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There continue to be open questions regarding the solar wind and coronal
mass ejections (CMEs). For example: how do magnetic fields within CMEs
and corotating/stream interaction regions (CIRs/SIRs) evolve in the inner
heliosphere? What is the radially distributed magnetic profile of shock-driving
CMEs? What is the internal magnetic structure of CMEs that cause magnetic
storms? It is clear that these questions involve the magnetic configurations of
solar wind and transient interplanetary plasma structures, for which we have
limited knowledge. In order to better understand the origin of the magnetic
field variability in steady-state structures and transient events, it is necessary to
probe the magnetic field in Earth-directed structures/disturbances. This is the
goal of the Multiview Observatory for Solar Terrestrial Science (MOST) mission
(Gopalswamy et al., 2022). For MOST to answer the aforementioned questions,
we propose the instrument concept of the Faraday Effect Tracker of Coronal and
Heliospheric structures (FETCH), a simultaneous quad-line-of-sight polarization
radio remote-sensing instrument. With FETCH, spacecraft radio beams passing
through the Sun–Earth line offer the possibility of obtaining information of
plasma conditions via analysis of radio propagation effects such as Faraday
rotation and wave dispersion, which provide information of the magnetic field
and total electron content (TEC). This is the goal of the FETCH instrument,
one of ten instruments proposed to be hosted on the MOST mission. The
MOST mission will provide an unprecedented opportunity to achieve NASA’s
heliophysics science goal to “explore and characterize the physical processes
in the space environment from the Sun” (Gopalswamy et al., 2022).

KEYWORDS

solar corona, coronal magnetic fields, coronal plasma density, coronal mass ejection,
polarimetry, Faraday rotation (FR), MHD waves, space weather
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1 Introduction

Within the interplanetary plasma, coronal mass ejections
(CMEs) and stream interaction regions (SIRs) constitute very large
and intensive transient structures. From their origins in the solar
corona, CMEs and SIRs drive space weather on Earth, affecting
society (Council, 2008; Eastwood et al., 2017; Oughton et al., 2017).
CMEs are most impactful during solar maximum, while SIRs are
notable in disrupting the Earth’s geomagnetic space during solar
minimum (Zhang et al., 2007; Jian et al., 2015; Gopalswamy, 2016).
Geomagnetic storms can bring numerous space weather hazards.
Intense particle radiation can cause satellite malfunction and pose
a health threat to astronauts. Ionospheric heating and expansion in
turn increase drag on satellites, with debris degrading their orbits.
Time-varying magnetic fields induce surges in electricity lines.
Geomagnetically disturbed ionospheric scintillations can distort the
amplitude and phase of traversing radio signals, causing a risk of
navigation errors and signal loss.TheCommittee on the Societal and
Economic Impacts of Severe SpaceWeather Events (2008) estimated
a “severe geomagnetic storm scenario” that could incur 1 trillion in
societal and economic damage (see references in Jensen et al., 2010
for specific examples).

Understanding and predicting the effects of CMEs and SIRs
require sufficient observations of their plasma properties to
inform predictivemodels, including variousmagnetohydrodynamic
(MHD) models. To address these and related questions, the Solar
Terrestrial Relations Observatory (STEREO) mission was launched
in October 2006 (Kaiser et al., 2008). To observe solar wind plasma
prior to the Earth’s L1 Lagrangian position (Kaiser et al., 2008;
Panchenko et al., 2014), each STEREO spacecraft on either side of
the Earth–Sun line possesses a pair of coronagraphs, Cor1 andCor2,
and a pair of heliospheric imagers (HIs), HI1 and HI2; combined
together, they observe solar wind plasma in Thomson scattered light
continuously from the low corona to beyond 1 au. Analysis of these
datasets provides dramatic observations of plasmadensity structures
associated with CMEs and SIRs; however, STEREO is unable to
remotely observe one of the most important features in transient
structures, namely, the magnetic field. In contrast, Faraday rotation
(FR) observations have detected clear magnetic structures in several
CME events (Kooi et al., 2022b, Kooi et al., 2021; Jensen and Russell,
2008). Numerical simulations of FR measure have demonstrated
that for idealized models, the magnetic field orientation and helicity
of a flux rope can be determined 2–3 days before it reaches 1 au,
providing a valuable space weather forecast (Liu et al., 2007). FR
observations can also resolve the portion of CME flux ropes that
curves back to the Sun (Liu et al., 2007).

