
TYPE Technology and Code
PUBLISHED 14 April 2023
DOI 10.3389/fspas.2023.1023550

OPEN ACCESS

EDITED BY

K-Michael Aye,
Freie Universität Berlin, Germany

REVIEWED BY

Nickolay Ivchenko,
Royal Institute of Technology, Sweden
Pablo Gutiérrez-Marqués,
Max Planck Institute for Solar System
Research, Germany

*CORRESPONDENCE

Carl Björn Kjellstrand,
bkjell@gmail.com

SPECIALTY SECTION

This article was submitted to Space
Physics, a section of the journal
Frontiers in Astronomy and Space
Sciences

RECEIVED 19 August 2022
ACCEPTED 28 February 2023
PUBLISHED 14 April 2023

CITATION

Kjellstrand CB and Williams BP (2023),

SkyWinder: A Python package for flight

control, telemetry, and image analysis.

Front. Astron. Space Sci. 10:1023550.

doi: 10.3389/fspas.2023.1023550

COPYRIGHT

© 2023 Kjellstrand and Williams. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which does
not comply with these terms.

SkyWinder: A Python package for
flight control, telemetry, and
image analysis

Carl Björn Kjellstrand1* and Bifford P. Williams2

1School of Earth and Space Exploration, Arizona State University, Tempe, AZ, United States, 2Global
Atmospheric Technologies and Sciences, Boulder, CO, United States

SkyWinder is an open-source Python package useful for instrument control,
telemetry, and image analysis. It is adapted from software that successfully
managed flight control, telemetry, preliminary image analysis, and data
visualization for a balloon-borne mission and it has broad uses for mid- and
upper-atmosphere science instrumentation including aurora, cloud, and airglow
imagers. SkyWinder will save future aeronomy experiments significant time and
money, and lowers the barrier to entry in analyzing data hosted in public
available repositories. Our software consists of two distinct parts: the flight and
analysis modules. The SkyWinder flight package includes modular distributed
flight control including telemetry and subsystemcoordination for runningmobile
aeronomy experiments such as balloon-borne payloads, airplanes, sounding
rockets, and suborbital reusable launch vehicles (sRLVs), as well as isolated semi-
autonomous ground instruments. The SkyWinder analysis software provides
functionality more broadly useful in neutral upper atmosphere dynamics, such
as pointing reconstruction, image projection, preliminary image processing, and
various image analysis techniques.

KEYWORDS

flight control, Python, software, PMC-turbo, telemetry, ballooning, image projection

1 Introduction

NASAHeliophysics research extends from the upper atmosphere to the sun.The Python
in Heliophysics Community (PyHC) codebase is currently better developed for the solar,
plasma, andmagnetospheric physics than for the upper neutral atmosphere. To fill this need,
we developed a Python Value Added Enhancement in coordination with the PyHC project.
We named it “SkyWinder” to reference the aeronomy uses and reference the “sidewinder”
snake species that have an unusual method of locomotion since snake motifs are commonly
used in Python packages. The sidewinder snake’s body motion is wavelike and has the phase
and group velocity mostly perpendicular like GWs. Also, many types of GWs “wind” up into
the sky. We refined and published existing heliophysics mission and analysis code from the
successful Polar Mesospheric Cloud Turbulence (PMC-Turbo) experiment. This package is
comprised of two distinct parts: the SkyWinder flight and SkyWinder analysis submodules.

The SkyWinder flight software provides modular flight control functionality useful
for a variety of balloon-borne and other suborbital experiments, including telemetry
and subsystem coordination. This includes functionality for running mobile aeronomy
experiments such as balloon-borne payloads, airplanes, sounding rockets, and suborbital
reusable launch vehicles (sRLVs). These features will also be useful for remote off-the-grid

Frontiers in Astronomy and Space Sciences 01 frontiersin.org

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2023.1023550
https://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2023.1023550&domain=pdf&date_stamp=2023-04-10
mailto:bkjell@gmail.com
https://doi.org/10.3389/fspas.2023.1023550
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fspas.2023.1023550/full
https://www.frontiersin.org/articles/10.3389/fspas.2023.1023550/full
https://www.frontiersin.org/articles/10.3389/fspas.2023.1023550/full
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Kjellstrand and Williams 10.3389/fspas.2023.1023550

ground stations. We designed the software specifically to work
with balloon platforms and telemetry channels provided by the
Columbia Science Balloon Facility (CSBF), which is a NASA facility
that launches and manages large unmanned balloons. However,
much of the functionality is broadly useful to semi-autonomous
experiments. The SkyWinder software is a refinement of the
flight and analysis software for the PMC-Turbo experiment. The
software ran during a successful science flight July 2018 and
a successful secondary (“piggyback”) payload December-January
2019-2020 described in Kjellstrand et al. (2020) and Kjellstrand
(2021).

The SkyWinder flight package provides redundant and
distributed functionality for flight control, instrument control and
coordination, and telemetry. SkyWinder allows for a framework for
a distributed communication system in which several networked
computers can each assume flight control duties in the event of
any individual hardware failure. It communicates to and from the
ground control station in a channel-agnostic manner that has been
used with Tracking and Data Relay Satellite System (TDRSS) and
Iridium satellite constellations. The package runs at a low level to
provide commands to the hardware and exposes the handles of that
interface on the experiment network. It selects, compresses, and
packages data for downlink in such a way that the ground station
can locate lost data packets, identify corrupted data, and estimate
downlink times. It provides a convenient graphical user interface
(GUI) for the ground station to monitor a remote experiment
status, look at downlinked data, and send and track commands
to the remote experiment.

The SkyWinder analysis software provides functionality more
broadly useful in neutral upper atmosphere dynamics, such
as pointing reconstruction, image projection, preliminary image
processing, and various image analysis techniques. The SkyWinder
analysis package includes procedures for flat-fielding and removing
time-varying stray light from images, star identification and
pointing reconstruction from the stars, projection from rectilinear
projection to accurate on-the-sky geometry. Data visualization tools
such as stitching image arrays together and movie-making (both
projected and unaltered) are included.The SkyWinder analysis code
will also include data visualization tools to combine imaging and
lidar data. This has proven to be critical in analysis for PMC-
Turbo and we anticipate manymobile aeronomy platforms will have
multiple instruments. For example, theNational Science Foundation
(NSF) DeepWave mission described in Fritts et al. (2016) included
a sodium lidar, Rayleigh lidar, advanced mesospheric temperature
mapper (AMTM), two OH imagers, dropsondes, and many
other supporting instruments. This was analyzed largely using
commercial languages such as Interactive Data Language (IDL)
and Matlab, making sharing code with outside data users more
difficult.

