
in the 3D space. In SCS, each of them represents the inclined line
(dy/dx ≈ 0.75) belonging to the plane zj = const, where subscript
j stands for the probe number. Let us assume that CS is two
dimensional, ∂/∂y = 0. Then, the equality ∂Bx/∂x+ ∂Bz/∂z = 0 is
to fulfil, where ∂Bx/∂x = dBx/dx at any probe trajectory. Since in
LMN, ∂/∂z ∼ 1 and ∂/∂x ∼ ϵ, we obtain ∂Bx/∂x = −∂

2A/∂x∂z ∼ ϵ
(in the first part of the reconstruction region, within the internal
EDR, the magnetic potential A ∼ 1, as seen in Figure 2). With
the reconnection rate ER ≈ 0.15–0.2 (Nakamura et al., 2018;
Hasegawa et al., 2019; Korovinskiy et al., 2021), one can estimate the
numerical value of ϵ ≈ 0.2. Analogously, for the increment of Bz , we
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have dBz = ∂Bz/∂z ⋅ dz+ ∂Bz/∂x ⋅ dx+ ∂Bz/∂y ⋅ dy, where ∂Bz/∂z ∼ ϵ
and ∂Bz/∂x ∼ ϵ2, and the last summand vanishes in a 2D CS.

Now, let us estimate the terms ΔBx/Δx and ΔBz/Δz, where Δ
stands for the finite difference. At any probe trajectory, in particular,
at the trajectory of MMS2, we have ΔBx/Δx = dBx/dx ∼ ϵ, where
dx is the grid step. To evaluate the term ΔBz/Δz, we use the data
of the two nearest probes, MMS2 and MMS4 (Figure 2), whose
trajectories were shifted with respect to each other for Δx = 0.15,
Δy = 0.683, and Δz = 0.027. Substituting these values in the formula
for dBz , we obtain ΔBz/Δz = ∂Bz/∂z+ ∂Bz/∂x ⋅Δx/Δz ∼ ϵ+ ϵ

2/ϵ ∼ ϵ,
where we used the estimate Δx/Δz ≈ 5.6 ∼ 1/ϵ. So, in the 2D
configuration, the terms ΔBx/Δx and ΔBz/Δz, evaluated this way,
are to be the quantities of the same order ϵ, matching the
order of the corresponding partial derivatives ∂Bx/∂x and ∂Bz/∂z,
respectively.

The plot of ΔBz/Δz, exhibited in Figure 4, mismatches this
conclusion. In Figure 4, we observe the minor term ΔBy/Δy
(evaluated analogously to ΔBz/Δz) with the peaking value of
about 0.07, that is, ∼ ϵ2 (red), the term ΔBx/Δx with the peaking
value ≈ 0.26, that is, ∼ ϵ (blue), and the term ΔBz/Δz with the
peaking value ≈2.4 (green), which is an order of magnitude higher
than ΔBx/Δx. Apparently, the term ΔBz/Δz can demonstrate so
high values due to the neglected term ∂Bz/∂y ⋅Δy/Δz only. With
the evaluated value of max |ΔBz/Δz| ∼ 1 and the given value
Δy/Δz ≈ 25 ∼ (1/ϵ2), we obtain the scaling ratio ‖∂Bz/∂y‖ ⋅ (1/ϵ2) ∼ 1,
where we use the notation ‖ ⋅ ‖ to denote the scaling estimate.
This yields an estimate ∂Bz/∂y ∼ ϵ2; hence, the scaling estimate
for the derivative operator ∂/∂y ∼ ϵ. Notably, under this estimate,
the omitted term of ΔBx/Δx at the MMS2 trajectory scales as
∂Bx/∂y ⋅ dy/dx ∼ ϵ; i.e., it is a quantity of the same order as the
accounted term ∂Bx/∂x. The calculated values of ΔBy/Δy also
match the corresponding scaling estimate. Indeed, since the Hall
magnetic field itself is a small quantity B̃y ∼ ϵ, and Δx/Δy = 0.22 ∼ ϵ
and Δz/Δy = 0.04 ∼ ϵ2, we obtain the following scaling estimate:
ΔBy/Δy = ∂By/∂y+ ∂By/∂x ⋅Δx/Δy+ ∂By/∂z ⋅Δz/Δy ∼ ϵ2 + ϵ2 ⋅ ϵ+ ϵ ⋅ ϵ2

∼ ϵ2, which is in line with the evaluated value max |ΔBy/Δy| = 0.07.
Thus, we arrive at the following scaling estimates: ∂Bx/∂y ∼ ϵ and

∂By/∂x ∼ ϵ2. Clearly, neglect of the first (major) term and keeping
the second (minor) one result in the Vez reconstruction failure in
the left part of the reconstruction interval (Figure 3F). In the right
part, by contrast with B̃y, the magnetic component Bx reduces for
one–two orders of magnitude (Figure 3A); hence, the contribution
of the neglected term ∂Bx/∂y becomes the same or smaller than the
contribution of the accounted term, hence is the better accuracy
of the Vez reconstruction. Analogously, ∂Bz/∂y ∼ ϵ2 and ∂By/∂z ∼ ϵ;
hence, neglecting the first term does not ruin theVex reconstruction,
if Vex is calculated independently on Vez . However, when the
approximation of Hesse et al. (1999) for the pressure anisotropy
term is used, the inaccuracy of the Vez reconstruction affects the
accuracy of Vex also [see Figure 12B of Korovinskiy et al. (2021)
and discussion in Section 5, ibid] because these two quantities
are coupled in a single equation. Also, one can note that the
representation of the in-plane magnetic field via a scalar magnetic
potential is resting upon the neglect of the term ∂By/∂y in (∇ ⋅B).
As we have seen, during the considered event, the neglected term is
scaled as ϵ2, while the two kept ones were ∼ ϵ. This should result in
a reconstruction error of the order of ϵ, which estimate fits the real
reconstruction error of about 10–20% (Korovinskiy et al., 2021).