In addition to large-scale structures, studies have shown
that FR observations can provide critical information on plasma
waves, which are significant to the flow of turbulent energy
in interplanetary space (Jensen et al., 2013; Efimov et al., 2019;
Kooi et al., 2022c). For example, MHD waves facilitate the transfer
of energy between spatial and temporal scale sizes as shown in
turbulence studies (Viall and Borovsky, 2020). The waves have a
significant role in discontinuities and shocks (Kilpua et al., 2022);
they can drive particle heating and acceleration (Suzuki and
Inutsuka, 2005), and their presence constrains the characteristics of
the plasma that can support them (Hollweg et al., 1982; 2010).

In order to fully exploit FR to probe the magnetic field in
Earth-directed structures (e.g., CMEs/SIRs) and other disturbances
(e.g., MHD waves), we propose the Faraday Effect Tracker of
Coronal and Heliospheric structures (FETCH) for measuring the
inner heliospheric magnetic field (Gopalswamy et al., 2022). While
photospheric and chromospheric magnetic fields can be readily
measured using magnetographs, novel techniques are needed
to measure the magnetic field with radio waves, especially at
distances far from the Sun. FETCH is one of the proposed
instruments on the Multiview Observatory for Solar Terrestrial
Science (MOST) (Gopalswamy et al., 2022), for which the goal is
to understand the magnetic coupling between the solar interior
and the heliosphere and the origin and variability of the solar
wind and transient structures. The MOST mission consists of a
total of four spacecraft, two pairs of spacecraft distributed in the
vicinity of each of the Sun–Earth Lagrange points L4 and L5 and
close to the quadrature (see Figure 1). The FETCH-polarized radio
transmitters and receivers will be on all four spacecraft to measure
the integrated magnetic field along four lines of sight crossing the
Sun–Earth line. The frequency of the radio signals is low enough
to experience measurable changes in intensity, polarization angle,
degree of linear polarization, and apparent Doppler frequency.
Between four spacecraft, four propagation paths (aka lines-of-sight)
are established for these crucial measurements (Figure 1).

2 FETCH goals and objectives: CMEs,
SIRs, and MHD waves

FETCH is an active radio instrument (emitting radio waves
for measuring rather than relying on astrophysical sources of
radio waves such as pulsars), detecting the modifications of a
transmitted signal caused by its traversal through a magnetized
plasma. FETCH’s greatest technological challenge is achieving a
sufficient signal-to-noise ratio, given the restrictions of power,
antenna collecting areas, and distance. It will be the first instrument
to pass very high frequency (VHF) radio signals between spacecraft,
which are separated by 2 au at positions near L4 and L5. As
we detail in the instrument concept later, the signal frequency,
phase, polarization, amplitude, and spectral distribution will
be combined to measure FR, total electron content (TEC),
Faraday rotation fluctuations (FRF), and frequency fluctuations (FF)
using established techniques (Efimov et al., 2000; Imamura et al.,
2014; Wexler et al., 2017; Jensen et al., 2018; Wexler et al., 2021;
Kooi et al., 2022a; Kooi et al., 2022b; Kooi et al., 2022c; Kooi et al.,
2022d; Kooi et al., 2022e; Wood et al., 2022).

FR analysis of linearly polarized signals provides information
on the LOS-integrated product of electron number density (ne) and
LOS-aligned component of the magnetic field (B⃗ ⋅ d ⃗s). The magnetic
field is given by B, and the LOS path is given as s. The integration
begins at the transmitter s = 0, and it completes at the receiver s = S.
Given the change in the plane of the polarization position angle, FR
is expressed as

FR = A
f2o
∫S0 d ⃗s ⋅ ( ne B⃗)

RM = FR
λ2 ,

(1)
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FIGURE 1
Overview of the MOST mission with the four constituent spacecraft at L4 (MOST1), L5 (MOST2), ahead of L4 (L4a, MOST3), and behind L5 (L5b,
MOST4). MOST3 and 4 will carry only radio equipment for FETCH. MOST1 and 2 will have identical remote-sensing and in situ instrument suites. The
approximate MOST1→MOST2 and MOST3→MOST4 distances are shown at the left, indicating the long signal paths for spacecraft radio signals. (Blue
text shows the offset distance to the point-of-closest-approach between the LOS and the Sun). The red lines in the right indicate FETCH signal paths;
the green arrows label these paths line 1–4 and give the forward directions. This enables a rudimentary radio tomographic image using FR (Fung et al.,
2022). The yellow double arrows indicate communication links to Earth. Note that MOST3 and 4 slowly shift position between L4 and 5 and the
locations shown throughout the MOST mission [adapted from Gopalswamy et al. (2022)].

with A = 2.36× 104 in mks units rad m2T−1 s−2 and the
frequency of the signal fo in Hz. A convention that we commonly
use to express FR is to normalize it by wavelength λ to calculate the
rotation measure (RM).