2 Methods—Flight software

PMC-Turbo imaged dynamics located about 80 km above the
Earth surface, while itself lofted aboard a balloon-borne payload at
nearly 40 km altitude. It included 8 science instruments on board:
seven optical cameras and a Rayleigh lidar. Each of these cameras
collected data at a high rate—a burst of four 20 MB images every 2 s.

Balloon-borne payloads include experimental risks that can result
in the loss of collected data. PMC-Turbo was the first experiment
of its type, so our predictions accounted for a large uncertainty in
sky conditions and optimal viewing strategy. Therefore, the science
objectives of the PMC-Turbo experiment imposed the following
requirements on our software design.

1. The software needed tomanage the data throughput fromcameras
to the hard drives.

2. The software needed to be robust to failure of individual
computers, communication components, or other subsystems.

3. We needed to have the ability to command the payload
from the ground, monitor each subsystem through aggregated
housekeeping, and sample imager data.

Our requirement for data handling drove our selection of
computer hardware in turn since the large data volume generated
by our cameras required a server-grade motherboard to store to
disk. Since we required powerful computers for data storage, we
found no downside to including flight control capabilities in each
individual computer, as opposed to the more common design
of using a dedicated flight control computer. This allowed us
to greatly improve the resilience of our system to single-point
failures since any instrument computer could assume responsibility
of the communication between local systems and our telemetry
connections. To reduce the impact of an isolated disk failure, each
computer ran software to grab data from the connected instrument
and distribute the images to the four hard drives connected to the
computer.

To reduce the risk inherent in balloon-borne platforms and to
allow for adaption of our observation strategies in real time, we
developed a robust telemetry system. We continuously monitored
our instrument statuses andwe downlinked asmuch data as possible
to retain some scientifically useful data in the event our payload
could not be recovered. We used the telemetry channels made
available by NASA to send compressed and packetized science and
housekeeping data to the ground. To monitor the data received on
the ground, we developed software to track data sent down and send
commands to the payload.

While wewanted tomonitor and command the payload asmuch
as possible, we needed to account for expected communication
outages and the resulting absence of commands. We implemented
these procedures to ensure that our camera systems captured and
stored images to disk even if we lost contact with them. Our cameras
had no real-time control requirements, although we did have the
ability to control them at times we could communicate with the
experiment from the ground. The operating system uses a Linux
program (supervisor) to automatically start the data acquisition and
communication software in a useful state and when the instrument
module receives power, the motherboard automatically boots the
operating system.The data acquisition software includes a watchdog
that restarts the operating system after 10 min without new images.
The default camera settings included an auto-exposure algorithm to
maintain useful exposure times and a nominal focus sufficient to
capture good data.

We wrote the bulk of our software in the Python programming
language. This language allows for speedy development and
is widespread in the scientific programming community. We
developed the software on the Linux operating system since it

Frontiers in Astronomy and Space Sciences 02 frontiersin.org

https://doi.org/10.3389/fspas.2023.1023550
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Kjellstrand and Williams 10.3389/fspas.2023.1023550

is commonly used for scientific instrument applications and our
developers were experienced with it. We used industry standard
continuous integration tools to ensure reliable and speedy software
development.

2.1 Network

The distributed flight control structure of the SkyWinder
flight control software requires consistent communication between
the individual computers capturing experiment data. We use the
Python Remote Object (Pyro) package to abstract much of this
communication. This package allows programs running on one
computer to seamlessly call classes and functions running on
another. Pyro enables each process to use a Uniform Resource
Identifier (URI) on the local network. After registering a URI,
one process (such as the Controller, described in this section)
can call another (such as the Pipeline) as a Python object.
Not only does this facilitate communication between processes
running on one machine, but our network structure allows each
registered process to be visible and accessible to the entire network.
Section 2.2, Section 2.3, and Section 2.4 describe the programs
running on our computers and which were accessible to each other
on our local network.

Figure 1 shows an overview of the final PMC-Turbo network
as an example for how one can structure a distributed flight
control hardware network to work with SkyWinder. Seven pressure
vessels contain primary science instruments and the associated
computers. The two RS-232 Ethernet converters, two Ethernet
switches, and a direct Ethernet connection to Iridium Pilot ensure
that no single point of failure removes communication to all
the channels. Our telemetry box includes two Ethernet switches
connected to each other. Three or four of the pressure vessels,
one of the two power boxes, and one RS232-Ethernet converter
connect to each Ethernet switch. This ensures that if either Ethernet
switch failed or one SIP connection failed, we would not lose
communication to the entire payload. We distribute the computers
interfacing with our science instruments across the two Ethernet
switches to avoid losing communication with all instruments if
either Ethernet switch failed. The expanded view labelled “Pressure
Vessel Interior” in Figure 1 shows the primary software processes
of our software architecture described in this section. While PMC-
Turbo included seven computers running the precursor to the
SkyWinder software, we have also used the software to run a single
instrument (during the piggyback flight). As far as we are aware,
the upper limit for the number of instances of SkyWinder running
on a local network is set by the hardware of that network and
the computational resources available, rather than the SkyWinder
software.

2.2 Communicator and leader assignment

TheCommunicator class coordinates between the instrument
computers contained within the pressure vessels and communicates
with ground software. It aggregates housekeeping data, provides
status reports, and receives, relays, and responds to commands.

Each camera computer runs a Communicator instance. While all
Communicator instances listen for commands from the ground,
one Communicator is designated the “leader” and it assumes the
bulk of the communication duties. One specific camera computer is
designated leader by default, but the ground operators can change
which camera computer assumes leader duties remotely since each
Communicator instance includes the leader functionality.