FIGURE 4
Reconstruction of the event of July 11, 2017. The estimate of the terms
of (∇ ⋅ B) at the MMS2 trajectory via finite differences ΔBz/Δz (green),
ΔBx/Δx (blue), and ΔBy/Δy (red) is plotted vs. the MMS2 path length.
The magnitudes are given in the legend.

It should be noted that since the scaling analysis operates
not with the exact but with the typical values, one can be easily
misled. For example, with ϵ = 0.2 and max|B̃y| ≈ 0.5 (Figure 3B),
one could estimate B̃y ∼ √ϵ, since √ϵ = 2.25ϵ = 0.45. Analogously,
with the evaluated value of max |ΔBz/Δz| ≈ 2.4, one could
estimate ∂Bz/∂y ∼ ϵ3/2; hence, ∂/∂y ∼ √ϵ. These estimates seem
to be appropriate and they do not discard the aforementioned
speculations concerning the Vez and Vex reconstructions because
the ratios between the terms ∂Bx/∂y ∼ √ϵ and ∂By/∂x ∼ ϵ3/2 and
between the terms ∂Bz/∂y ∼ ϵ3/2 and ∂By/∂z ∼ √ϵ do not change
(though the estimates of the terms themselves do). Nevertheless,
such estimates would be totally wrong, since they would lead
to the estimate ∂By/∂y ∼ ϵ. This, in turn, would mean that the
neglected term of (∇ ⋅B) would have the same scale as the kept
ones; hence, the reconstruction error would have to reach 100%; i.e.,
the reconstruction would have to fail totally, which is evidently not
the case.

2.3.2 Steady state
The reconstruction of Korovinskiy et al. (2021) has also revealed

the signatures of CS time dependence, observed during the
first 0.4 s, when the out-of-plane component Ey demonstrated
some reduction and the function Vey(A) was not single-valued
(see Figures 2A, 3E of the cited paper), which resulted in a low
reconstruction accuracy within this interval (see Figure 6 of
Korovinskiy et al. (2021) or Figure 3). To investigate the model
failure in an unsteady CS, we addressed the event of September
8, 2018, when at nearly 14:51:30 UT, MMS encountered an
EDR near the center of a flux-rope type dipolarization front
(Marshall et al., 2020). The reconstruction is performed in the
co-moving LMN reference frame. The direction of the M-axis is
determined by themaximization of the peaking out-of-plane current
density, max(jeM), and the N-axis is found by the maximization
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of the BL variation, where the L-axis completes the right-handed
LMN coordinate system. The LMN unit vectors, specified in
the Geocentric Solar Ecliptic (GSE) coordinate system, have the
following components: eL = [−0.11648,+0.27887,+0.95324], eM =
[+0.07826, +0.95936, −0.27110], and eN = [−0.99010, +0.04302,
−0.13357]. This LMN coordinate system is nearly the same as
the one that was determined by Marshall et al. (2020), differing
from the latter mainly by the opposite signs of the M and
N orts. The normal component of the structure velocity was
determined by the timing method (Russell et al., 1983), and two
other components were estimated as the average ion velocity within
the 1.5 s reconstruction interval 14.51.30.25–14.51.31.75 UT. This
way the value of V0 = [+117.43,+233.92,−251.34] km/s in LMN
(which is [+253.48,+246.35,+082.09] km/s in GSE) was derived. All
quantities were cast by Lorentz transform to the LMN coordinate
system moving with the velocity V0 (co-moving reference
frame) and normalized for the typical values of t0 = 0.568 ms,
n0 = 1 cm−3, T0 = 497 keV, p0 = 79.6 pPa, de = 5.31 km, B0 = 10 nT,
VAe = 9.35 ⋅ 103 km/s, EAe = 93.5 mV/m, and j0 = 1.5 μA/m2.
Since in all previous studies, the simplified model (Eq. 8)
performed good enough, while the contribution of the terms
accounting the dependence of Vey on By was found rather small
(Korovinskiy et al., 2020; 2021), we restricted our study to solving
Eq. 8.

The reconstruction setup is exhibited in Figure 5, whereMMS1-
related curves are plotted by black, MMS2 by red, and MMS3 by
green in all panels. Panels (A) and (B), respectively, show the out-
of-plane electric field and number density vs. time. These plots
reveal that (a) number density was not uniform and (b) the steady-
state condition Ey = const was fulfilled up to some moment, then it
failed abruptly (Ey peaks at t = 1.17 s at the MMS1 trajectory and
at t = 1.08 s at the MMS3 one). Magnetic potential A vs. time and
the out-of-plane electron current jeM vs. A are plotted in panels (C)
and (D), respectively. Similar to the event of July 11, 2017, the non-
monotonic behavior of A(t) makes our modelling function jeM(A)
double-valued. However, in the study of Korovinskiy et al. (2021),
a single-valued analytical continuation of the necessary function
could be constructed, since the general appearance of the required
curve was evident. In the present case, it is not so. Basically, with
the function jeM(A), shown in Figure 5D, the reconstruction is not
possible.