The total electron content is the measure of the column density
of plasma along the LOS. The TEC is critical to deconvolving the
average LOS magnetic field strength from the RM, and with the
use of tomography, TEC can provide the 3-D plasma density. The
TEC can be obtained from both the radio signal’s group and phase
velocities. The group velocity translates to an arrival time delay,
famously measured with the differenced range versus integrated
Doppler (DRVID) (Woo et al., 1976). In contrast, the phase velocity
gives the change in TEC and is measured from an apparent Doppler
shift in the FF of the narrowband signal after the Doppler shift has
been removed (Jensen et al., 2016) [see Kooi et al. (2022a) for more
information].

CMEs produce the largest scale and most intense disturbances
in the heliosphere (Chen, 2011; Temmer, 2021). As they approach
Earth, the magnetic ejecta may extend over 0.25 au, and the CME-
driven shock may extend twice as far (Jian et al., 2006; Kilpua et al.,
2017a; Manchester et al., 2017; Gopalswamy et al., 2018; Jian et al.,
2018). At 1 au, CME velocities can exceed an impressive 2,000 km/s,
CME magnetic fields can go over 100 nT, and the plasma densities
have been recorded above 50 protons cm−3, that is≈5–10 times larger
than the ambient solar wind density values (Gopalswamy et al.,
2009; Kilpua et al., 2017b). Previously observed flux ropes in FR
had a simple structure within the lower corona (Jensen and Russell,
2008; Jensen et al., 2018). As CMEs expand into the solar wind,
their structure becomes increasingly complex, and FETCH enables
studying the structures of CMEs when this occurs. Measuring the
plasma structure of CMEs and their evolution through space is
crucial to predicting spaceweather as described usingMHDmodels.
As discussed earlier, spaceweather prediction is critical to protecting
infrastructure, making this effort a significant safety issue. As we
will discuss later, magnetic field measurements with FETCH are

enhanced when a structure/disturbance is coherent and comparable
in size to the line-of-sight; portions of it have magnetic fields
oriented anti-/parallel to the line-of-sight, and it extends radially
enough to characterize unique changes as it flows outward.

SIRs lasting more than one Carrington rotation are known as
corotating interaction regions (CIRs). For the remainder of the
paper, we refer more generally to SIRs. The geoeffectiveness of SIRs
is variable; for example, they can cause longer geomagnetic storms
than CME-driven events (Gonzalez et al., 1994; Chen et al., 2014),
and their inclination could impact substorm intensity (Oliveira and
Raeder, 2014). In situ SIR properties are sometimes observed to
vary significantly between different spacecraft locations that are near
the same heliocentric distance but at different helio-longitudes and
helio-latitudes. For instance, while both STEREO A and B were
located near 1 au from the Sun (with A and B spacecraft leading
and following the Earth, respectively), multiple SIRs observed by
the two spacecraft varied in profiles of velocity, magnetic field
strength, density, and other parameters (Jian et al., 2019). The fast
solar wind speed for the STEREO spacecraft are separated by tens
of degrees in orbit that can differ from L1 spacecraft by up to
100 km/s, maximum magnetic field by 8 nT, and the peak proton
density by 30 cm−3. Observation of such variability over large spatial
scales would require either a large number of spacecraft for in situ
measurements or the development of a remote-sensing technique as
in FETCH.

MHD waves, such as Alfven and magnetosonic waves, have
a significant role in the transfer of energy in the plasma of
interplanetary space. Generated and modified by shocks and
discontinuities, MHD waves provide important information on the
plasma properties through which they propagate. Through both
the magnetic field and density fluctuations, they are found in FR
measurements where the FR plane of polarization angle fluctuates
on a wide range of temporal and spatial scales. FR, the change in the
plane of polarization along a signal’s propagation path, is due to the
combined contribution of the electron density and magnetic field
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in the plasma through which the signal is passing. Distinguishing
the cause of the FRF between the magnetic field and N-wave
sources is benefited by comparison with fluctuations in the TEC. For
example, frequently, the power in these FRFs is greater than the TEC
fluctuations due to theirMHD wave source, particularly if the waves
are non-compressive (Hollweg et al., 1982 using Helios spacecraft).