Upon booting up, each Communicator reads a configuration
file to set operational parameters. These parameters include the
initial assignment of leader duties to one Communicator,
the instrument hardware associated with each computer, other
instrument statuses monitored by individual communications
(such as power system metrics and exterior temperature monitors),
and the peer polling order prescribing the order and frequency
subsystems are polled. Each Communicator also instantiates
SkyWinder HirateDownlink, LowrateDownlink, and
Uplink objects. These objects include the IP and ports used for
the experiment’s telemetry connections. The LowrateDownlink
is responsible for the low-bandwidth connections made available
by the ballooning hardware and only sends messages 255 bytes
and less. The HirateDownlink is used for all other downlinks. It
packetizes data and sends an appropriate number of packets given
the configured bandwidth when prompted. The Uplink receives
packets sent from the ground. All of the links use Python socket
objects for communication and useUDPpackets due to a potentially
unstable connection to ground.

The configuration file should be tailored to each experiment’s
needs. Experiments will use difference telemetry links, numbers of
computers, and include distinct hardware to monitor. Operational
parameters can be changed during operation. For example, if a
group lost contact over the Iridium Pilot channel, they may want
to decrease the downlink bandwidth on that link to avoid sending
data on that link that they will never receive. Alternately, they may
want to change the peer polling order if an interesting feature were
observed in one specific instrument but not others.

Listing 1 shows a simplified version of themain_loopmethod
of the Communicator class. While the main_loop includes
other functionality in the PMC-Turbo, including monitoring
specific hardware (e.g., charge controllers or batteries) and weaving
status updates into several downlink streams, at it’s core the
Communicator looks for data uplinked to the experiment
network, responds to them, and sends data on the available
downlinks. Recall that every computer on the network runs a
Communicator instance, but only oneCommunicator instance
is assigned as leader.

2.2.1 Receiving and processing data from uplinks
The get_and_process_sip_bytes looks for data on

every Uplink and executes the packets. The CSBF Support
Instrumentation Package (SIP) sends three types of message to
the network: science data request messages at a regular cadence,
science command messages relayed from the ground, and location
information (e.g., GPS data).

The PMC-Turbo experiment responded to regular science data
requests by aggregating a short (255 byte) status and sending it on the
LowrateDownlink. SkyWinder includes this procedure in the
Communicator get_next_status_summary method. The

Frontiers in Astronomy and Space Sciences 03 frontiersin.org

https://doi.org/10.3389/fspas.2023.1023550
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Kjellstrand and Williams 10.3389/fspas.2023.1023550

FIGURE 1
An overview of the PMC-Turbo network. The instrument suites within the pressure vessels, charge controllers, lidar, and telemetry antenna primary
communicate over a local ethernet network. The expanded box labelled “Pressure Vessel Interior” shows the communication links between the
subsystems associated with each computer. Figure originally published in Kjellstrand et al. (2020).

Listing 1. Simplified version of themain communicator loop.

leader kept track of which computer to query, and each computer
pulled metrics from saved logs and packaged them when prompted.
While this code is included in SkyWinder, the metrics for each
experiment will be unique to that experiment’s hardware, so each
science group will need to craft such aggregation to their own needs.

SkyWinder includes functionality to package, interpret, and
execute command messages in the Command object. Commands
include changing downlink attributes such as downlink bandwidth
and peer polling order, changing hardware settings such as exposure
time and aperture width, and requests for a specific file or files or
instructions about how to prepare files for downlink generally (level
of downsampling, whether to downlink a full image or selection,
etc.).

Finally, any other data that is received on the uplink (most
likely position data) is logged. One notable feature of the
uplink monitoring functionality of the Communicator is that
every computer on the network receives every uplinked message.
However, generally only the assigned leader responds to commands
and science data requests. The exceptions are when the command is
flagged as a “super command”.This behavior is intended to allow for
switching whichCommunicator assumes leader duties, even (and
especially) when the previous leader has ceased to communicate
successfully.

Listing 2. Streamlined data sending method with error catching removed for
clarity.

2.2.2 Sending data on downlinks

Listing 2 shows a simplified version of the sending process. The
leader goes through each of its downlinks and checks whether it
has bandwidth. If the HirateDownlink currently has packets
queued, the leader simply tells it to send some more packets.
The number of packets is calculated by the HirateDownlink,
which keeps track of the assigned downlink speed, time it sent
data, and amount of sent data. If the HirateDownlink does
not have packets to send, the leader pings the next peer in the list
peer_polling_order.TheCommunicator attributepeers
is a dictionary of the peer Pyro URIs.The leader finds the URI using
the next entry in peer_polling_order as the key and tries
pinging the peer to ensure it is responsive. If it is, the leader requests
data from the peer and puts that data into the HirateDownlink
data queue. Since each experiment ground has a different system
for saving data from their experiment, each experiment will need

Frontiers in Astronomy and Space Sciences 04 frontiersin.org

https://doi.org/10.3389/fspas.2023.1023550
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Kjellstrand and Williams 10.3389/fspas.2023.1023550

a custom Communicatormethod for retrieving data.This may be
as simple as finding the newest file in a specific directory.The PMC-
TurboCommunicator calls theController, which compresses
the raw image data with configurable settings and keeps track of a
queue of files to downlink. This is typically the latest file, but can
include a series of requested images.

2.2.3 Packet structure
The HirateDownlink packetized data passed to it in chunks

of 1,000 bytes. We developed a packet format to maximize the
bandwidth available to us onmultiple communication channels with
distinct communication protocols and track missing or incomplete
files with the ground-side software.

Our custompacket format identifies itself with respect to all data
we have downlinked. While the SkyWinder software can use many
different telemetry channels, the PMC-Turbo experiment received
data from IridiumPilot at a fixed IP address on Columbia University
campus in Manhattan, data from the LOS link at our launch
location in Sweden, and the TDRSS data at computers in Texas.
During flight, we could access all these geographically separated
computers remotely, but we needed metadata generated from the
communicator to identify the files. For example, the Nth file could
be sent over the Iridium Pilot link to New York while the N+1st file
could have arrived in Texas over the TDRSS link.