Nevertheless, BLA allows one trick, resting upon two features
and one assumption, which are: (a) magnetic potential is defined
with the accuracy of an arbitrary constant; (b) in BLA, the derivatives
on x are neglected, hence in any particular vertical cross section,
we solve the one-dimensional problem; and (c) since the out-of-
plane current is a sharply peaking function, we assume that in
some vicinity of the peak, it can be approximated by a symmetrical
(Gauss-like) curve. By making use of properties (a) and (b), and
adopting assumption (c), we can “unfold” two coalescent branches
of jeM(A). Namely, we make the substitutionA− a0→ A, where a0 is
the point of branching. Then, one branch (in our case, the first one,
corresponding to the initial steady period) is flipped with respect to
the axis A = 0. This means that for any vertical cross section rL = rLj,
where j is the point number, we make the substitution Aj→−Aj
(rL and rN correspond, respectively, to x and z of the analytical
model). This way we obtain a single-valued function j′(A), whose
interpolated value is used for solving Eq. 8; then, in each vertical

FIGURE 5
Reconstruction of the event of September 8, 2018. The calculations
are performed in the co-moving LMN coordinate system. In all panels,
the data are plotted by black color for MMS1, by red for MMS2, and by
green for MMS3. Panels (A,B), respectively, show the out-of-plane
electric field EM and the number density n vs. time. Magnetic potential
A vs. time and the out-of-plane electron current density jeM vs. A are
plotted in panels (C,D), respectively. A single-valued function j′(A) at
the MMS1 trajectory, obtained by flipping one of the branches of the
double-valued jeM(A) with respect to the branching point, is plotted in
panel (D) by dashed magenta curve, and the interpolating function,
used in reconstruction, is shown by the solid cyan curve. The data of
MMS4 are not shown for better visibility, the same for data of MMS2
and MMS3 in panel (D).

cross section, the reverse substitutionA− 2Aj→ A is performed. For
MMS1-based reconstruction, the function j′(A) and its interpolated
values are shown in Figure 5D by dashed magenta and solid cyan
curves, respectively. The validity of such approach is obviously
predicated upon the validity of assumption (c) and by the accuracy
of the LMN coordinate system detection.

The results of reconstruction in the 0.32 s timespan (t =
0.92:1.24 s) are plotted in Figure 6. For reconstruction, initiated
at the MMS1 trajectory, a 2D contour plot of magnetic potential
and the L-component of the magnetic field is plotted in panels (A)
and (B), respectively. For reconstruction, initiated at the MMS3
trajectory, the same quantities are plotted in panels (C) and (D).
Since MMS spacecraft (moving from the right to the left) are not
aligned in a single vertical line, the plots of panels (A) and (C)
demonstrate the time evolution of the CS. Indeed, the colored
asterisks in panel (A)mark the spacecraftmutual locations at a single
moment. Starting reconstruction, e.g., from the black asterisk, we
cross the MMS3 trajectory (green line) at the moment, when MMS3
has already passed farther, and the other way round. Particularly,
in panel (C), MMS3 crosses the O-line with two X-lines, one
on the right and one on the left. In panel (A), we see the same
structure, though shifted to the left and deformed. The magnetic
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FIGURE 6
Reconstruction of the event of September 8, 2018, in the co-moving LMN coordinate system. Top row: the results of reconstruction initiated at the
MMS1 trajectory. The 2D contour plot of the magnetic potential and the L-component of the magnetic field are plotted in panels (A,B), respectively. In
the bottom row, the same quantities are plotted in panels (C,D) for the reconstruction initiated at the MMS3 trajectory. The spacecraft trajectories in
the left column are plotted by black color for MMS1, red for MMS2, green for MMS3, and blue for MMS4, where dashed lines plot the reconstruction
domain boundary. In the right column, the spacecraft data (solid) and the reconstructed values (dashed) at four MMS probes are plotted by the same
colors. In panel (A), the colored asterisks demonstrate the spacecraft mutual locations at a single moment (probes move from the right to the left).

components BL, shown in panels (B) and (D), demonstrate that the
trusted reconstruction area, if it is, spans between the MMS1 and
MMS3 trajectories, while at the trajectories of MMS2 and MMS4,
the reconstruction error becomes too big, which is reasonable
since the latter probes are more remote. Comparing the solid and
dashed green curves in Figure 6B, we see that the reconstruction
of the magnetic field component BL at MMS3 exhibits appropriate
accuracy in the right part of the reconstruction region, rL > −20
(initial period). Itmeans that real existence of the X-line, as shown in
Figure 6A at (rL, rN) ≈ (−20,40)may be questionable. The existence
of the X-line, crossed by MMS1 in Figure 6C at rL ≈ −23, may be
claimed more certainly, since the black solid and dashed curves
in Figure 6D assure good reconstruction accuracy at MMS1 for
rL < −22. One can also see that our LMN coordinate system does
match the magnetic configuration geometry in the vicinity of the X-
point, encountered by MMS1. The existence of the X-line between
MMS3 and MMS4 at xL ≈ −17, also observed in Figure 6C, requires
additional verification by means of some other method, since the
comparison of blue solid and dashed curves in Figure 6D does not
lead to any unequivocal conclusion.