Thepractice of detecting and analyzingMHDplasmawaveswith
FRFs in interplanetary space is limited by the paucity of high time-
resolution observations (e.g., MESSENGER spacecraft Jensen et al.,
2013 and radio galaxies and quasars Sakurai and Spangler, 1994).
With the available data, spectral analyses of FRFs have shown that
the greatest amount of wave power is in the lowest frequencies
with quasi-periodic fluctuations between 4 and 10 min: Efimov et al.
(1993) and Chashei et al. (1999) both use Helios spacecraft and
Wexler et al. (2017) uses the MESSENGER spacecraft. It is worth
briefly summarizing here examples of the work that FETCH would
be capable of with sufficient observation. With the Helios data
(f = 2.3 GHz, λ = 13 cm), tantalizing details on mass and energy
fluxes in the corona have emerged. Efimov et al. (2019) found little
variation in turbulence with the solar cycle, but this contradicts
the finding with MESSENGER (Jensen et al., 2013). Efimov et al.
(2015) determined that the observed velocities were outward, the
sum of the solar wind speed and Alfven velocity. Kooi et al. (2014)
found possible evidence of Joule/wave heating of the coronal
plasma. Various theoretical calculations suggest the benefits of these
observations. For example, Hollweg et al. (2013) found reverse-flow
Alfven waves to be weak, whereas oblique Alfven waves could drive
MHD turbulence.

3 Science Traceability Matrix
discussion

The pathway to achieving the objectives of the FETCH
instrument can be described by a Science TraceabilityMatrix (STM).
In this section, we explain the details of the technical requirements
and project performance columns of the STM (Table 1). To
understand the technical requirements, we need to establish the
essential characteristics of two plasma observations collected with
radio receivers, FR, and TEC. We then explain how interplanetary
plasma structures of interest reveal themselves in these observables
(STM-CME, STM-SIR, and STM-MHD).

STM-CME: determining the minimum performance
parameters for the FETCH instrument, ±8° in Table 1 for the plane
of polarization resolution used three uniquely different sources.
The first is an MHD model of the 2005 May 13 event (discussed
imminently; Manchester et al., 2014). The second is the work by
Howard (2011) looking at “typical” CME properties extrapolated
from 1 au, which showed that a large (> 10°) FR response is not
unusual. The third is the work with the largest error bars from
successful FR experimental data analysis (Jensen, 2007). Examining
the FETCH instrument’s performance with the 2005 May 13 CME
model, Figure 2 shows that the CME passage could extend for well
over 10 h, so observations need to be regularly obtained in order
to observe the complete CME structure. This time duration is an
issue with ground observations; only the Deep Space Network
is capable of maintaining an observation this long. Assuming
that simultaneous transmission/reception has an insufficient radio

signal-to-noise ratio (worst case scenario), the observing sequence
will consist of alternative transmitting and receiving at intervals
of 16 min (the length of time for a signal-to-travel 2 au), enabling
32 min of observing every hour among the four spacecraft. The best
case scenario is the capability to simultaneously transmit/receive for
continuously observing.

STM-SIR: the expected FETCH results from probing stream
interaction regions can be estimated by extracting the column
density and LOS-FR time series from global heliospheric models.
Figure 3 illustrates the L4–L5 LOS placement transverse to an SIR
during the Carrington rotation 2109, using the AWSoM model as
described by van der Holst et al. (2014).When the LOS is transverse
to the SIR, the TEC is low, but TEC reaches a maximum as the
SIR rotates across the LOS to approximately tangential orientation
within the core of the SIR. From such a time series of TEC results,
it is possible to estimate the density compression factor within the
SIR. The FR curves show an asymmetrical temporal pattern with
an initial steep change in FR accompanied by polarity reversal
[see Borovsky (2020)], followed by a more gradual trail-off in the
new polarity. These preliminary results suggest that FETCH will be
valuable for evaluating inner heliosphere SIRs ahead of their arrival
in the local geospace.