We needed our software to account for missing packets and
incomplete files. We expected regular and sometimes a significant
percentage, of missing packets and early on we had decided to
use UDP packets. Unlike TCP packets, UDP packets include
no handshaking to determine whether data has arrived at the
destination, so we had no built-in method of knowing whether
data was missing. However, the absence of arrival verification
meant UDP packets made for more robust communications. In
the event of low quality connections, we prioritized maximizing
the chance that packets would get through, rather than jeopardize
the communication by requiring a TCP response. Instead of using
built-in packet verification, when the communicator prepares data
for downlink, it includes metadata with the packetized chunks
indicating the communication channel and the packet number,
along with the total packet numbers. This allows the ground-side
software to track missing packets and aggregate packetized data
back into complete files. We also include a checksum to verify that
individual bytes for packets had not been corrupted or lost (for
example, one packet losing its “tail” and another losing its “head”).

When a Communicator retrieves a file using the
get_next_data method, it requests data from the
Controller (described in the next section) running on
the same machine. While each Controller is callable
to each Communicator on the local network via Pyro,
a Communicator only interfaces with the Controller

running on the same computer in the functions we have
implemented so far. Unlike the leader assignment of the
Communicators,Controllers have identical responsibilities.
After the Controller selects and prepares a file (typically
with compression), it wraps it using one of the classes inheriting
from the FileBase object in the file_format_classes

module. While each of the inheritors are somewhat different, they
essentially all wrap the file in a Python class that includes useful

metadata. This object is then converted to a buffer of bytes and
passed by the Communication to one of its HirateDownlink
instances. This buffer is split into chunks of 1,000 bytes, which
are then wrapped using the FilePacket objects from the
packet_classes module and sent to the HirateDownlink
socket to be sent as UDP packets.

On the ground, the packets can arrive wrapped in different
states, depending on the link. The ground software (described in
Section 2.6) processes and metadata from the telemetry link, tracks
and reassembles the FilePacket objects, and writes both the FileBase
object and the payload file in that object to disk.

2.3 Controller

The Controller class interprets commands from the
communicator and relays them to our hardware interface (the
pipeline, described in Section 2.4) in order to control camera
settings and retrieves images from the data disks. It also handles
grabbing files from the hard drives and compressing these files
to prepare them for downlinking. While simple experiments may
be able to skip using the Controller, the image preparation,
file compression, and command interpretation functionality of
the Controller will be useful to many groups. However, the
SkyWinder software can work without using a Controller, and
some science groups may chose to use only the Communicator.

As one monitors the experiment from the ground, they often
want to review specific images and files. The Controller can
also prepare specific images upon request or raw files (such as a
raw housekeeping log or uncompressed image). Since the PMC-
Turbo experiment dealt primarily with images, we also included the
functionality of requesting specific regions of the image. A ground-
based user could request the default downlinked image to be an
arbitrary pixel area (such as 512 × 512) selected from any location in
the image at any possible downsample resolution (that is a resolution
reachable via integer division of the original resolution of the image).

The Controller can also interpret and run multi-step
processes, such as a focus sweep where the camera cycles through a
range of focus steps, capturing an image at each step, and downlinks
the images for ground review. The Controller interprets the
focus sweep command from the communicator and automatically
prepares and relays commands to adjust focus step settings and
retrieve images taken at each focus step for evaluation on the ground.

While the Controller primarily acts as an interface between
the communicator and the pipeline, it has some automated duties
as well. On a periodic interval, it checks for completed commands,
executes steps in multi-step commands (such as focus sweeps or
downlinking a series of images), and updates the merged index
of images and commands. It can also run a custom configurable
auto-exposure algorithm if required.

2.4 Pipeline

We anticipate that most science groups using the SkyWinder
flight control software will need to write their own hardware-
software interface due to unique science instruments. However,

Frontiers in Astronomy and Space Sciences 05 frontiersin.org

https://doi.org/10.3389/fspas.2023.1023550
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Kjellstrand and Williams 10.3389/fspas.2023.1023550

we have included the PMC-Turbo pipeline in SkyWinder as an
example and for our own use. It sends commands to our instrument
hardware, arms the camera to capture an image, receives the image
data, and writes the image to one of the four data disks. The
Pipeline classes manages these process

The primary responsibility of the Pipeline is moving data
from the camera buffers to the hard drives. Upon initialization, the
Pipeline creates a configurable number of raw image buffers and
puts them into an input queue. The Pipeline also instantiates
an output queue, where the buffers will be moved when filled with
image data.The Pipeline starts one AcquireImageProcess
class and several WriteImageProcess classes which watch
the input and output queues instantiated by the Pipeline. The
AcquireImageProcess passes the buffers of the input queue
to camera via the SDK. It periodically checks whether these
buffers have been filled and it moves them to the output queue
once they have been filled. The WriteImageProcess instances
periodically check the output queue and write these buffers to disk.
TheWriteImageProcess thenmove the now empty buffer back
to the input queue. The Pipeline performs lossless compression
on the images when it stores them on the spinning disks using the
Blosc library.

Due to the structure of the Vimba software development kit
(SDK) released for our cameras, the Pipeline also acts as our
interface with our specific camera hardware. The Pipeline acts
as our software-hardware interface with the cameras via the SDK.
Allied Vision publishes the Vimba SDKwith functionality including
image capture, setting parameters for the camera (exposure
time) and lens (aperture, focus), and capturing bursts of images.
While the SDK is written in C++, our own software includes a
Cython wrapper to allow our Python code to interface with the
SDK.

The Pipeline instantiates a command queue and acts as the
final destination for commands received by the communicator and
interpreted by the Controller. When a command is put into that
queue by the Controller, the Pipeline process will execute
the command by calling the SDK function that directly commands
the camera.

2.5 Commanding

SkyWinder includes software to command the payload from
the ground in nearly real time. The CommandSender class
in the commanding module provides the central commanding
functionality. It sends commands to the appropriate socket or
Serial instance and translates human-readable commands into a
compressed telemetry-hardware-appropriate format.