The results of Section 2.3 reveal that the 2D steady-state model
demonstrates remarkable ability to withstand (to some extent) the
violation of the ideal CS conditions, i.e., the violation of both
fundamental model limitations. With some gimmickries, the model

is capable of providing an overview of the reconnection region
even for the time-dependent reconnection event. However, for such
events, of course, it would be much better to use some time-
depended model, such as those of Denton et al. (2020, 2021).

2.4 Perspectives of the EMHD GS
reconstruction technique improvement

Apart from the fundamental limitations discussed previously,
the existing EMHD GS techniques also possess some minor
limitations which can be coped with (to some extent) in the
future studies. Particularly, such limitations are stipulated by
the simplifying assumptions adopted for the model functions.
Such simplifications ease the calculations but shrink the models’
applicability domain. For example, the assumption of n = const is
appropriate within the internal EDR only. The less strict condition
n = n(A) allows the considerable expansion of the reconstruction
region in the longitudinal direction onto the external EDR;
however, the cross size of this region stays rather small, as
shown in Figure 10A of Korovinskiy et al. (2020). Also, as for
the approximation Vey = Vey(A), it seems to be violated nearly
everywhere within the internal EDR (see Figure 10B of the cited
paper). The correct model would consider all magnetoplasma
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quantities as functions of two variables (A,By). This cannot be
applied directly due to the lack of the input data, but this
correct treatment may be approached by using a polynomial
technique, bearing some similarity to those of Denton et al. (2022),
but operating in another variable space. In this section, we
present an analytical frame for such extension of A2 [Model 2 of
Korovinskiy et al. (2021)] and the recipe to unite A1 and A2 to
benefit from the advantages of these two approaches and to master
their disadvantages.

To proceed to this goal, one needs to cast the problem (1–5,
9) in another form. Partly, this work was made in the studies
of Korovinskiy et al. (2020, 2021), which results we outline here,
omitting all intermediate details. The Jakobian of the variables
transform (x,z) → (A,By) is

|

|

∂(A,By)
∂ (x,z)
|

|
= nε*, (17)

where we introduce the notation ɛ* for the out-of-plane component
of the electron convective electric field,

ε* =
ε+ (1/n) (∇ ⋅ P̂e)y
1− (∂Vey/∂A)

, (18)

while ɛ is the normalized value of the out-of-plane electric field Ey.
The most general form of Eq. 10 takes the form

ΔBy =Q(A,By) +
1
n
[ ∂n
∂A
(∇A ⋅∇By) +

∂n
∂By
(∇By)

2]. (19)

We also introduce the notation φ* for the quantity, which we call
the “effective electric potential”,

φ* (A,By) = φ−Te −
1

2n2 |∇By|2, (20)

where φ(A,By) is the electric potential of the in-plane electric field:
Ex = −∂φ/∂x, Ez = −∂φ/∂z. The problem for φ* is stated in two
equations:

∂φ*

∂A
= Vey (A,By) +Te

∂
∂A

ln (n) , (21)

∂φ*

∂By
= 1
n
By +Te

∂
∂By

ln (n) +R(A,By) , (22)

where the electron inertia and anisotropy are accounted by the term
R [see Eqs 14, 15 of Korovinskiy et al. (2021)],

R(A,By) =
1
n2 [(∇ln (n) ⋅∇By) −ΔBy] = −

Q
n2 . (23)

Multiplying (21) for∇A and (22) for∇By, we obtain the equation
for ∇φ*:

∇φ* = (Vey +
Te

n
∂n
∂A
)∇A+(

By

n
− Q
n2 +

Te

n
∂n
∂By
)∇By. (24)

Differentiating (21) for By and (22) for A and equating the results,
we obtain the equation for Vey. By using (23), it takes the following
form:

∂Vey

∂By
= − 1

n2 [
∂Q
∂A
+(By −

2Q
n
) ∂n
∂A
]− 1

n
|

|

∂(n,Te)

∂(A,By)
|

|
. (25)

Let us consider Eqs 21, 22, where the terms n, Te, and Vey are of the
order of 1 due to normalization (Figure 1), the term R ∼ ∂2By/∂z2 ∼
∂2B̃y/∂z2 ∼ ϵ, and φ* ∼ φ ∼ 1, since ∂φ/∂z = −Ez , and Ez ∼ 1 is the
major electric field component. Under these scaling ratios, Eqs 21,
22 reveal two estimates, ∂/∂A ∼ 1 and ∂/∂By ∼ By, where the second
estimate depends on the guide field value. Evidently, the differential
operator ∂/∂B̃y scales the same as ∂/∂By.