STM-MHD: recall that the application of theory for analyzing
the plasma waves detected is limited by the paucity of high time-
resolution observations (e.g., MESSENGER spacecraft Jensen et al.,
2013 and radio galaxies and quasars Sakurai and Spangler, 1994).
However, spectral analyses of FRF have shown that the greatest
amount of power spectral density is in periods between 4 and
10 min (Efimov et al., 1993; Chashei et al., 1999; both using Helios
spacecraft). In analyzing Cassini FR data, Jensen and Russell
(2007) found an integration limit of 100 s while minimizing
error bars in the plane of polarization. Longer integrations lost
coherence in the phase difference between the right- and left-handed
polarizations; this is consistent with FRF changing the plane of
polarization coherently (not randomly) with periods greater than
200 s. Investigating MHD waves with FR should be undertaken
with 30 min of continuous observing to determine the maximum
(4–10 min) wave power.

3.1 FETCH engineering design

The FETCH instrument has two transceiver channels for
operation at two perpendicular linear polarizations and two
frequencies. As shown in Figure 4 of the FETCH antenna design,
the cross-dipole log-periodic antenna transmits and receives two
polarizations, linearly in two perpendicular directions. The plane
of polarization is measured using Stokes parameters, I, Q, U, and
V, which fully characterize the signal and are measured from the
real and imaginary signal amplitudes received by the two orthogonal
antenna elements.Wehave tested the processing systembymodeling
low signal-to-noise ratio (SNR) conditions on the received signal
in the two polarizations. Our initial Simulink simulation of
the transceiver system was receiving the transmitted rotation in
polarization. The total expected data needed for all four FETCH
antennas combined are 22 MB per day for both measurements
and ancillary/housekeeping data. FR resolution is a function of the
background noise and the polarization of the signal relative to the

Frontiers in Astronomy and Space Sciences 04 frontiersin.org

https://doi.org/10.3389/fspas.2023.1064069
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Jensen et al. 10.3389/fspas.2023.1064069

TA
BL

E
1

Sc
ie
nc

e
Tr
ac
ea

bi
lit
y
M
at
ri
x
fo
rF

ET
CH

to
su

pp
or
tt
he

M
O
ST

m
is
si
on

go
al

to
un

de
rs
ta
nd

th
e
m
ag

ne
ti
c
co

up
lin

g
of

th
e
Su

n
to

th
e
he

lio
sp

he
re
.*
To

m
og

ra
ph

ic
an

al
ys
is
ap

pr
oa

ch
co

m
pr
is
es

fu
tu
re

w
or
k.

Sc
ie
nc
e
go

al
s

Sc
ie
nc
e
qu

es
tio

ns
In
ve
st
ig
at
io
n
ob

je
ct
iv
e
re
qu

ire
m
en

t
Fu

tu
re

m
is
si
on

to
p
le
ve
l

re
qu

ire
m
en

t

M
ea
su
re
m
en

t
Re

qu
ire

m
en

t
Pr
oj
ec
te
d
pe

rf
or
m
an

ce

U
nd

er
st
an

d
C
M

E-
dr

iv
en

va
ria

bi
lit

y
in

th
e
Su

n–
Ea

rt
h

sy
st
em

an
d

im
pr

ov
e

sp
ac

e
w
ea

th
er

ad
va

nc
e

w
ar

ni
ng

ca
pa

bi
lit

y
fo

rs
oc

ie
ty

W
ha

td
riv

es
C
M

E
m

ag
ne

tic
an

d
st
ru

ct
ur

al
ev

ol
ut

io
n
as

it
pr

op
ag

at
es

?

FR
,T

EC
(w

hi
te

lig
ht

),
FR

F,
an

d
FF

±8
de

g 
er

ro
r

at
10

0–
20

0 
M

H
z,

ob
se

rv
at
io

ns
co

lle
ct
ed

ov
er

se
ve

ra
lh

ou
rs

To
m

og
ra

ph
ic

an
al
ys

is
en

ab
le
d
by

lig
ht

-t
im

ed
el
ay

*;
pa

ra
lle

l
av

er
ag

e
m

ag
ne

tic
fie

ld
an

al
ys

is

M
iss

io
n

su
cc

es
s
in

an
y
so

la
r

cy
cl
e

ph
as

e:
w
he

n
ac

tiv
ity

is
lo
w,

ob
se

rv
e

SI
Rs

;
w
he

n
ac

tiv
ity

is
hi

gh
,

ob
se

rv
e

C
M

Es

U
nd

er
st
an

d
SI

R-
dr

iv
en

va
ria

bi
lit

y
in

th
e
Su

n–
Ea

rt
h

sy
st
em

H
ow

do
th

e
m

ag
ne

tic
fie

ld
fe
at
ur

es
of

co
ro

ta
tin

g
st
re

am
in

te
ra

ct
io

n
re

gi
on

s
in

th
e

ex
te
nd

ed
co

ro
na

an
d

he
lio

sp
he

re
va

ry
w
ith

tim
e?