Since the uplink bandwidth is very low, the SkyWinder
commanding packages commands as few bytes as
possible—typically less than twenty. The format for each
command is defined in the command_table module. The
CommandManager object reads these definitions and constructs
Command objects from them. When called with the appropriate
arguments, each Command object will return a byte-string
readable by the Communicator. Each Command object also
describes the arguments and types it expects for this call
using the Command.__doc__ method. The user-interface

Listing 3. Pseudo-code showing a command sending example.

CommandSender adds each Command as an attribute for
convenience. The user can then send a Command simply with as
shown in the pseudo-code in Listing 3.

We designed this software to operate with the CSBF telemtery
hardware, but we believe our software is general enough to easily
adapt to the telemetry hardware science groups will use. The
CommandSender packages the command bytes appropriately
for the various telemetry uplink channels (wrapping the bytes
in a GSECommandPacket or CommandPacket) and logs the
commands sent. The Communicator also keeps track of received
commands and will send the logs to the ground upon request. With
PMC-Turbo, we also included the latest executed command in our
short status summary.

2.6 Ground receiving

We developed custom ground software to display status updates
and files received from our payload. The software reassembles
the packetized files prepared by the communicator and displays
included metadata. The telemetry software on both the ground and
payload side worked with all of our telemetry channels. The ground
side software also communicated with the NASA SIP module for an
additional channel for basic housekeeping metrics.

The core part of the SkyWinder ground software is the
GSEReceiver. GSEReceiver receives data from a socket or
Serial instance. It sorts through the raw data buffer to identify
packets and their origin. It uses packet metadata to reassemble files
from the packet payload and verify that no data has been corrupted
in the downlinking process. The GSEReceiver logs the received
packets, their origin, writes status packets to disk, and writes the
reassembled FileBase inheriting objects to disk for review of
the attached metadata. It also writes the payload of the FileBase
objects—the original file—for quick survey of the downlinked files.

We wrote quality of life software that interfaces with the
GSEReceiver. The lowrate_monitor_gui module
launches a GUI that displays the status updates from all computers
received by the GSEReceiver in an organized table that updates
every few seconds. The gse_receiver_monitor module
shows individual packets as the GSEReceiver identifies them
and shows how many packets out of the total have arrived of each
new file that the GSEReceiver identifies.

The pmc_viewer module displays JPEGs saved by the
GSEReceiver along with image metadata. We built this software
specifically for PMC-Turbo’s image viewing needs. However,
experiments that want to view image data as it arrives on the
telemetry downlink will likely find this software valuable. Figure 2
displays a screenshot of the pmc_viewer showing an image
including interesting science features. This screenshot was taken
during the 2018 PMC-Turbo flight. The dynamic range has been
adjusted using the GUI software to emphasize the PMCs, visible as

Frontiers in Astronomy and Space Sciences 06 frontiersin.org

https://doi.org/10.3389/fspas.2023.1023550
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Kjellstrand and Williams 10.3389/fspas.2023.1023550

FIGURE 2
The pmc_viewer software during the 2018 PMC-Turbo flight. The diagonal striations in the image are Kelvin-Helmholtz Instabilities traced by PMCs.
Figure originally published in Kjellstrand et al. (2020).

bright stripes oriented diagonally within the image. The left column
displays metadata, including exposure time, aperture stop, file id,
and focus step. The metadata also informs the viewer of the level
of downsampling of the image and the time stamp of the image. In
the upper left corner of the image within the GUI is a selection tool,
which can be dragged and re-sized.The text below the image changes
as the user adjusts the selection and gives a command argument to
request the selected region of the image. To the right a histogram of
the image allows a viewer to change the display grey scale range live
and see image statistics.

3 Methods—Analysis software

3.1 Analysis software structure

The LDB EBEX Analysis Pipeline (LEAP) [described in
Chapman (2015)] successfully analyzed PMC images from the
balloon-borne E and B experiment (EBEX). While the primary
science of the experiment was to detect signatures in the cosmic
microwave background, its star cameras serendipitously recorded
images of PMCs during its 2012-2013 Antarctic flight.These images

provided the motivation and basic design for the PMC-Turbo
experiment. We used the same analysis structure for our analysis
software. The software is structured such that “apps” generate
specific data products while importing generalized procedures
from shared libraries of code. This structure is standard for the
development of software projects, which makes publishing and
maintaining this code as an open-source package straightforward.
The consistent structure helps when a user wants to generate data
products while using previous products as a reference.

The libraries include functions we frequently use in analysis
programs. The intention behind this structure is that these tools
will continue to be refined and developed, rather than duplicated
during individual analysis projects. Libraries include broadly useful
functions performing image processing and projection, movie
making, power spectrum calculation, and data handling and
manipulation.

While the libraries included code designed to perform
frequently used tasks, each app generated a specific data product.
For example, I wrote separate apps to generate image series,
power spectra statistics, and Lomb-Scargle periodograms. All these
example apps drew from the shared image processing and projection
libraries.

Frontiers in Astronomy and Space Sciences 07 frontiersin.org

https://doi.org/10.3389/fspas.2023.1023550
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Kjellstrand and Williams 10.3389/fspas.2023.1023550

Each app inherited a framework and associated functionalities
from a parent class.This class defined a common template imposing
requirements and providing features for each app. This included
receiving input parameters in a dedicated settings file. For example,
the image series app settings included timestamps for images, which
camera data to include, which flat-field procedures to use, which
region of the sky to show, which color scale to use, whether to show
timestamps, and whether to output a series of individual images
or a movie file. Another important feature of the app parent class
was generation of an output file. This file included the data product
generated by the app, logs from running the app, and the settings
used.

Each app includes “default_settings” file included in its directory.
This file includes all the configurable settings for any analysis
procedure.The user writes a separate “custom_settings” to input any
settings other than the default. For example, an image-generating
app takes timestamps, resolution, and selection criteria from the
settings files.

Along with the specialized data product (images, movies, etc.),
each app writes the default_settings and custom_settings files to
disk. It also writes a text file including the settings used and a log file
from the run.