2.4.1 Reconstruction in a thin layer
Equation 25 provides us with the condition of the model self-

consistency and gives a clue to the first step formodel generalization.
The rightmost term of this equation vanishes under the following
assumptions:

n = n (A) , Te = Te (A) , Vey = Vey (A, B̃y) , Q = Q(A, B̃y) , (26)

while Eq. 25 itself takes the following form:

∂Vey

∂B̃y
= (Bg + B̃y)

d
dA
( 1
n
)− ∂

∂A
( Q
n2). (27)

Assumptions (26) are expected to be relevant in a thin current
layer spanning both the internal and external EDR, though the
cross size of the model applicability domain will highly likely not
exceed several de [see Figure 10 in Korovinskiy et al. (2020) and the
corresponding discussion]. Adopting assumptions (26) and utilizing
BLA, i.e., neglecting the second-order terms, Eqs 8, 19, 24make the
following system:

∂2A
∂z2
= n (A)Vey (A, B̃y) , (28)

∂2B̃y

∂z2
= Q(A, B̃y) +

1
n
dn
dA

∂A
∂z

∂B̃y

∂z
, (29)

∂φ*

∂z
= (Vey +

Te

n
dn
dA
) ∂A
∂z
+ 1
n
(Bg + B̃y −

Q
n
)
∂B̃y

∂z
. (30)

According to (7), the last term of the definition φ* = φ−Te −
0.5(V2

ex +V2
ez) is to be neglected (for being the smallest quantity of

the second order) to keep the consistency of the adopted approach.
The same is valid for the rightmost term of definition (11) forQ. It is
seen that initial values of all quantities, contributing Eqs 28–30, and
hence the functional dependences of n(A) and Te(A) are obtained
from the boundary conditions (for Q the data of at least two
spacecraft are required). However, the exact functional dependences
for Vey and Q cannot be established. Taking in mind that the
Hall magnetic field is small as compared to the main magnetic
component (which is the reason why zero-order schemes with
Q = Q(A) and/or Vey = Vey(A) demonstrate good efficiency of the
weak guide field reconnection reconstruction), for approximate
solution of this problem, we make use of the Taylor series on B̃y:

Vey (A, B̃y) =
∞

∑
k=0

1
k!
Vk (A) B̃

k
y, (31)

Q(A, B̃y) = n (A)
∞

∑
l=0

1
l!
ωl (A) B̃

l
y, (32)
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where the sum in the right-hand side of (32) represents the Taylor
series for the vorticity component ωey(A, B̃y). Substituting (31) and
(32) to (27),

k=∞

∑
k=1

B̃k−1
y

(k− 1)!
Vk (A) = (Bg + B̃y)

d
dA
( 1
n
)−

l=∞

∑
l=0

B̃l
y

l!
d
dA
(
ωl

n
), (33)

and by equating the terms containing the same powers of B̃y, we
derive the relations between the coefficients Vk and ωl.

V1 =
d
dA
(
Bg −ω0

n
), V2 =

d
dA
(
1−ω1

n
),

Vk = −
d
dA
(
ωk−1

n
), (34)

where k = {3,4,… }. Assuming that coefficients ωl(A) for
l = {0,1,… ,N− 1} are found, the coefficients {V1,… ,VN} are
evaluated, and V0(A) is calculated from the boundary conditions
as a difference between the data and the truncated Taylor series,
V0(A) = Vey −∑

k=N
k=1 (1/k!)Vk(A)B̃

k
y. The coefficients ωl(A) for l > 0

are, in turn, represented by the Taylor series on A.

ωl (A) =
∞

∑
m=0

1
m!

ωlmA
m, (35)

where ωlm are the numerical constants. Thus, the representation for
the vorticity takes the following form:

ωey (A, B̃y) = ω0 (A) + δω(A, B̃y) , (36)

δω(A, B̃y) = (ω10 +ω11A+ω12
A2

2!
+⋯) B̃y

+(ω20 +ω21A+ω22
A2

2!
+⋯)

B̃2
y

2!
+⋯ . (37)

Analogous to V0(A), the term ω0(A) is evaluated from the
boundary conditions, ω0(A) = ωey − δω, when coefficients ωlm are
known.The coefficientsωlm are found by solving the boundary value
problem (BVP) for the system (28–30). The number of coefficients,
which can be found this way, is equal to the number of extra
conditions imposed. At the capacity of these conditions, one can use
some limiting values of the peaking or average reconstruction error
for the calculated quantities. The solution of the system (28–30)
provides us with the values of 10 quantities: n, Te, B, Ve, Ex, and Ez .
However, the quantities Ex, Bz , and Vez cannot provide us with the
fiducial markers, since not an exact but the regularized problem is
solved, so that only seven quantities are left in the control list. Since
both n and Te are assumed to depend only on A, it is reasonable
to eliminate one of these quantities from the list also. Assuming
that the data of all four MMS spacecraft are available, we have
24 extra conditions, which are enough for developing the sixth-
order reconstruction scheme (ApB̃q

y : p ≥ 1, q ≥ 0, p+ q ≤ 6) with
21 coefficients. To avoid overdetermination, one can control the
reconstructed values of Te(A) or n(A) at a single probe only.

It should be noted that the term ω0(A) can also be represented
in a form of the truncated Taylor series. In this case, the coefficients
of this series enlarge the number of unknowns. This reduces the
maximal order of the scheme to five, but allows the problem solution
when the data on the velocity derivatives are unreliable (too noisy)

or unavailable. In this case, it may be convenient to modify the
technique by reversing relations (34).

ω0 = Bg − n∫V1 (A)dA, ω1 = 1− n∫V2 (A)dA,

ωk−1 = −n∫Vk (A)dA. (38)

Then, Vey is presented in the form analogous to (35–37), and
numerical coefficients Vkm and the integration constants of Eq. 38
are found from the solution of the same BVP.