FR
,T

EC
(w

hi
te

lig
ht

),
FR

F,
an

d
FF

FR
an

d
TE

C
ob

se
rv

at
io

ns
ne

ed
to

be
co

lle
ct
ed

pe
rio

di
ca

lly
fo

r
a

w
ee

k,
lo
ng

en
ou

gh
to

ob
se

rv
e

th
e

m
ax

 a
nd

m
in

 in
bo

th
fr
om

th
e
SI

R

±2
de

g 
er

ro
r
in

th
e
m

ea
n

at
10

0–
20

0 
M

H
z,

ob
se

rv
at
io

n
is

ex
pe

ct
ed

to
ex

te
nd

fo
r

m
on

th
s

Pr
im

ar
y

an
d

ex
te
nd

ed
m

iss
io

n:
11

ye
ar

s
in

or
bi
t,

lo
ng

en
ou

gh
fo

r
an

av
er

ag
e

so
la
rc

yc
le

U
nd

er
st
an

d
M

H
D

w
av

e
in

vo
lv
em

en
t
in

th
e

tr
an

sf
er

of
en

er
gy

an
d

m
at
te
r
in

th
e

he
lio

sp
he

ric
so

la
r
w
in

d
an

d
C
M

Es

W
ha

ta
re

th
e
re

le
va

nt
M

H
D

sc
al
e

siz
es

fo
r

ca
rr

yi
ng

m
ag

ne
tic

m
om

en
tu

m
an

d
en

er
gy

?
H
ow

ar
e

th
ey

di
ffe

re
nt

fo
r
di

ffe
re

nt
sp

at
ia
l

an
d
pl

as
m

a
so

ur
ce

re
gi
on

s?

FR
F

an
d

FF
po

w
er

de
ns

ity
sp

ec
tr
al

ch
ar

ac
te
ris

tic
s

Sa
m

pl
e

ra
te

m
us

t
be

a
fr
ac

tio
n

of
5 
m

in
,

th
e

do
m

in
an

t
po

w
er

in
FR

F
sp

ec
tr
a;

tr
an

sm
iss

io
n

tim
e

ne
ed

st
o
be

30
 m

in
 o
rl

on
ge

r
fo

ri
nv

es
tig

at
in

g

10
0 
s
is

th
e
tim

e
in

te
gr

at
io

n
lim

it
of

th
e
re

ce
iv
ed

sig
na

l

Frontiers in Astronomy and Space Sciences 05 frontiersin.org

https://doi.org/10.3389/fspas.2023.1064069
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Jensen et al. 10.3389/fspas.2023.1064069

FIGURE 2
Simulated CME structure extracted along Line 3 (MOST 3→2) shown in a time series. The spatial distribution along the LOS of the density (panel 1L), the
change in RM (panel 2L), the magnetic field parallel to the LOS (panel 3L), and the perpendicular velocity to the LOS (panel 4L) are shown to the left
from the top to bottom, respectively, as functions of time. Here, the abscissa axis shows time with t = 0 since CME initiation in the AWSoM model, while
the ordinate axis shows the distance along the LOS in solar radii. The plots to the right show LOS (integrated over the LOS distance) quantities. The red
region is the location of the receiving spacecraft, and the arrow aids the reader to view the time profile collected at the location. From the top to
bottom, respectively, we present the TEC (panel 1R), the RM observed at MOST2 (panel 2R), the average magnetic field (both modeled and calculated
(panel 3R), and the average perpendicular velocity (panel 4R). LE and TE show the leading and trailing edges of the CME obtained from in situ analysis.
The SIR is labeled.

orientations of the two receiving cross-dipole elements. The largest
source of noise is theMilkyWay galaxy.The notional antenna design
was selected for its wide main beam, which enabled both spacecraft
across the Earth–Sun line to be encompassed.This said, the receiving
spacecraft, in two transmission beams, will distinguish between

them due to their sufficiently different narrowband frequencies. The
two frequencies enable separating Doppler motion from plasma
effects, and they also enable distinguishing spacecraft polarization
changes from those induced by the plasma. The plasma effects
all vary with frequency, whereas the spacecraft’s position and
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FIGURE 3
Left: AWSoM simulation of heliospheric density for CR2109. The spiral SIRs appear in enhanced density in the solar equatorial plane. The FETCH L4–L5
LOS (line 1 in Figure 1) is oriented approximately transverse to the SIR, where TEC reaches a minimum. Right: the FR and TEC (shown in solid red and
black dot-dash, respectively) are observed as the rotation advancement brings the SIR across the FETCH L4–L5 LOS. An unscaled, concurrent TEC
curve shows a similar placement of the peak but contrasts with the RM curve in its rate approaching zero.