3.2 Data reduction

We implemented image correction techniques to examine our
data, and these became the first entries to our software libraries
described in Section 3.1. Furthermore, our cameras captured a
rectilinear projection of the sky due to their geometry, so we needed
to convert this projection back to the physical plane of the PMCs
in order to correctly analyze scales and morphology of observed
dynamics.These data reduction procedures are standard for imaging
of the sky using standard lenses, and we anticipate that they will be
broadly useful to many atmospheric science groups.

3.2.1 Image calibration and stray light removal
We calibrate a raw image R with a flat-field image F, dark image

D, and simulated sky brightness image S. In this process we use the
following calibration data.

• A dark image D defined before flight to account for the dark
current in the CCD.
• A simulation of sky brightness S accounting for brightness due
to air mass and the scattering angle between each pixel’s view
and the sun.Themodel for the sky brightness is geometric based
on the position of the sun and the viewing angle of the camera,
the derivation of which is outlined in Geach (2020). To quote
the result derived there, the sky brightness Sunscaled is

Sunscaled (θ,ϕ,θS,ϕS) =
1

cosϕ
1+ (cos(θ− θS) sinϕsinϕS + cosϕcosϕS)

2

(1)

where θ and ϕ are the azimuth angle and off-zenith angle of a pixel
and θS and ϕS are the azimuth angle and off-zenith angle of the
sun. As discussed in the next section, the location of each pixel is
determined with imaged star fields, and the GPS included on the

payload allowed us to know the position of the sun in the sky when
our cameras recorded an image.

Since the signal of a raw image is dominated by sky brightness,
to account for pixel sensitivity and exposure time Sunscaled was scaled
to S as

S = < R−D >
< Sunscaled >

Sunscaled (2)

where brackets note scalar mean values.

• A flat field F defined before flight from twilight images with
varying brightnesses to account for vignetting, illumination
differences due to the lens hardware, and variations in pixel
sensitivity. Since we did not have access to a uniformly
illuminated flat-field, this flat-field was corrected not by
removing the dark image D, but by removing sky brightness
S. In an ideal case, the flat field image F is found by imaging
a uniformly illuminated field and normalizing that image after
subtracting D. However, F can be found with any known
illumination field instead if a uniform field is not available.
We used the dusk sky for this purpose since we needed to
use it for our pre-flight pointing verification. At dusk, the
sun is below the horizon, but light still reaches the Earth’s
surface because air masses at higher altitudes have a further
horizon than the ground and reflect incident sunlight. The
integrated brightness scales with atmospheric density. Since
the density falls off exponentially with altitude, the amount
of light scattered to the ground can be well-approximated as
proportional to the lowest altitude illuminated by the sun.
When we know pointing and sun coordinates, the lowest
illuminated altitude can be calculated for each pixel. Therefore,
multiplying the sky brightness model S by a value proportional
to the atmospheric density at the lowest illuminated altitude for
each pixel provides a known illumination field which we use
to calculate F for each camera. This procedure was repeated for
several hundred images taken at different times during dusk and
the results were co-added and normalized to find the final flat
field F. This procedure is described in detail in Geach (2020).

During out image calibration process, we first apply a flat field
correction using the standard method (using the corrected flat field
described above):

Icorrected =< F >
R−D
F

(3)

where <F > is the scalar mean of F to relevel the image. We
then remove the sky background signal using S and normalize by
exposure time according to

Icalibrated =
1

texposure
(Icorrected − S

< Icorrected >
< S >

) (4)

where texposure is the exposure time and brackets denote scalarmeans.
During the PMC-Turbo flight, insufficient baffling between the

cameras and balloon allowed stray light varying with timescales of
minutes to hours into our cameras’ fields of view as the relative
position of the sun and balloon-borne platform changed. To correct
for this stray light contamination, we subtract a moving average
of the calibrated images from our final image. This step may not

Frontiers in Astronomy and Space Sciences 08 frontiersin.org

https://doi.org/10.3389/fspas.2023.1023550
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Kjellstrand and Williams 10.3389/fspas.2023.1023550

FIGURE 3
From left to right: raw false-colored image of one of the wide-field cameras containing PMCs; the same image after flat-fielding; and the same image
after flat-fielding and projection based on the pointing solution. Up orientation in the first two images corresponds to the zenith, and up orientation in
the projected image corresponds to the longitude of the sun. We projected the image looking from below. Figure originally published in
Kjellstrand et al. (2020).

be necessary for all experiments, but stray light contamination is
a common challenge in ballooning, so we have included these
procedures in the SkyWinder image correction procedures. We
subtract amoving average image Istray accounting for stray light from
our final image Ifinal:

Ifinal = Icalibrated − Istray (5)

We construct Istray by taking a pixelwise average of calibrated
images in a window of time centered around the image to be
corrected (typically 10 min). The ith, jth pixel value in Istray is the
mean value of the ith, jth pixel in each calibrated image within
that window. To minimize loading time and memory usage during
this process, we save calculated Istray instances at a 1-min cadence
throughout flight and use these saved images to construct the Istray
for any specific time rather than finding it from scratch each time we
apply the image processing procedure. This allows us to load about
10 files per stray-light-removal application rather than 1,000. The
pre-constructed Istray files reduce the time resolution available for
our window, so we use interpolation to construct the subtracted Istray
from them.

Figure 3 shows a raw image to the left and an image corrected
using the steps above in the center. Of these corrections, the removal
of the moving average is by far the most significant and simply
removing the average can deliver sufficient signal-to-noise ratio to
quickly survey data.

3.2.2 Pointing
Balloon-borne experiments must record data at some off-zenith

angle to avoid the highly-reflective balloon. Pointing off-zenith
with a rectangular CCD and a standard lens introduces rectilinear
distortion. While some lenses (such as fisheye lenses) will require
different projection techniques, many images can use the projection
techniques included with SkyWinder.

We remove rectilinear distortion by finding the pointing of the
images using background star fields. For each camera we found

the sky location of an evenly-spaced grid of pixels (spaced every
quarter of the CCD, including the edges). We interpolated over this
grid to map each pixel in the CCD to the proper location on the
sky.