2.4.2 The general case
In the most general case, all quantities are to be considered as

functions of two variables, (A, B̃y), which should allow extending
the GS reconstruction region over the entire EMHD domain.
This approach causes some modifications of the scheme and
complication of the system (28–30), now taking the following form:

∂2A
∂z2
= −jey (A, B̃y) , (39)

∂2B̃y

∂z2
= Q(A, B̃y) +

1
n
[ ∂n
∂A

∂A
∂z

∂B̃y

∂z
+ ∂n
∂B̃y
(
∂B̃y

∂z
)

2

], (40)

∂φ*

∂z
= 1
n
[(−jey +Te

∂n
∂A
) ∂A
∂z
+(Bg + B̃y +Te

∂n
∂B̃y
− Q
n
)
∂B̃y

∂z
].

(41)

Since n depends on B̃y, the representation of Q via ωey is out
of use and the representation (34) of the Vey-series’ coefficients
via coefficients of ωey or Q is not possible due to the term
n in the denominator of Eq. 25. So, introducing the notation
U = {n,Te,Q, jey}, we state the general scheme as follows:

U(A, B̃y) = U0 (A) + δU(A, B̃y) , (42)

δU(A, B̃y) =
l=∞

∑
l=1

B̃l
y

l!
Ul (A) =

l=∞

∑
l=1

B̃l
y

l!

m=∞

∑
m=0

ulm
m!

Am, (43)

U0 (A) = Ubc − δU|S̄, (44)

where the subscript bc stands for the boundary conditions and S̄
stands for the boundary itself (the trajectory of some particular
probe). When data of all the four MMS probes are available, the
representation (42–44) allows the third-order approximate solution
(24 coefficients) of the system (39–41). The four extra conditions
(now, both n and Te are in the control list) allow the representation
of the term Q0(A) in a form of the truncated Taylor series, when the
boundary conditions forQ are not in possession. For these low-order
schemes, the piecewise reconstruction in a sliding window may be a
good option.

2.4.3 The SCS-tailored technique
As needed, the described technique may be easily tailored for

calculations in the SCS x′yz′, presenting the rotated co-moving LMN
coordinate system, where the x′-axis coincides with the satellite
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trajectory and the z′-axis is normal to it. To this end, the neglected
terms of the considered equations are to be kept. Particularly, Eqs 39,
40 take the following form:

∂2A
∂z2
= −jey (A, B̃y) −

∂2A
∂x2 , (45)

∂2B̃y

∂z2
= 1
n
[ ∂n
∂A

∂A
∂z

∂B̃y

∂z
+ ∂n
∂B̃y
(
∂B̃y

∂z
)

2

]+Q(A, B̃y)

+ 1
n
[ ∂n
∂A

∂A
∂x

∂B̃y

∂x
+ ∂n
∂B̃y
(
∂B̃y

∂x
)

2

]−
∂2B̃y

∂x2 , (46)

where we omitted superscript ′ at all entries of x and z for shortening
the notations, while the y-components and potentials are invariant
with respect to the coordinate system rotating around the y axis.
Eq. 41 does not change, but the term∼ V2

ez in the definition ofφ* is to
be kept, as ∂Vez/∂x in definition ofQ.Themodification of Eqs 28, 29
for the thin-layer reconstruction in SCS is similarly straightforward.

Equations 45, 46 do not contain any term requiring the
calculation of some extra coefficients as compared to Eqs 39, 40;
hence, the same Taylor series technique is applied for solving these
equations. However, in SCS, the quantities Bz , Ex, and Vez augment
the control list; hence, we have 12 extra control conditions (if all
four MMS probes are in play). With representation (42–44) and 12
additional coefficients, one can build the fourth-order scheme (40
coefficients in total) for the system (41, 45, 46). In contrast with
the third-order scheme, in the fourth-order scheme, the quantity
Q0(A) cannot be represented in a formof theTaylor series, since such
representation would require five coefficients more, while we can
calculate only four by using Eq. 25, which specifies one extra control
condition at each spacecraft trajectory. An additional condition
q00 = 0, expressing the reasonable assumption of the absence of the
constant term, makes such representation available.

3 Results

In the present study, we investigate the technique of EMHD GS
reconstruction of the 2D steady-state reconnection kernel region,
namely, the EDR. We discuss two families of models, which we
call A1 (Sonnerup et al., 2016; Hasegawa et al., 2017; 2019; 2021)
and A2 (Korovinskiy et al., 2020; 2021) in terms of comparison of
their advantages and disadvantages. A1 represents a more universal
technique, appropriate for arbitrary orientation of the spacecraft
trajectory with respect to the EDR. It requires single probe data
to setup the calculations. A2 is simpler but less universal, it
is not appropriate for vertical crossings and it requires at least
two probes to evaluate the boundary conditions. Both models, as
they are developed for today, adopt some (different) simplifying
assumptions, restricting the applicability domain. One of these
assumptions, the constancy of number density, adopted in Model 2
of Korovinskiy et al. (2021), is released, and this new compressible
model is tested by reconstructing the event of Torbert et al.
(2018). This allowed three times expansion of the reconstruction
interval as compared to previous studies (Hasegawa et al., 2019;
Korovinskiy et al., 2021).

The fundamental limitations of the 2D steady-state treatment are
considered in terms of the reconstruction inaccuracy that emerges

when this simplified approach is utilized for the reconstruction of
real EDRs in Earth’s magnetotail. Particularly, the reconstruction of
the event of July 11, 2017, demonstrated the remarkable robustness
of the reconstruction technique A2 with respect to the violation
of the configuration two-dimensionality. It is found that weak 3D
effects (∂/∂y ∼ ϵ) do not ruin the reconstruction scheme, crashing
the reconstruction of the minor (normal to CS) electron velocity
component only, but not the other quantities. The productivity
of the EMHD GS technique in the unsteady reconnection
region reconstruction is tested by means of Marshall et al.’s (2020)
event. The reconstruction results agreed with the conclusion of
Marshall et al. (2020) concerning the duration of the reconnection
region crossing of about 0.3 s. The X-line between MMS1 and
MMS2, reported by Marshall et al. (2020), is also observed in our
reconstruction and is found to be close to the MMS1 trajectory.
Additionally, the O-line at the MMS3 trajectory and the X-line
between MMS3 and MMS4 (Figure 6C), moving toward MMS1
(Figure 6A), are also discovered. However, the abrupt break of
the steady state makes the reconstruction-trusted interval too
small (of the order of the distance between MMS1 and MMS3
trajectories, i.e., ∼2 de ∼ 10 km in cross section). For this event, the
polynomial reconstruction technique ofDenton et al. (2020) ismore
appropriate. In contrast to the herein presented steady-state model,
this technique does not rely on a time series of measurement points
but can treat each time point independently, contrary to the SOTE
method (Liu et al., 2019). It is able to provide information about the
magnetic field in 3D space at any given time and is therefore able to
resolve temporal evolutions of the field and current structures. With
regard to the present results, the existence of both X-lines, as shown
inFigure 6C, is confirmed in the studies ofHosner et al. (2022), who
utilized the reduced quadratic model of Denton et al. (2020).

The perspectives of improving the existing EMHD GS
reconstruction models are studied analytically. The presented study
has shown that the self-consistent EDR reconstruction model for
the EMHD system (1–5, 9), adoptable for arbitrary-oriented multi-
probe mission (MMS or future multi-spacecraft missions capable
of resolving the electron-scale physics) crossings, can be developed
without using any singular equation and/or simplified model for
the electron pressure anisotropy term (∇ ⋅ P̂e)y. All extra simplifying
assumptions, imposed on the model functions, can be released as
well. This can be made by implementing the polynomial technique,
similar to those of Denton et al. (2022), through operating in
variable space (A, B̃y) instead of in-plane Cartesian coordinates. The
coordinates (A, B̃y) seem to be preferable, since they are rotationally
invariant and exhibit the scaling ratio ∂/∂B̃y ≪ ∂/∂A (this scaling
ratio may violate in configurations with the strong guide field),
which is the same as the scaling ratio ∂/∂x≪ ∂/∂z, resembling the
stretched structural geometry in the proper Cartesian coordinates.
Apparently, the development of such polynomial reconstruction
scheme may come at the price of increased complicity of the
technical realization of the suggested method. However, at the
analytical level, the insuperable obstacles are not in view.

4 Discussion

In a general sense, EMHD GS reconstruction of any
reconnection event represents a complex problem, where
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reconstruction itself is a final step, which is preceded by the in
situ data analysis and event identification, estimate the structure
velocity (V0) and the proper LMN coordinate system. Discussing
all these aspects goes beyond the scope of the present study, where
we focus on the reconstruction problem in a strict sense. Since two
magnetotail reconnection events, addressed in this study, have been
introduced previously, for the omitted details, we refer the reader to
the corresponding studies of Hasegawa et al. (2019); Marshall et al.
(2020); and references therein. In particular, the reconstruction
setup in Section 2.2.3 is fully identical to those of Hasegawa et al.
(2019); Korovinskiy et al. (2021), which is made to facilitate the
results comparison. The setup of Section 2.3.2 differs from the
data of Marshall et al. (2020) mainly by the value of V0, since in
the cited study, the latter was estimated too rough. In terms of
the event study, the accurate estimate of V0 is important since
it specifies the relative motion of the spacecraft to the structure
(spacecraft trajectory). However, in terms of the study of the
reconstruction model efficiency, the accuracy of the V0 estimate
is less important since this estimate affects the spacecraft trajectory,
hence the model functions and the geometry of the reconstructed
magnetic configuration, but neither its topology nor the accuracy of
the magnetoplasma quantities reconstruction.

The EMHD GS reconstruction has got its name due to Eq. 8,
representing a zero-order scheme for evaluating the magnetic
potential A. Meanwhile, the accurate consideration of the problem
demands solving the two-dimensional problem, since in steady-state
2D configuration all magnetoplasma quantities stay functions of two
variables, whatever variable space is considered. However, in some
coordinate systems, these two independent variables are not peer
in terms of scaling. Particularly, in the co-moving LMN coordinate
system, where the z-axis coincides with the CS normal direction,
the scaling ratios ∂/∂z ∼ 1 and ∂/∂x ∼ ϵ≪ 1 allow considerable
simplification of equations by neglecting the minor terms ∼ ϵ2 with
respect to the major ones ∼1 (BLA). Apart from considerable
simplification of the equations, this approach represents the
technique of problem regularization (Korovinskiy et al., 2020). If
the guide field is small enough, |Bg |≪ 1, similar scaling estimates
are valid in the variable space (A, B̃y), where ∂/∂A ∼ 1 and ∂/∂B̃y ∼
(B̃y +Bg) ∼ ϵ. These scaling estimates result in Eq. 8, where the terms
containing B̃y are neglected as compared to themajor term [see, e.g.,
Eq. 21 of Korovinskiy et al. (2021)]. Nevertheless, both the accuracy
and the applicability domain of the zero-order models suffer from
excessive simplification. Moreover, the accuracy of such models
should decrease with the increasing guide field value. In a strong
guide field, the derivative operator ∂/∂B̃y may scale the same as
∂/∂A or even higher. For such events, the reconstruction schemes
of higher orders are demanded.

Development of such schemes by means of the polynomial
technique is considered in Section 2.4. The suggested method
benefits from the usage of both BLA and rotationally invariant
coordinates (A, B̃y) and allows the release of all unnecessary
simplifying assumptions imposed on the model functions n, Te,Vey,
and Q of Eq. 11. The practical realization of the polynomial method
would presumably allow extending the reconstruction region over
the entire EMHD domain, which, in turn, would shed more light
at the complex internal structure of EDR and the conditions of the
electron physics failure. It should be noted that the applicability
of the discussed reconstruction technique is not restricted to the

reconnection kernel zone only. The same approach can be adopted
for studying any magnetotail (and more general, collisionless
plasma) structure in which electron dynamics is paramount and 3D
and the temporal evolution effects can be neglected. Particularly,
EMHD GS reconstruction seems to be appropriate to studies of
the magnetic reconnection separatrix regions (SRs), the regions
that are adjacent to magnetic separatrices (topological surfaces
that separate reconnected and non-reconnected magnetic field
lines), and bear energetic electron and ion beams (Lapenta et al.,
2016; Khotyaintsev et al., 2019). These essential features of the SR
have been reproduced even by the simplest incompressible model,
neglecting both electron pressure anisotropy and inertia, which was
utilized for the benchmark reconstruction of the PIC-simulation
data (Semenov et al., 2009). The extended model, discussed in this
paper, would allow more detailed studies of the SRs, where different
motions of magnetized electrons and non-magnetized ions give rise
not only to intense Hall electric and magnetic fields (Øieroset et al.,
2001; Eastwood et al., 2010) but also to the large density fluctuations,
the electron holes (Huang et al., 2014), making the region to exhibit
the double layer structure (Paschmann et al., 2013).

The further advantage of EMHD GS reconstruction stems from
the fact that the equation of the ion motion splits from the system
(1–5, 9). It means that ions move in the applied field, and the ion
bulk velocity is evaluated when other magnetoplasma quantities are
found. The simplified problem analysis is given in Korovinskiy et al.
(2008). Under proper generalization, the analogous approach can
be applied in the extended reconstruction models A1 and A2.
This, in turn, provides the opportunity of analytical studies of the
ion motion in the SR in view of such high-impacting factors as
ion mass, temperature, and distance to X-line, affecting both ion
heating and acceleration (Zaitsev et al., 2021). For example, the ion
mass appears to be a crucial parameter for the kinetic energy gain
because of the assumed energization condition |mi∇E⊥/(eB2)| > 1
(Cole, 1976). The temperature of the cold ion fraction is also of high
importance because these ions may change the reconnection rate
(André and Cully, 2012), reduce the Hall current (André et al., 2016;
Dargent et al., 2017), and change the energy budget of magnetic
reconnection (Toledo-Redondo et al., 2017). At last, the distance
to X-line is of high importance because the reconnection electric
field, driving cold ions inside the exhaust without thermalization,
exists only between the X-line and the pileup front (Alm et al., 2018;
Toledo-Redondo et al., 2018), on the contrary to the Hall electric
fields that presents in the entire SR.

The less evident, EMHD GS reconstruction can be utilized
for studies of the kinetic (Pritchett and Coroniti, 2010) or
MHD (Sorathia et al., 2020) ballooning-interchange (BI) instability,
explaining the appearance of auroral beads and related ionospheric
current disturbances in the late substorm growth phase (Panov et al.,
2019; Sorathia et al., 2020). More specifically, this method may
be applied for studies of BI heads, which are located in the
near-Earth plasma sheet at the distances of 7–14 Earth’s radii
downtail, where they can drift in both dusk and dawn directions
(Panov et al., 2012; Panov and Pritchett, 2018a). Indeed, the kinetic
BI mode is identified as the low-frequency extension in a curved
magnetic geometry of the lower-hybrid-drift instability in straight
magnetic fields (Pritchett and Coroniti, 2010; 2011; 2013) with
|ji/je| ∼ 0.2 (Panov and Pritchett, 2018a; b). Thus, BI heads represent
slowly varying (as compared to the electron plasma frequency)
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quasi-2D structures (oriented in the equatorial plane) governed by
the electron currents, i.e., they fulfil all the basic assumptions of the
EMHD GS reconstruction models. The reconstruction of the proper
in situ data would provide an insight to morphology of the BI heads
and ion motion driving mechanisms. In particular, the problem of
the primary driver of the ion motion in BI heads (the Hall electric
field or the ion proper buoyancy) could be addressed.

Apart from providing an intermediate step between satellite data
and numerical simulations, EMHD GS reconstruction also allows
the analysis of various electron-scale structures in terms of their
key parameters, such as plasma β, entropy, magnetic field curvature,
and electron kinetic scales. The present study demonstrates the
significant potential of this method both in terms of the increase
of physical accuracy and in terms of model scope expansion. The
furthest improvement of the EMHD GS technique assumes the
generalization of the reconstruction model for fully anisotropic
electron pressure and temperature, which stays a challenging
problem for future studies.
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