FIGURE 4
(A) MOST1 and 2 with the full instrument suite. (B) MOST3 and 4 with FETCH elements. See Gopalswamy et al., 2022 for details about the other
instruments. The FETCH antenna is a log-periodic cross-dipole antenna extending approximately 3 m on its axis. The elements are illustrative only. The
antenna boom on MOST1 and 2 is necessary to keep it out of the field of view of imagers.

orientation do not. The technology for FETCH signal processing is
well established.

FETCH is based onmatureVHF technology, but the engineering
design of the system is in the process of being optimized. There
is no technology risk in which all of the individual components
have been commercialized and fabrication facilities already exist;
however, the solution space with respect to various engineering
design parameters includes defining the exact frequencies, signal
processing (e.g., pulse), and other antenna parameters. Using the
NASA development descriptions in technology readiness level
(TRL), FETCH components are in varying TRLs from its heritage

technology roots in the Department of Energy Fast On-orbit
Recording of Transient Event (FORTE)mission antenna (Huang and
Roussel-Dupré, 2005) to its significant performance challenges that
need to bemet in 2 au of path length. Cost estimates were performed
by qualitatively comparing the tasks required to reach a successfully
demonstrated final product (TRL-8) against the typical funding
available for those tasks. We estimate that this will take 4 years and
cost 4.8 M. However, note that components with low permissible
variation limits and tolerances may come with a significant cost.
A 1M unexpected equipment cost (contingency) is possible due to
these kinds of constraints occurring.
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3.2 Summary and conclusion

Magnetic fields are of critical importance to heliospheric
physics from wave heating to CMEs that drive space weather,
yet observations to date have been limited to extremely sparse
in situ observations and even more infrequent FR observations
made with radio galaxies and other non-solar polarized sources
(Kooi et al., 2022d). Only two spacecraft missions have had the
conjunction of availability and resources for Faraday rotation
fluctuation observation (Helios and MESSENGER, see Section 2).
To vastly increase the availability of IMF observations, we propose
the multi-spacecraft instrument FETCH, which is capable of nearly
continuous FR-FRF observations along four separate lines of sight
crossing the Sun–Earth line and passing from ≈0.14 to 0.5 au of
the Sun. Viewing the solar wind plasma upstream of the Earth
from an unobstructed perspective enables space weather studies,
particularly of CMEs and SIRs. FETCH enables observing the radial
profile of these disturbances, their internal magnetic structure, and
their evolution. FETCH is an essential instrument for advancing
space weather research. In future work, we will develop the
rudimentary tomographic analysis enabled by the 2D+ time FETCH
configuration.The 3D reconstruction is a function of 1) radio signals
sensitive to plasma structures larger than the Fresnel zone, 2) the
light–time delay of signal propagation, 3) flow characteristics of the
plasma, 4) coherence with distance both radially and azimuthally,
and 5) a 3D CME or SIR plasma model using these boundary
conditions to restrict the solution space. The FETCH configuration
enables both coarse and fine tomographic reconstructions of the
electron density and magnetic field strength, which enables us to
decouple the plasma and magnetic field contributions to the FR
signal in the ecliptic plane.

FETCH observations are essential for addressing NASA’s
heliophysics science goal to “explore the physical processes at work
in the space environment from the Sun to Earth and throughout
the Solar System.” The MOST mission goal is “to understand
the magnetic coupling of the Sun to the heliosphere.” FETCH is
one of ten instruments comprising the MOST mission. Using the
phenomenon of FR in conjunction with other radio propagation
effects, FETCH enables the detection of the magnetic field within
CMEs, SIRs, and MHD waves. CMEs and SIRs are events/structures
important to Earth’s space weather. MHD waves not only transfer
energy in the heliosphere but also convey important information
through the medium.
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