We found that we could use the tracking software package
Astrometry to get the right-ascension and declination (ra/dec) of
an evenly spaced grid of pixel locations. From right ascension and
declination we converted to azimuth and elevation of the grid
using GPS timestamps and locations from the flight. However, this
software required the pixel locations of stars. Since the PMC Turbo
pressure vessel design was based on the star camera design from
the EBEX mission, we used a procedure based on the star finding
procedure used in EBEX described in depth in Chapman (2015)
and used the image manipulation python package CV2 python,
whichwraps thewell-known libraryOpenCV.The star identification
algorithm operates as follows.

1. We mask previously identified “hot pixels”.
2. We convolve the imagewith aGaussian kernel of configurable size

and sigma in order to smooth the image.
3. We divide the image into sections - or “cells” - of configurable size.
4. In each cell we look for values above a configurable threshold level.
5. We compare the pixel brightness values at above-threshold levels

to the pixel brightness values in a dilated version of the same
image. If the values are the same we have found a local maximum.

6. We select a configurable number (typically 1) of local maxima for
each cell and return their coordinates.

7. As an optional additional step, we fit 2-dimensional Gaussian
distributions to each blob. We can filter by the sigma
of the Gaussian fit to filter out unphysical results caused
by CCD artifacts that have slipped through our other
filters.

Figure 4A shows stars identified following these steps.
Figure 4B shows the location of these stars in the corrected image
before projection.

Frontiers in Astronomy and Space Sciences 09 frontiersin.org

https://doi.org/10.3389/fspas.2023.1023550
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Kjellstrand and Williams 10.3389/fspas.2023.1023550

FIGURE 4
An example of star identification. Figure originally published in Kjellstrand (2021). (A) Cyan X’s mark the location of stars found with the SkyWinder star
identification algorithm. The image shown has been calibrated and stray light have been removed, but not projected. (B) Close up view of fifteen of the
stars identified in (A).

3.2.3 Projecting
Once we have a pointing solution for the evenly-spaced grid

of pixels for each image, we project the raw image onto the plane
of the PMCs to reconstruct their true scale and morphology.
From the grid we interpolate the location of every pixel in the
raw image. SkyWinder includes two processes to use these pixel

locations to project the image. Each has unique benefits and
drawbacks.

One technique is pixel projection.This technique maps the pixel
brightness value to the location of the pixel on an x-y plane at
the PMC altitude determined by the pointing solution. Compared
to the method described below, this method is fast. However, this

Frontiers in Astronomy and Space Sciences 10 frontiersin.org

https://doi.org/10.3389/fspas.2023.1023550
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Kjellstrand and Williams 10.3389/fspas.2023.1023550

FIGURE 5
PMC-Turbo flight trajectories using SkyWinder flight control software. (A) The PMC-Turbo flight trajectory from Kjellstrand (2021). (B) Piggyback flight
trajectory with marked days of flight from Kjellstrand (2021).

Frontiers in Astronomy and Space Sciences 11 frontiersin.org

https://doi.org/10.3389/fspas.2023.1023550
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Kjellstrand and Williams 10.3389/fspas.2023.1023550

method did not generate evenly-sampled data as pixels at large
off-zenith angles gathered light from a larger area than those at
small off-zenith angles. This method can more easily rotate the
projected FOV with changing pointing due to the rotation of
the sun through coordinate transforms—an often useful feature
in ballooning since instruments typically have active anti-sun
pointing.

The second technique developed is grid mapping. In this
method, an evenly spaced grid representing the sky at the PMC
altitude is filled in the pixel brightness values. These values are
found from the source image by mapping each grid pixel to the
corresponding image pixel. A Cartesian grid on the PMC plane is
chosen, with the origin chosen to be the location of the gondola
and the -Y direction corresponding to the anti-sun direction. The
grid can be instantiated at any resolution, so the spatial resolution of
the final data product is limited by the raw image spatial resolution.
While this process has been optimized to use standard look-up tables
rather than calculating the pixel corresponding to each grid, the
pixel-by-pixel fill still takes longer than the pixel projection. As a
result, we tend to use this method during short duration events
where the sun’s rotation does not have a large effect or when we do
not care about the cardinal direction of the dynamics. The evenly
spaced grid facilitates many quantitative analysis techniques such as
2D power spectra.

3.3 Basic data visualization

The SkyWinder analysis code includes a variety of data
visualization procedures useful for imager data sets. While specific
science groups will want to develop their own analysis procedures,
SkyWinder includes some generally useful apps. Images can be
stitched together in projected and unprojected states so dynamics
can be viewed over a large composite field of view.These images can
be aggregated into movies and image series at configurable cadence
and pixel-binning. We also include power spectrum-per-image
frame generation, keogram creation, and basic statistic reporting.

4 Results

The SkyWinder flight software has been used in the field three
times. It ran during the 6-day PMC-Turbo flight during 2018
and again for about a month on a single PMC-Turbo instrument
suite contained within a pressure vessel that flew as a secondary
(“piggyback”) experiment on the 2019-2020 Super Trans-Iron
Galactic Element Recorder (SuperTIGER) flight. The trajectories of
these flights are shown in Figure 5. Additionally, the flight software
has been integrated with the BALloon Based Observations for
Sunlit Aurora (BALBOA), which had a North American test flight
September 2022 and is scheduled for an Antarctic science flight
2023-2024.

During the primary science flight we successfully sent
commands in real time in response to the changing sky conditions,
we observedPMCs even in lowquality downlinked images, as shown
in Figure 2, andwe used the communication channels to run several
live tests including using stars to dial in our focus settings with focus

sweeps and measuring the sky brightness as a function of sun angle.
During flight we downlinked over 37,000 files over the LOS link,
245,000 files over Iridium Pilot, and 257,000 files over TDRSS. Of
these 540,000 files, about a third were compressed images.

The piggyback also successfully downlinked images for the first
half of flight. While issues with the downlink channel prevented
us from receiving files or communicating with the piggyback for
the second half of flight, the instrument was retrieved and found
to have recorded data as designed in spite of the communication
blackout.

The data from the PMC-Turbo primary science flight and
piggyback were successfully retrieved. Analysis is continuing and
has already resulted in notable science results in gravity wave
breaking, vortex ring formation, mesospheric bores, and the role
of turbulence in gravity wave momentum deposition in the middle
atmosphere [see Fritts et al. (2019); Geach et al. (2020); Fritts et al.
(2020)].

5 Discussion

The SkyWinder flight software is suitable for experiments which
have relatively low performance requirements for communication
speed and which therefore prioritize ease of implementation and
testing more highly. The use of Python rather than a compiled
language limits the ability of the user to optimize for computational
efficiency, but greatly increases implementation speed. Many
balloon-borne experiments will match this characterization. The
downlink speeds currently available to balloon-borne experiments
are hundreds of kilobits per second, so data throughput does not
exceed the rates possible with Python. Furthermore, experimental
complexity is limited by the power,weight, and volume requirements
of the balloon-borne platform. We expect many of these limitation
to complexity to be shared with other mobile experiment
platforms.

We designed and tested the SkyWinder flight software on the
Linux operating system. Python will work on other operating
systems, but in our experience the science group using SkyWinder
needs to have in-depth knowledge of the alternate operating system
to successfully implement the SkyWinder flight control that relies
heavily on Pyro. Fortunately, Linux is commonly used for scientific
computing.

We are distributing and managing the package with the Python
in Heliophysics Community (PyHC) project. PyHC is a project
consisting of scientists developing a comprehensive set of Python
packages useful in Heliophysics and establishing a set of agreed
standards and best practices for the quality and preparation of open-
source Python packages. We are maintaining our code to meet
Heliophysics code development standards.

The PyHC group has assembled Heliophysics python packages
on their website in an effort to provide a common hub for Python-
based heliophysics modules. We will add the SkyWinder repository
link to that hub.Wewill also provide the appropriate documentation
and installation information for other scientific groups to use the
code at the PyHC hub.

Our instrument data will also be publicly available. Both the
data reduction software and the raw data will be easily accessible

Frontiers in Astronomy and Space Sciences 12 frontiersin.org

https://doi.org/10.3389/fspas.2023.1023550
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Kjellstrand and Williams 10.3389/fspas.2023.1023550

to interested scientists. This will greatly facilitate collaborations and
future research, and ensure continued value from theNASAdata set.
The PMC-Turbo data will be hosted in theNASA Space Physics Data
Facility (SPDF). The SkyWinder analysis code will include methods
to pull the PMC-Turbo data from the SPDF.The SkyWinder package
can also be used with the extensive imaging and lidar data on the
NSF Madrigal database, which the PI has contributed to and used
extensively.

Data availability statement

Theoriginal contributions presented in the study are included in
the article/supplementarymaterial, further inquiries can be directed
to the corresponding author.

Author contributions

CK wrote the manuscript, was a member of the team
that wrote the PMC-Turbo software, and adapted that legacy
code to the SkyWinder project. BW acted as the principal
investigator of SkyWinder and provided feedback on the
manuscript.

Funding

NASA Grant 80NSSC20K0178 funded the PyHC SkyWinder
development. NASA Contract 80NSSC18K0050 funded the

PMC-turbo mission from which the SkyWinder code was
developed.

Acknowledgments

We would like to acknowledge the contributions of our PMC-
Turbo team members, especially those who made substantial
contributions to the experiment software included in the SkyWinder
modules. Glenn Jones played a central role in the development of the
PMC-Turbo flight software. Christopher Geach developed analysis
procedures including much of our image correction method.

Conflict of interest

Authors BW was employed by GATS.
The remaining author declares that the research was conducted

in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may be
evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Chapman,D. (2015).Ebex: A balloon-borne telescope formeasuring cosmicmicrowave
background polarization. Ph.D. thesis (Columbia University).

Fritts, D. C., Kaifler, N., Kaifler, B., Geach, C., Kjellstrand, C. B., Williams, B. P.,
et al. (2020). Mesospheric bore evolution and instability dynamics observed in pmc
turbo imaging and Rayleigh lidar profiling over northeastern Canada on 13 july 2018.
J. Geophys. Res. Atmos. 125, e2019JD032037. doi:10.1029/2019jd032037

Fritts, D. C., Miller, A. D., Kjellstrand, C. B., Geach, C., Williams, B. P., Kaifler, B.,
et al. (2019). Pmc turbo: Studying gravity wave and instability dynamics in the summer
mesosphere using polar mesospheric cloud imaging and profiling from a stratospheric
balloon. J. Geophys. Res. Atmos. 124, 6423–6443. doi:10.1029/2019jd030298

Fritts, D. C., Smith, R. B., Taylor, M. J., Doyle, J. D., Eckermann, S. D., Dörnbrack, A.,
et al. (2016). The deep propagating gravity wave experiment (deepwave): An airborne
and ground-based exploration of gravity wave propagation and effects from their

sources throughout the lower and middle atmosphere. Bull. Am. Meteorological Soc.
97, 425–453. doi:10.1175/bams-d-14-00269.1

Geach, C., Hanany, S., Fritts, D., Kaifler, B., Kaifler, N., Kjellstrand, C., et al. (2020).
Gravity wave breaking and vortex ring formation observed by pmc turbo. J. Geophys.
Res. Atmos. 125, e2020JD033038. doi:10.1029/2020jd033038

Geach, C. P. (2020). Gravitational and gravity waves: The EBEX and PMC turbo
balloon experiments. Ph.D. thesis (The University of Minnesota, Minneapolis).

Kjellstrand, C. B., Jones, G., Geach, C., Williams, B. P., Fritts, D. C., Miller, A., et al.
(2020). The pmc turbo balloon mission to measure gravity waves and turbulence in
polar mesospheric clouds: Camera, telemetry, and software performance. Earth Space
Sci. 7, e2020EA001238. doi:10.1029/2020ea001238

Kjellstrand, C. B. (2021). The PMC turbo experiment: Design, development, and
results. Ph.D. thesis (Columbia University).

Frontiers in Astronomy and Space Sciences 13 frontiersin.org

https://doi.org/10.3389/fspas.2023.1023550
https://doi.org/10.1029/2019jd032037
https://doi.org/10.1029/2019jd030298
https://doi.org/10.1175/bams-d-14-00269.1
https://doi.org/10.1029/2020jd033038
https://doi.org/10.1029/2020ea001238
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles

