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We focus here on impulsive phenomena and Quiet-Sun features in the solar

transition region, observed with the Interface Region Imaging Spectrograph

(IRIS) at 1,400 Å (at formation temperatures of Te ≈ 104–106 K). Summarizing

additional literature values we find the following fractal dimensions (in

increasing order): DA = 1.23 ± 0.09 for photospheric granulation, DA =

1.40 ± 0.09 for chromospheric (network) patterns, DA = 1.54 ± 0.04 for plages

in the transition region, DA = 1.56 ± 0.08 for extreme ultra-violet (EUV)

nanoflares,DA = 1.59 ± 0.20 for active regions in photosphericmagnetograms,

andDA = 1.76 ± 0.14 for large solar flares. We interpret low values of the fractal

dimension (1.0 ≲ DA ≲ 1.5) in terms of sparse curvi-linear flow patterns, while

high values of the fractal dimension (1.5 ≲ DA ≲ 2.0) indicate quasi-space-filling
transport processes, such as chromospheric evaporation in flares. Phenomena

in the solar transition region appear to be consistent with self-organized

criticality (SOC) models, based on their fractality and their size distributions

of fractal areas A and (radiative) energies E, which show power law slopes

of αobsA = 2.51±0.21 (with αtheoA = 2.33 predicted), and αobsE = 2.03±0.18 (with

αtheoE = 1.80 predicted). This agreement suggests that brightenings detected

with IRIS at 1,400 Å reveal the same nonlinear SOC statistics as their coronal

counterparts in EUV.

KEYWORDS

methods, statistical -fractal dimension -sun, transition region -solar granulation -solar

photosphere, fractal dimension, statistical

Introduction

There are at least three different approaches to quantify the statistics of nonlinear
processes with the concept of self-organized criticality (SOC) and fractality: (i)
microscopic models, (ii) macroscopic models, and (iii) observations of power laws
and scaling laws. The microscopic SOC models consist of numerically simulated
avalanches that evolve via next-neighbor interactions in a lattice grid (Bak et al., 1987;
Bak et al., 1988), also called cellular automatons, which have been quantized up to
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numerical limits of ≈106 − 109 cells per avalanche process.
The macroscopic models describe the nonlinear evolution
of (avalanching) instabilities with analytical (geometric and
energetic) quantities, which predict physical scaling laws and
power law-like occurrence frequency size distributions. The
third category of SOC approaches includes observations with
fitting of power law-like distribution functions and waiting time
distributions, which provide powerful tests of theoretical SOC
models. A total of over 1500 SOC-specific publications have been
identifiedwith theNASA/ADS database, while the seminal paper
by Bak et al. (1987) was cited over 4,000 times. For brevity, we
mention a few textbooks only (Bak 1996; Aschwanden 2011;
Pruessner 2012), and a recent collection of astrophysical
SOC reviews, presented in the special volume Space Science
Reviews Vol. 198 (Aschwanden et al., 2016; McAteer et al., 2016;
Sharma et al., 2016; Watkins et al., 2016). Some pioneering work
has been reported from fractal analysis of chromospheric
network cells and (super-)granulation (Berrilli et al., 1998;
Ermolli et al., 1998; Consolini et al., 1999; Criscuoli et al., 2007;
Ermolli et al., 2014; Giorgi et al., 2015).

In this paper we focus on SOCmodeling of impulsive events
detected in the solar atmosphere, as observed with the Interface
Region Imaging Spectrograph (IRIS) (De Pontieu et al., 2014),
while solar flare events observed in hard X-rays, soft X-
rays, and Extreme-Ultraviolet (EUV) have been compared
in recent studies (Aschwanden 2022a; Aschwanden 2022b).
Large solar flares observed in hard and soft X-rays show
typically electron temperatures of Te ≈ 5–35 MK, while coronal
nanoflares observed in EUV have moderate temperatures of
Te ≈ 1–2 MK. Hence it is interesting to investigate transition
region events, which are observed in a different temperature
regime (Te ≈ 104–106 K) than coronal phenomena. In the
previous study with the same IRIS data, it was found that the
power law index of the energy distribution is larger in plages
(αE > 2), compared to sunspot dominated active regions (αE < 2)
(Vilangot Nhalil et al., 2020).

If both coronal and transition region brightenings exhibit
the same SOC behavior and are produced by the same physical
mechanism, one would expect the same fractal dimension and
power law slope of the occurrence frequency size distribution,
which is an important test of the coronal heating problem.

The content of this paper contains a theoretical modeling
Theoretical considerations, an observational Observations, a
discussion Discussion, and conclusions in Conclusion.

Theoretical considerations

In the following we define two theoretical definitions of the
mono-fractal dimension, namely the Mean Euclidean Fractal
Dimension (Theoretical considerations) and the SOC-Inferred
Fractal Dimension (Theoretical considerations), which provide a
test of the predicted fractal dimension.

The mean Euclidean fractal dimension

The definition of the fractal dimension DA for 2-D areas A is
also called the Hausdorff dimension DA0 (Mandelbrot 1977),

A0 = L
DA0
0 , (1)

or explicitly (normalized at i = 0),

DA0 =
log(A0)
log(L0)

, (2)

where the area A0 is the sum of all image pixels I(x,y) ≥ I0
above a background threshold I0, and L0 is the length scale
of a fractal area. A structure is fractal, when the ratio DAi
is approximately constant versus different length scales Li and
converges to a constant for the smallest length scales L↦ 0. The
method described here is also called the box-counting method,
because the number of pixels are counted over an area A0 and
length scale L0.

In analogy, a fractal dimension can also be defined for the
3-D volume V,

V0 = L
DV0
0 , (3)

or explicitly

DV0 =
log(V0)
log(L0)

, (4)

The valid range for these two area fractal dimensions is
1 ≤ DA ≤ 2 and 2 ≤ DV ≤ 3, where D = 0,1,2,3 are all possible
Euclidean dimensions.

We can estimate the numerical values of the fractal
dimensions DA and DV from the means of the minimum and
maximum values in each Euclidean domain,

DA =
(DA,min +DA,max)

2
=
(1+ 2)

2
= 3
2
= 1.50, (5)

and correspondingly,

DV =
(DV,min +DV,max)

2
=
(2+ 3)

2
= 5
2
= 2.50. (6)

The 2-D fractal dimension DA is the most accessible SOC
parameter, while the 3-D fractal dimension DV requires
information of fractal structures along the line-of-sight, either
using a geometric or tomographic model, or modeling of
optically-thin plasma (in the case of an astrophysical object
observed in soft X-ray or EUV wavelengths).

We find that the theoretical prediction of DA = (3/2) = 1.50
(Eq. (5)) for the fractal area parameter A is approximately
consistent with the observed values obtained with the box-
counting method, Dobs

A = 1.54± 0.04 (Table 1).
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TABLE 1 Fractal Dimension obtained from power law slope fits (PL) and from the box counting (BC)method for 12 IRIS datasets.

Dataset Number of Power law Fractal Fractal Fractal Fractal Fractal Fractal
Events Slope fit Dimension Dimension Dimension Dimension Dimension Dimension

PL PL BC BC BC BC BC,all
n aA DPL

A DA0 DA1 DA2 DA3 DA

1 787 2.14 1.75 1.44 1.43 1.35 1.34 1.39 ± 0.05
2 3119 2.32 1.52 1.56 1.55 1.52 1.46 1.57 ± 0.05
3 2882 2.48 1.35 1.53 1.48 1.44 1.40 1.46 ± 0.06
4 1,614 2.83 1.09 1.67 1.66 1.58 1.53 1.61 ± 0.07
5 1,106 2.67 1.20 1.67 1.66 1.57 1.50 1.60 ± 0.08
6 65 2.47 1.36 1.66 1.64 1.62 1.54 1.62 ± 0.05
7 118 2.37 1.45 1.64 1.63 1.60 1.52 1.60 ± 0.05
8 4,412 2.50 1.33 1.56 1.55 1.48 1.40 1.50 ± 0.07
9 4,725 2.72 1.16 1.64 1.63 1.61 1.52 1.60 ± 0.05
10 3064 2.28 1.56 1.69 1.59 1.55 1.52 1.56 ± 0.04
11 1,445 2.76 1.14 1.65 1.63 1.55 1.47 1.58 ± 0.04
12 296 2.53 1.31 1.60 1.54 1.51 1.51 1.54 ± 0.04
Observations 2.51 ± 0.21 1.35 ± 0.19 1.60 ± 0.07 1.58 ± 0.07 1.53 ± 0.08 1.48 ± 0.06 1.55 ± 0.07
Theory 2.33 1.5 1.5 1.5 1.5 1.5 1.5

The SOC-Inferred fractal dimension

The size distribution N(L) of length scales L, also
called the scale-free probability conjecture (Aschwanden 2012;
Aschwanden 2014), which essentially is the standard expression
for the probability conservation in a power law distribution,

N (L) dL∝ L−d dL, (7)

where d is the Euclidean space dimension, generally set to d = 3
for most real-world data. Note, that this occurrence frequency
distribution function is simply a power law, which results from
the reciprocal relationship of the number of events N(L) and the
length scale L. Since the fractal dimension DA for event areas A
is defined as (Eq. 1),

A = LDA , (8)

we obtain the inverse function L(A),

L = A(1/DA), (9)

and the derivative,

( dL
dA
) = A(1/DA−1), (10)

so that we obtain the area distribution N(A) by substitution of L
(Eq. 9) and the derivative dL/dA (Eq. 10) into N(L) (Eq. 7),

N (A) dA = N [L (A)]( dL
dA
)dA = [L (A)]−d A(1/DA−1) dA = A(−αA) dA,

(11)

which yields the power law index αA, for d = 3,

αA = 1+
(d− 1)
DA
= 1+ 2

DA
. (12)

TABLE 2 Parameters of the standard SOC Model, with fractal
dimensions Dx and power law slopes αx of size distributions.

Parameter Power law Power law
Slope Slope
Analytical Numerical

Euclidean Dimension d = 3.00
Diffusion type β = 1.00
Area fractal dimension DA = d− (3/2) = 1.50=(3/2)
Volume fractal dimension DV = d− (1/2) = 2.50=(5/2)
Length αL = d = 3.00
Area αA = 1+ (d− 1)/DA = 2.33=(7/3)
Volume αV = 1+ (d− 1)/DV = 1.80=(9/5)
Duration αT = 1+ (d− 1)β/2 = 2.00
Mean flux αF = 1+ (d− 1)/(γDV ) = 1.80=(9/5)
Peak flux αP = 1+ (d− 1)/(γd) = 1.67=(5/3)
Spatio-temporal energy αE1 = 1+ (d− 1)/(γDV + 2/β) = 1.44=(13/9)
Thermal energy (h = const) αE2 = 1+ 2/DA = 2.33=(7/3)
Thermal energy (h = A1/2) αE3 = 1+ 2/DV = 1.80=(9/5)

Vice versa we can then obtain the SOC fractal dimension DA
from an observed power law slope αA (Table 1), by inverting
αA(DA) in Eq. 12,

DSOC
A =

2
(αA − 1)

= 3
2
. (13)

Using the theoretical value αA = 7/3 ≈ 2.33 (Table 2), we expect
a value of DSOC

A = 1.5 (Eq. 13), which is identical with the
prediction of the mean Euclidean dimension DME

A = 1.5 (Eq. 5)
based on the mean of the extremal maximum and minimum
values. This is an alternative method (Eq. 13) to calculate the
fractal area dimension, in contrast to themeanEuclideanmethod
(Eq. 5), which we call the SOC-inferred fractal dimension,
because it uses the (power law) size distribution of areas that are
defined in SOC models.
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FIGURE 1
Size distributions of flare areas A for 12 datasets observed with IRIS SJI 1400 Å in different active regions.

Observations

This is a follow-on study of previous work, “The power-
law energy distributions of small-scale impulsive events on
the active Sun: Results from IRIS” (Vilangot Nhalil et al., 2020).
Although both studies use the same IRIS dataset, the former
study (Vilangot Nhalil et al., 2020) analyzes the power law size
distributions of event energies αE, which is important for
the assessment of coronal heating requirements, while the
new study analyzes the fractal dimensions DA of impulsive
events, which allows us to discriminate different physical

mechanisms from the photosphere up to the transition region
and corona. We call these small-scale impulsive events simply
“events”, which possibly could be related to “nanoflares” or
“brightenings”. In the previous study, 12 IRIS datasets were
investigated with an automated pattern recognition algorithm,
yielding statistics of three parameters, namely the event area
A (in units of pixels), the event (radiative) energy E (in
units of erg), and event durations or lifetimes T (in units of
seconds). IRIS has pixels with a size of 0.17′′ ≈ 0.123 Mm,
which have been rebinned to Lpixel = 0.33′′ ≈ 0.247 Mm. The
pixel size of areas thus corresponds to Apixel = L2pixel = 0.247

2
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FIGURE 2
Power law fits to the size distributions of three SOC parameters:
the event area A (top panel), the radiative energy E (middle
panel), and the time duration (bottom panel). Individual fits to
each of the 12 IRIS datasets are indicated with thin line style,
while the fit to all events combined is indicated with thick line
style, and the power law slopes are given in each panel.

Mm2 = 0.06076 Mm2. The range of event areas covers A = 4–677
pixels, which amounts to length scales of L = √A = (2− 26)
pixels, or L = (2–26)*0.247 Mm ≈ (0.5-6.4) Mm = (500-6400)
km. The date of observations, the field-of-view (FOV), the
cadence, and the NOAA active region numbers are listed in
Table 1 of Vilangot Nhalil et al. (2020), for each of the 12 IRIS
datasets.

The automated pattern recognition code was run with
different threshold levels of 3, 5, and 7 σ in the previous
event detection method of Vilangot Nhalil et al. (2020),
from which we use the 3-σ level here. The values
in Table 2 of the paper by Vilangot Nhalil et al. (2020)
demonstrate that the fractal dimension is stable for different
thresholds, as well as for noise filtering applied with diverse
thresholds.

We use Slitjaw images (SJI) of the 1,400 Å channel
of IRIS, which are dominated by the Si IV 1394 Å and
1,403 Å resonance lines, formed in the transition region.
Vilangot Nhalil et al. (2020) compared also images from the
SJI 1330 Å channel, which is dominated by the C II 1,335 Å
and 1,336 Å lines, originating in the upper chromosphere and
transition region at formation temperatures ofTe ≈ 3× 10

4 K and
Te ≈ 8× 10

4 K (Rathore and Carlsson 2015; Rathore et al., 2015).

Size distributions

Our first measurement is the fitting of a power law
distribution function N(A) ∝ A−αA of the event (or nanoflare)
areas A, separately for each of the 12 IRIS datasets, as shown in
Figure 1.The area of the event is a combination of all the spatially
connected 3-σ pixels throughout their lifetime. The lowest bin
was discarded in the histogram when a visible deviation from a
power lawwas apparent.Thenumber of events amounts to 23,633
for all 12 datasets together, varying from 65 to 4,725 events per
IRIS dataset (Table 1). The power law slope fits vary from the
lowest value αA = 2.14 (dataset #1) to the highest value αA = 2.83
(dataset #4), having a mean and standard deviation of (Figure 2,
top panel).

aobsA = 2.51± 0.21. (14)

The area size distributions are shown superimposed
for the 12 IRIS datasets (Figure 2, top panel), which
illustrates almost identical power law slopes in different IRIS
datasets.

Fitting the energy size distributions, N(E) ∝ E−αE , yields the
following mean for all 12 IRIS datasets (Figure 2, middle panel),

aobsE = 2.03± 0.18. (15)

Fitting the duration size distributions, N(T) ∝ T−αT , yields
the following mean for all 12 IRIS datasets (Figure 2, bottom
panel),

aobsT = 2.65± 0.39. (16)

We will interpret these power law slopes in terms of SOCmodels
in Size distributions.

The box-counting fractal dimension

The next parameter that we are interested in is the
fractal dimension. A standard method to determine the fractal
dimension DA of an image is the box-counting method, which
is defined by the asymptotic (L↦ 0) ratio of the fractal
area A to the length scale L, i.e., DA = log(A)/log(L), also
called Hausdorff (fractal) dimension. We test the fractality
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FIGURE 3
Intensity maps of 12 different active regions, observed with IRIS SJI 1400 Å. Black color indicates emission, and white color indicates the faint
background.

by varying the pixel sizes (or spatial resolution) by powers
of two, i.e., Li = 2

i = [1,2,4,8] for i = [0,1,2,3]. In order to
normalize to the same number of events for each spatial
resolution, the fractal (Hausdorff) dimension is defined by (e.g.,
Hirzberger et al., 1997),

DA,i =
log(Ai 22i)
log(Li 2i)

, (17)

where Li is the observed length scale, and Ai is the observed
fractal area,measured at different spatial resolutions. If the fractal
dimension DA,i stays more or less constant for different spatial

resolutions Li = [1,2,4,8], then the dimension DA,i is said to be
“fractal”.

It has been pointed out that the detection of small-
scale impulsive events requires a careful subtraction of
event-unrelated background noise in the IRIS 1400 Å data
(Vilangot Nhalil et al., 2020). The main effect of background
subtraction is the related change in the fractal area, which
causes a sensitive bias: If too much background is subtracted,
the fractal area is smaller and the resulting fractal dimension
is too small, and vice versa when the estimated background is
under-estimated. At times and locations where no impulsive
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FIGURE 4
The IRIS dataset 8 is shown with different spatial resolutions of
128, 64, 32, and 16 bins, which demonstrates the scale-free
definition of the Hausdorff dimension DH = 1.33. Black color
indicates emission, and white color indicates the faint
background.

events occur, the flux distribution of an image shows a Gaussian
distribution function (due to the random noise), while a
heavy-tail occurs during active times (due to SOC-generated
avalanches). In the case of a dominant noise component, a
Gaussian can be fitted to the size distribution function, which
yields a mean Iavg and a standard deviation Isig. A 1-σ threshold
can then be defined by,

Ithr = Iavg + Isig. (18)

which separates the linear noise fluctuations (at I(x,y) ≤ Ithr)
from the nonlinear avalanches (at I(x,y) ≥ Ithr). The calculation
of a fractal dimension is then obtained from the ratio
log(Ai2

2i)/log(Li2
i) (Eq. 17), where the area Ai includes a count

of all pixels with a flux value above the threshold, i.e., I(x,y) > Ithr,
and the length scale Li is the number of pixels that measure the
length scale of a SOC avalanche.

We show the fractal dimensions measured with Eq. 17, for
each of the 12 IRIS datasets and the 4 spatial resolutions DA0,
DA1,DA2, andDA3 in Table 1, which reveal a very narrow spread
of valuesDA for the fractal dimension, with a mean and standard
deviation of a few percents (Table 1),

Dobs
A = 1.55± 0.07. (19)

Note, that the values obtained from different IRIS datasets and
with different spatial resolutions are all consistent among each
other and do not show any systematic dependency on the spatial
resolution. Moreover, they are consistent with the theoretical
expectation of the mean Euclidean dimension DME

A (Eq. 5) and
the SOC-Inferred value DSOC

A (Eq. 13),

DME
A = D

SOC
A =

3
2
= 1.5. (20)

The fractal nature of the 12 IRIS datasets is rendered in Figure 3
and 4, where the black areas correspond to zones with enhanced
emission, and thewhite areas correspond to the backgroundwith
weak emission. The successive reduction of spatial resolution is
shown in Figure 4.

An example of a theoretical fractal pattern with a close
ressemblance to the observed transition region patterns of
dataset #8 is shown inFigure 5, which is called the “golden dragon
fractal” and has a Hausdorff dimension of DA = 1.61803.

Fractal dimensions across the solar
atmosphere

In Table 3 we compile fractal dimensions obtained
from photospheric, chromospheric, and transition region
fractal features, which may be different from coronal
and flare-like size distributions. The fractal dimension
has been measured in photospheric wavelengths with the
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FIGURE 5
This numerically calculated fractal pattern is called a golden dragon and has a Hausdorff dimension of DA = 1.61803. (https://en.wikipedia.org/
wiki/List_of_fractals_by_Hausdorff_dimension). Note the similarity with dataset #8 in Figure 4.

perimeter-area method, containing dominantly granules
and super-granulation features (Roudier and Muller 1986;
Hirzberger et al., 1997; Berrilli et al., 1998; Bovelet and
Wiehr 2001; Paniveni et al., 2005, 2010), which exhibit a mean
value of (Table 3),

Dgran
A = 1.23± 0.09. (21)

Although this mean value is averaged from different solar
features (granular cells and supergranular cells), as well as from
different atmospheric heights (photospheric and chromospheric
Ca II K data), the fractal dimension varies only by a small
factor of ±7%. We have to be aware that photospheric emission
originates from a lower altitude than any transition region or
coronal feature.The relatively low value obtained for granulation
features thus indicates that the granulation features seen in
optical wavelengths are almost curvi-linear (with little area-
filling topologies), which is expected for sparse photospheric
mass flows along curvi-linear flow lines.

A second feature we consider are plages in the transition
region,measured with IRIS 1400 Å (Vilangot Nhalil et al., 2020),
which have formation temperatures of ≈103.7 − 105.2 K in
the lower transition region, exhibiting a mean value of
(Table 3),

Dplage
A = 1.54± 0.04. (22)

A third feature is an active region, observed in
photospheric magnetograms and analyzed with the linear-
area method (Lawrence 1991; Balke et al., 1993; Lawrence
and Schrijver 1993; Meunier 1999; Janssen et al., 2003;

Meunier 2004; Ioshpa et al., 2008), or with the box-counting
method (McAteer et al., 2005). The mean value of fractal
dimensions measured in active regions is found to be
(Table 3),

DAR
A = 1.59± 0.20. (23)

Apparently, active regions organize magnetic features into quasi-
space-filling, area-like geometries.

Nanoflare events constitute a fourth phenomenon, which
has been related to the SOC interpretation since Lu and
Hamilton (1991). Nanoflares have been observed in EUV 171 Å
and 195 Å with the TRACE instrument, as well as in soft X-rays
using the Yohkoh/SXT (Solar X-Ray Telescope) (Aschwanden
and Parnell 2002), which show a mean value of (see Table 3),

Dnano
A = 1.56± 0.08. (24)

Nanoflares have been observed in the Quiet Sun and appear to
have a similar fractal dimension as impulsive brightenings in
active regions measured in magnetograms.

For completeness we list also the fractal dimensionmeasured
in large solar flares, for M-class flares, X-class flares, and the
Bastille Day flare (Aschwanden and Aschwanden 2008a), as
observed in the EUV, which all together exhibit a mean value of
(Table 3),

Dflare
A = 1.76± 0.14. (25)

This is the largest mean value of anymeasured fractal dimension,
which indicates that the flare process fills the flare area almost
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TABLE 3 The fractal dimensions of granules, plages, active regions, nanoflares, and large flares. Differentmethods are indicatedwith the acronyms (LA =
Linear-area; PA = perimeter-area, and C = box counting. Mean values and standard deviations of each group are indicatedwith bold numbers. Studies based
on the Ca II K line extend over both the photospheric and chromospheric zone.

Phenomenon Data Fractal References
Method Dimension

DA

Granulation (Photosphere) 1.23 ± 0.09 Mean
Granules 5750 Å, PA 1.25 Roudier & Muller (1986)
Granules 5257 Å, PA 1.30 Hirzberger et al. (1997)
Granular cells 5257 Å, PA 1.16 Hirzberger et al. (1997)
Granules 3933 Å. Ca II K 1.35 Berrilli et al. (1998)
Granules PA 1.09 Bovelet and Wiehr (2001)
Supergranulation MDI/SOHO, PA 1.25 Paniveni et al. (2005)
Supergranular cells 3934 Å, Ca II K, PA 1.23 ± 0.02 Paniveni et al. (2010)

Magnetic Features (Chromosphere) 1.40±0.09 Mean
Quiet Sun EUV network CDS/SOHO 1.50 ± 0.20 Gallagher et al. (1998)
Ellerman bombs 6122 Å, Ca I 1.40 Georgoulis et al. (2002)
Magnetic features 3934 Å, Ca II K 1.32 ± 0.02 Criscuoli et al. (2007)

Plages (Transition Region) 1.54±0.04 Mean
Plages with Sunspots IRIS 1400 Å 1.50 ± 0.09 (This work, #1-3, 10)
Plages without Sunspots IRIS 1400 Å 1.58 ± 0.05 (This work, #4-9, 11-12)

Active regions (Photosphere) 1.59±0.20 Mean
Active regions BBSO, LA 1.56 ± 0.08 Lawrence (1991)

BBSO Lawrence and Schrijver (1993)
Active region plages 6302 Å, Fe I, LA 1.54 ± 0.05 Balke et al. (1993)
Active regions 7929 Å, LA 1.86 ± 0.08 Meunier (1999)
Active regions 7929 Å, PA 1.58 ± 0.18 Meunier (1999)
Small scales 6302 Å, Fe I, PA 1.41 ± 0.05 Janssen et al. (2003)
Active regions 6768 Å, Ni I 1.80 ± 0.09 Meunier (2004)
- Cycle minimum 6768 Å, Ni I 1.31 ± 0.22 Meunier (2004)
- Cycle rise 6768 Å, Ni I 1.80 ± 0.16 Meunier (2004)
- Cycle maximum 6768 Å, Ni I 1.76 ± 0.04 Meunier (2004)
Active regions 6768 Å, Ni I, BC 1.35 ± 0.10 McAteer et al. (2005)

5250 Å, Fe I 1.5 Ioshpa et al. (2008)

EUV nanoflares (Corona) 1.56±0.08 Mean
nanoflares 171 Å, EUV, BC 1.49 ± 0.06 Aschwanden and Parnell (2002)
nanoflares 195 Å, EUV, BC 1.54 ± 0.05 Aschwanden and Parnell (2002)
nanoflares Yohkoh/SXT, AlMg, BC 1.65 Aschwanden and Parnell (2002)

Large solar flares (Corona) 1.76±0.14 Mean
M-class flares 171, 195 Å, EUV 1.62 ± 0.11 Aschwanden and Aschwanden (2008a)
X-class flares 171, 195 Å, EUV 1.78 ± 0.06 Aschwanden and Aschwanden (2008a)
Bastille Day flare 171, 195 Å, EUV 1.89 ± 0.05 Aschwanden and Aschwanden (2008a)

TABLE 4 Summary of solar phenomena, solar location, and range of
fractal dimensions. Studies based on the Ca II K line cover both the
photospheric and chromospheric zone.

Active regions (magnetograms) photosphere 1.59 ± 0.20

Granules, super-granules photosphere 1.23 ± 0.09
Magnetic features, networks chromosphere 1.40 ± 0.09
Plages transition region 1.54 ± 0.04
EUV nanoflares corona 1.56 ± 0.08
Large solar flares corona 1.76 ± 0.14
Bastille-Day X5.7-class flare corona 1.89 ± 0.05

completely, due to the superposition of many coronal postflare
loops that become filled as a consequence of the chromospheric
evaporation process.

Thus, we can distinguish four groups with significantly
different fractal properties in photospheric, chromospheric,
transition region, and coronal data (Table 4). A first group has a
very low fractal dimension (DA ≈ 1.2) that indicates curvi-linear
features produced by super-granulation flows, a second group
with chromospheric (network) features has amean of (DA ≈ 1.4),
a third group with intermediate fractal dimensions (DA ≈ 1.54)
includes active region features in the photosphere, plages in
the transition region, and EUV nanoflare events, and a fourth
group with high values of fractal dimenions (DA ≈ 1.8) that
includes large (M- and X-class) flares, likely to be caused by area-
like topologies of magnetic reconnection and chromospheric
evaporation processes.
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Discussion

Basic fractal dimension measurement
methods

A fractal geometry is a ratio that provides a statistical index
of complexity, and changes as a function of a length scale that
is used as a yardstick to measure it (Mandelbrot 1977). There
are four integer values of Euclidean dimensions d = [0,1,2,3]:
zero-dimensional point-like structures (d = 0), one-dimensional
linear or curvi-linear structures (d = 1), two-dimensional area-
like structures (d = 2), and three-dimensional voluminous
structures (d = 3). All other values between 0 and 3 are non-
integer Euclidean dimensions and are called fractal dimensions.

Basic methods to measure fractal dimensions include the
linear-area (LA) method, the perimeter-area (PA) method, and
the box-counting (BC) method. The LA method calculates the
ratio of a fractal area A to a quasi-space-filled (encompassing)
quadratic areawith sizeL2. Similarly, the PAmethod yields a ratio
of the encompassing curve length or perimeter length (P = πr in
the case of a circular boundary). The box-counting method uses
a cartesian (2-D or 3-D) lattice grid [x,y] and counts all pixels
above some threshold or background, and takes the ratio to the
total counts of all pixels inside the encompassing coordinate grid.
These threemethods appear to be very simple, but are not unique.
The resulting fractal dimensions may depend on the assumed
level of background subtraction, or on the spatial resolution, if
not properly normalized. The encompassing perimeter depends
on the definition of the perimeter (square, circle, polygon, etc.).
Multiple different geometric patterns may cause a variation of
the fractal dimension across an image or data cube. Temporal
variability can modulate the fractal dimension as a function of
time. Detailed discussions and examples of the topics of the
background subtraction, the spatial resolution, the selection of
the field-of-view, and the temporal stability are discussed in
almost all references that are listed in Table 3. The detailed
incorporation of a fractal measurement method differs in each
study.

Theoretical values of fractal dimensions converge by
definition to a unique value (e.g., DA = 1.61803 for the golden
dragon fractal, Figure 5), while observed data almost always
exhibit some spatial inhomogeneity that gives rise to a spread of
fractal dimension values across an image.

Granulation in photosphere

A compilation of fractal dimensions measured in
photospheric, chromospheric, and coronal wavelengths is given
in Table 3. The solar granulation has a typical spatial scale of
L = 1,000 km, or a perimeter of P = πL ≈ 3000 km. Roudier and
Muller (1986) measured the areas A and perimeters P of 315

granules and found a power law relation P∝ AD/2, withD = 1.25
for small granules (with perimeters of p ≈ 500–4,500 km)
and D = 2.15 for large granules (with p = 4,500–15,000 km).
The smaller granules were interpreted in terms of turbulent
origin, because the predicted fractal dimension of an isobaric
atmosphere with isotropic and homogeneous turbulence is
D = 4/3 ≈ 1.33 (Mandelbrot 1977). Similar values (DA = 1.30
and DA = 1.16) were found by Hirzberger et al. (1997),
Ermolli et al. (1998), and Berrilli et al. (1998). Bovelet and
Wiehr (2001) tested different pattern recognition algorithms
(Fourier-based recognition technique FBR and multiple-level
tracking MLT) and found that the value of the fractal dimension
strongly depends on themeasurementmethod.TheMLTmethod
yielded a fractal dimension of DA = 1.09, independent of the
spatial resolution, the heliocentric angle, and the definition in
terms of temperature or velocity. Paniveni et al. (2005) found
a fractal dimension of DA ≈ 1.25 and concluded, by relating it
to the variations of kinetic energy, temperature, and pressure,
that the super-granular network is close to being isobaric and
possibly of turbulent origin. Paniveni et al. (2010) investigated
super-granular cells and found a fractal dimension of DA = 1.12
for active region cells, and DA = 1.25 for quiet region cells,
a difference that they attributed to the inhibiting effect of
the stronger magnetic field in active regions. Averaging all
fractal dimensions related to granular datasets we obtain a
mean value of DA = 1.23± 0.09, which is closer to a curvi-
linear topology (DA ≳ 1.0) than to an area-filled geometry
(DA ≲ 2.0).

The physical understanding of solar (or stellar) granulation
has been advanced by numerical magneto-convection models
and N-body dynamic simulations, which predict the evolution
of small-scale (granules) into large-scale features (meso- or
super-granulation), organized by surface flows that sweep up
small-scale structures and form clusters of recurrent and stable
granular features (Hathaway et al., 2000; Berrilli et al., 2005;
Rieutord et al., 2008; Rieutord et al., 2010).

The fractal multi-scale dynamics has been found to be
operational in the quiet photosphere, in a quiescent non-flaring
state, as well as during flares (Uritsky and Davila 2012).

The fractal structure of the solar granulation is obviously
a self-organizing pattern that is created by a combination of
subphotospheric magneto-convection and surface flows, which
are turbulence-type phenomena.

Transition region

Measurements of the fractal dimension and power law
slope of the size distribution in the transition region have
been accomplished with IRIS 1400 Å observations of plages
and sunspot regions (Vilangot Nhalil et al., 2020; and this
work, see Table 3). Fractal dimensions of transition region
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features were evaluated with a box-counting method here,
yielding a range of DA ≈ 1.54± 0.04 for the 12 datasets of
plages in the transition region listed in Tables 1 and 3. The
structures observed in the 1,400 Å channel of IRIS are dominated
by the Si IV 1394 Å and 1,403 Å resonance lines, which
are formed in the transition region temperature range of
T = 104.5–106 K, sandwiched between the cooler chromosphere
and the hotter corona. Apparently, the fractal dimension is
not much different in plages with sunspots (DA = 1.58± 0.05),
or in field-of-views without sunspots (DA = 1.52± 0.09),
(Table 3).

One prominent feature in the transition region is the
phenomenon of “moss”, which appears as a bright, dynamic
pattern with dark inclusions, on spatial scales of L ≈ 1–3 Mm,
which has been interpreted as the upper transition region
above active region plages and below relatively hot loops
(De Pontieu et al., 1999). Besides transition region features,
measurements in chromospheric (Quiet-Sun) network
structures in the temperature range of T = 104.5–106 K yield
fractal dimensions of DA = 1.30–1.70 (Gallagher et al., 1998).
Furthermore, a value of DA ≈ 1.4 was found for so-called
Ellerman bombs (Georgoulis et al., 2002), which are short-
lived brightenings seen in the wings of the Hα line from the
low chromosphere. In addition, a range of DA ≈ 1.25–1.45
was measured from a large survey of 9342 active region
magnetograms (McAteer et al., 2005). Measurements of
SOHO/CDS in EUV lines in the temperature range of
Te ≈ 104.5–106 revealed a distinct temperature dependence:
fractal dimensions of DA ≈ 1.5–1.6 were identified in He I, He
II, OIII, OIV, OV, Ne VI lines at log(Te) ≈ 5.8, then a peak with
DA ≈ 1.6–1.7 at log(Te) ≈ 5.9, and a drop of DA ≈ 1.3–1.35 at
log(Te) ≈ 6.0 (see Figure 11 in Gallagher et al., 1998). The
temperature dependence of the fractal dimension can
be interpreted in terms of sparse heating that produces
curvi-linear flow patterns with low fractal dimensions of
DA ≲ 1.5, while strong heating produces volume-filling by
chromospheric evaporation with high fractal dimensions
DA ≳ 1.5.

In recent work it was found that the concept ofmono-fractals
has to be generalized to multi-fractals to quantify the spatial
structure of solar magnetograms more accurately (Lawrence
and Schrijver 1993; Cadavid et al., 1994; Lawrence et al., 1996;
McAteer et al., 2005; Conlon et al., 2008; Giorgi et al., 2015).

Photospheric magnetic field in active
regions

Anumber of studies investigated the fractal dimension of the
photosphericmagnetic field, as observed inmagnetograms in the
Fe I (6,302 Å, 5,250 Å) or Ni I (6,768 Å) lines. Meunier (1999)

evaluated the fractal dimension with the perimeter-area method
and found DA = 1.58 for super-granular structures to DA = 1.58
for the largest structures, while the linear size-area method
yielded DA = 1.78 and DA = 1.94, respectively. In addition, a
solar cycle dependence was found by Meunier (2004), with the
fractal dimension varying from DA = 1.09± 0.11 (minimum)
to DA = 1.73± 0.01 for weak-field regions (Bm < 900 G), and
DA = 1.53± 0.06 (minimum) to DA = 1.80± 0.01 for strong-
field regions (Bm > 900 G), respectively. A fractal dimension of
DA = 1.41± 0.05 was found by Janssen et al. (2003), but the value
varies as a function of the center-to-limb angle and is different
for a speckle-reconstructed image that eliminates seeing and
noise.

A completely different approach to measure the fractal
dimension D was pursued in terms of a 2-D diffusion process,
finding fractal diffusion with dimensions in the range of
D ≈ 1.3–1.8 (Lawrence 1991) or D = 1.56± 0.08 (Lawrence and
Schrijver 1993) by measuring the dependence of the mean
square displacement of magnetic elements as a function of
time. Similar results were found by Balke et al. (1993). The
results exclude Euclidean 2-D diffusion but are consistent with
percolation theory for diffusion of clusters at a density below the
percolation threshold (Balke et al., 1993; Lawrence and Schrijver 
1993).

Other methods to analyze fractals in the photospheric
magnetic field in active regions focus on the scaling behavior
of the structure function, applied to the longitudinal magnetic
field (Abramenko et al., 2002), which can discriminate between
weak and fully developed turbulence. Both SOC and
intermittent turbulence (IT) appear to co-exist in the solar
corona, since power-law avalanche statistics as well as multi-
scaling of structure functions are observed simulaneously
(Uritsky et al., 2007). Moreover, stochastic coupling between
the solar photopshere and the corona indicate an intimate spatial
connection (Uritsky et al., 2013).

Coronal flares

Although this study is focused on the fractal geometry of
transition region features observed with IRIS, we compare these
results also with coronal values.The fractal dimension of coronal
events has been measured for 10 X-class flares, 10 M-class flares,
and the Bastille-Day flare (Aschwanden and Aschwanden 2008a;
Aschwanden and Aschwanden 2008b). Interestingly, these
datasets exhibit relatively large values of the fractal dimension,
with a mean and standard deviation of DA = 1.76± 0.14. They
show a trend that the largest flares, especially X-class flares,
exhibit the highest values of DA ≲ 1.8–1.9 (Table 3). If we
attribute flare events to the magnetic reconnection process, the
observations imply that the flare plasma fills up the flare volume
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with a high space-filling factor, which is consistent with the
chromospheric evaporation process.

Phenomena of smaller magnitude than large flares include
microflares, nanoflares, coronal EUV brightenings, etc. Such
small-scale variability events are found to have a mean fractal
dimension of DA = 1.56± 0.08 (Table 3), which is compatible
with those found in M-class flares, but clearly has a lower fractal
dimension than large flares, i.e., DA = 1.76± 0.14 (Table 3).

Self-organized criticality models

The generation of magnetic structures that bubble up
from the solar convection zone to the solar surface by
buoyancy, observed as emerging flux phenomena in form
of active regions, sunspots, and pores, can be statistically
described as a random process, self-organization with (SOC)
and without (SO) criticality, percolation, or a diffusion process.
Random processes produce incoherent structures, in contrast
to the coherent magnetic flux concentrations observed in
sunspots. A self-organization (SO) process needs a driving
force and a counter-acting feedback mechanism that produces
ordered structures (such as the convective granulation cells;
Aschwanden et al., 2018). A SOC process exhibits power law size
distributions of avalanche sizes and durations. The finding of a
fractal dimension of a power law size distribution in magnetic
features alone is not a sufficient condition to prove or rule out
any of these processes. Nevertheless, the fractal dimension yields
a scaling law between areas (A∝ LD2) or volumes (V∝ LD3),
and length scales L that quantify scale-free (fractal) processes in
form of power laws and can straightforwardly be incorporated in
SOC-like models.

If we compare the standard SOC parameters measured in
observations (Figure 2) with the theoretically expected values
from the standard SOC model (Table 2), we find that the
power law slopes for event areas A agree well (aobsA = 2.51± 0.21)
versus atheoA = 2.33 (Figure 2), while the power law slopes for
the radiated energy E agree within the stated uncertainties,
(aobsE = 2.03± 0.18) versus a

theo
E = 1.80 (Figure 2), but the power

law slopes for the time duration T disagree (aobsT = 2.65± 0.39)
versus atheoT = 2.00 (Figure 2). The latter disagreement is possibly
caused by the restriction of a constant minimum event lifetime
(either 60 s or 110 s) that was assumed in the previous
work (Vilangot Nhalil et al., 2020). The interpretation of these
results implies that transition region brightenings have a
similar statistics as the SOC model, at least for active regions,
nanoflares, and large flares, with a typical fractal dimension of
DA ≈ 1.54± 0.04, but are significantly lower for photospheric
granulation (DA ≈ 1.23± 0.09), which implies the dominance
of sparse quasi-linear flow structures in the photosphere and
transition region.

Conclusion

Our aim is to obtain an improved undestanding of
fractal dimensions and size distributions observed in the solar
photosphere and transition region, which complement previous
measurements of coronal phenomena, from nanoflares to the
largest solar flares. Building on the previous study “Power-law
energy distributions of small-scale impulsive events on the active
Sun: Results from IRIS”, we are using the same IRIS 1,400 Å data,
extracted with an automated pattern recognition code during 12
time episodes observed in plage and sunspot regions. A total of
23,633 events has been obtained, quantified in terms of event
areas A, radiative energies E, and event durations T. The results
can be summarized as follows:

1. Fractal dimensions, measured in solar images at various
wavelengths and spatial resolutions, cover a range of
DA = 1–2. We can organize the 7 types of solar phenomena
and their range of fractal dimensions in Table 4, which
can be subdivided into 4 non-overlapping groups: Granules
and super-granules have a fractal dimension of (DA ≈ 1.2),
chromosphericmagnetic features and networks have a fractal
dimension of (DA ≈ 1.4), active regions, plages, and coronal
nanoflares have a mean fractal dimension of (DA ≈ 1.5),
and large flares have the highest range (DA ≈ 1.8). Low
values of the fractal dimension (DA ≈ 1) are consistent with
curvi-linear flow patterns, while large values are consistent
with space-filling features produced by chromospheric
evaporation in large flares. A mean value DA ≈ 1.5 has been
found to represent a useful approximation in standard SOC
models.

2. We calculate a power law fit to the size distribution
N(A) ∝ A−αA of event areas A, and find a mean value of
aA = 2.51± 0.21 that agrees well with the value aA = 2.33
expected from the theoretical SOC model. Consequently,
brightenings in plages of the transition region are consistent
with generic SOC avalanches.

3. Based on the power law slope αA we derive the fractal
dimension DPL

A = 2/(αA − 1), which yields a mean observed
value of DPL

A = 1.35± 0.19 and approximately matches the
theoretial mean value of DA = 1.5. Alternatively, we obtain
with the standard box-counting method an observed value
of DA = 1.54± 0.04.

4. Synthesizing the measurements of the fractal dimension
from photospheric, chromospheric, transition region, and
coronal data we arrive at 7 groups that yield the following
means and standard deviations of their fractal dimension:
From these 7 groups we can discriminate four (Table 4)
non-overlapping ranges with significantly different fractal
dimensions, which imply different physical mechanisms:
Lowvalues of the fractal dimension (DA ≈ 1.2) indicate curvi-
linear granulation flows; larger values (DA ≈ 1.4) align fractal
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structures with chromospheric network cells; intermediate
values of (DA ≈ 1.54) are characteristic for brightening
events in the Quiet Sun and transition region; while large
values (DA ≲ 2.0) are consistent with quasi-space-filling
features produced by chromospheric evaporation in large
flares.

The analysis presented here demonstrates that we can
distinguish between (i) physical processes with sparse curvi-
linear flows, as they occur in granulation, meso-granulation, and
super-granulation, and (ii) physical processes with quasi-space-
filling flows, as they occur in the chromospheric evaporation
process during solar flares. IRIS data can therefore be used
to diagnose mass flows in the transition region. Moreover,
reliable measurements of the fractal dimension yields realistic
plasma filling factors that are important in the estimate of
radiative energies and hot plasma emission measures. Future
work on fractal dimensions in multi-wavelength datasets from
IRIS and AIA/SDO may clarify the dynamics of coronal heating
events.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

All authors listed have made a substantial, direct, and
intellectual contribution to the work and approved it for
publication.

Funding

This work was partially supported by NASA contract
NNX11A099G “Self-organized criticality in solar physics”, NASA
contract NNG04EA00C of the SDO/AIA instrument, and the
IRIS contract NNG09FA40C to LMSAL.

Acknowledgments

We acknowledge constructive comments of an reviewer
and stimulating discussions (in alphabetical order) with Sandra
Chapman, Paul Charbonneau, Henrik Jeldtoft Jensen, Adam
Kowalski, Alexander Milovanov, Leonty Miroshnichenko, Jens
Juul Rasmussen, Karel Schrijver, Vadim Uritsky, Loukas Vlahos,
and Nick Watkins.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may be
evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Abramenko, V. I., Yurchyshyn, V. B., Wang, H., Spirock, T. J., and Goode, P. R.
(2002). Scaling behavior of structure functions of the longitudinal magnetic field in
active regions on the Sun. ApJ 577, 487. doi:10.1086/342169

Aschwanden, M. J. (2014). A macroscopic description of self-organized
systems and astrophysical applications. Astrophys. J. 782, 54. doi:10.1088/0004-
637x/782/1/54

Aschwanden, M. J. (2012). A statistical fractal-diffusive avalanche model
of a slowly-driven self-organized criticality system. Astron. Astrophys. 539, A2.
doi:10.1051/0004-6361/201118237

Aschwanden, M. J., and Aschwanden, P. D. (2008b). Solar flare geometries: II.
The volume fractal dimension. Astrophys. J. 574, 544–553. doi:10.1086/524370

Aschwanden,M. J., andAschwanden, P. D. (2008a). Solar flare geometries: I.The
area fractal dimension. Astrophys. J. 574, 530–543. doi:10.1086/524371

Aschwanden, M. J., Crosby, N., Dimitropoulou, M., Georgoulis, M. K.,
Hergarten, S., McAteer, J., et al. (2016). 25 Years of self-organized criticality:
Solar and astrophysics. Space Sci. Rev. 198, 47–166. doi:10.1007/s11214-014-
0054-6

Aschwanden, M. J., and Parnell, C. E. (2002). Nanoflare statistics from first
principles: Fractal geometry and temperature synthesis. Astrophys. J. 572, 1048.

Aschwanden, M. J. (2022b). Reconciling power-law slopes in solar flare
and nanoflare size distributions. Astrophys. J. Lett. 934, L3. doi:10.3847/2041-
8213/ac7b8d

Aschwanden, M. J., Scholkmann, F., Bethune, W., Schmutz, W., Abramenko,
W., Cheung, M. C. M., et al. (2018). Order out of randomness: Self-organization
processes in astrophysics. Space Sci. Rev. 214, 55. doi:10.1007/s11214-018-
0489-2

Aschwanden, M. J. (2011). Self-organized criticality in Astrophysics: The statistics
of nonlinear processes in the universe. New York: Springer-Praxis, 416. ISBN 978-3-
642-15000-5.

Aschwanden, M. J. (2022a). The fractality and size distributions of
astrophysical self-organized criticality systems. Astrophys. J. 934, 33.
doi:10.3847/1538-4357/ac6bf2

Bak, P. (1996). How nature works: The science of self-organized criticality. New
York: Copernicus.

Frontiers in Astronomy and Space Sciences 13 frontiersin.org

https://doi.org/10.3389/fspas.2022.999319
https://doi.org/10.1086/342169
https://doi.org/10.1088/0004-637x/782/1/54
https://doi.org/10.1088/0004-637x/782/1/54
https://doi.org/10.1051/0004-6361/201118237
https://doi.org/10.1086/524370
https://doi.org/10.1086/524371
https://doi.org/10.1007/s11214-014-0054-6
https://doi.org/10.1007/s11214-014-0054-6
https://doi.org/10.3847/2041-8213/ac7b8d
https://doi.org/10.3847/2041-8213/ac7b8d
https://doi.org/10.1007/s11214-018-0489-2
https://doi.org/10.1007/s11214-018-0489-2
https://doi.org/10.3847/1538-4357/ac6bf2
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Aschwanden and Nhalil 10.3389/fspas.2022.999319

Bak, P., Tang, C., andWiesenfeld, K. (1988). Self-organized criticality. Phys. Rev.
A . 38 (1), 364–374. doi:10.1103/physreva.38.364

Bak, P., Tang, C., and Wiesenfeld, K. (1987). Self-organized criticality:
An explanation of the 1/f noise. Phys. Rev. Lett. 59 (27), 381–384.
doi:10.1103/physrevlett.59.381

Balke, A. C., Schrijver, C. J., Zwaan, C., and Tarbell, T. D. (1993). Percolation
theory and the geometry of photospheric magnetic flux concentrations. Sol. Phys.
143, 215–227. doi:10.1007/bf00646483

Berrilli, F., Del Moro, D., Russo, S., Consolini, G., and Straus, T. (2005).
Spatial clustering of photospheric structures. Astrophys. J. 632, 677–683.
doi:10.1086/432708

Berrilli, F., Florio, A., and Ermolli, I. (1998). On the geometrical properties of
the chromospheric network. Sol. Phys. 180, 29–45. doi:10.1023/a:1005023819431

Bovelet, B., and Wiehr, E. (2001). A new algorithm for pattern recognition
and its application to granulation and limb faculae. Sol. Phys. 201, 13–26.
doi:10.1023/a:1010344827952

Cadavid, A. C., Lawrence, J. K., Ruzmaikin, A., and Kayleng-Knight, A. (1994).
Multifractal models of small-scale solar magnetic fields. Astrophys. J. 429, 391.
doi:10.1086/174329

Conlon, P. A., Gallagher, P. T.,McAteer, R. T. J., Ireland, J., Young, C. A., Kestener,
P., et al. (2008). Multifractal properties of evolving active regions. Sol. Phys. 248,
297–309. doi:10.1007/s11207-007-9074-7

Consolini, G., Carbone, V., Berrilli, F., Bruno, R., Bavassano, B., Briand, C., et al.
(1999). Scaling behavior of the vertical velocity field in the solar photosphere. A&A
344, L33–L36.

Criscuoli, S., Rast, M. P., Ermolli, I., and Centrone, M. (2007). On the reliability
of the fractal dimensionmeasure of solarmagnetic features and on its variationwith
solar activity. Astron. Astrophys. 461, 331–338. doi:10.1051/0004-6361:20065951

De Pontieu, B., Berger, T. E., Schrijver, C. J., and Title, A. M. (1999). Dynamics
of transition region ’moss’ at high time resolution. Sol. Phys. 190, 419–435.
doi:10.1023/a:1005220606223

De Pontieu, B., Title, A. M., Lemen, J. R., Kushner, G. D., Akin, D. J., Allard, B.,
et al. (2014).The Interface region imaging Spectrograph (IRIS). Sol. Phys. 289, 2733.
doi:10.1007/s11207-014-0485-y

Ermolli, I., Fovi, M., Bernacchia, C., Berilli, F., Caccin, B., Egidi, A., et al. (1998).
The prototype RISE-PSPT instrument operating in Rome. Sol. Phys. 177/1-2, 1–10.

Ermolli, I., Giorgi, F., Romano, P., Zuccarello, F., Criscuoli, S., and Stangalini,
M. (2014). Fractal and multifractal properties of active regions as flare precursors:
A case study based on SOHO/MDI and SDO/HMI observations. Sol. Phys. 289,
2525–2545. doi:10.1007/s11207-014-0500-3

Gallagher, P. T., Phillips, K. J. H., Harra-Murnion, L. K., and Keenan, F. P. (1998).
Properties of the quiet Sun EUV network. A&A 335, 733.

Georgoulis, M. K., Rust, D. M., Bernasconi, P. N., and Schmieder, B. (2002).
Statistics, morphology, and energetics of Ellerman bombs. Astrophys. J. 575,
506–528. doi:10.1086/341195

Giorgi, F., Ermolli, I., Romano, P., Stangalini, M., Zuccarello, F., and Criscuoli, S.
(2015).The signature of flare activity inmultifractal measurements of active regions
observed by SDO/HMI. Sol. Phys. 290, 507–525. doi:10.1007/s11207-014-0609-4

Hathaway, D. H., Beck, J. G., Bogart, R. S., Bachmann, K., Khatri, G., Petitto, J.,
et al. (2000). Sol. Phys. 193, 299–312. doi:10.1023/a:1005200809766

Hirzberger, J., Vazquez, M., Bonet, J. A., Hanslmeier, A., and Sobotka, M.
(1997). Time series of solar granulation images. I. Differences between small
and large granules in quiet regions. Astrophys. J. 480, 406–419. doi:10.1086/
303951

Ioshpa, B. A., Obridko, V. N., and Rudenchik, E. A. (2008). Fractal properties of
solar magnetic fields. Astron. Lett. 34, 210–216. doi:10.1134/s1063773708030080

Janssen, K., Voegler, A., and Kneer, F. (2003). On the fractal dimension of
small-scale magnetic structures in the Sun. Astron. Astrophys. 409, 1127–1134.
doi:10.1051/0004-6361:20031168

Lawrence, J. K., Cadavid, A., and Ruzmaikin, A. (1996). On the multifractal
distribution of solar magnetic fields. Astrophys. J. 465, 425. doi:10.1086/177430

Lawrence, J. K. (1991).Diffusion ofmagnetic flux elements on a fractal geometry.
Sol. Phys. 135, 249–259. doi:10.1007/bf00147499

Lawrence, J. K., and Schrijver, C. J. (1993). Anomalous diffusion of
magnetic elements across the solar surface. Astrophys. J. 411, 402. doi:10.1086/
172841

Lu, E. T., and Hamilton, R. J. (1991). Avalanches and the distribution of solar
flares. Astrophys. J. 380, L89. doi:10.1086/186180

Mandelbrot, B. B. (1977). The fractal geometry of nature. New York:
W.H.Freeman and Company.

McAteer, R. T. J., Aschwanden, M. J., Dimitropoulou, M., Georgoulis, M. K.,
Pruessner, G., Morales, L., et al. (2016). 25 Years of self-organized criticality:
Numerical detection methods. Space Sci. Rev. 198, 217–266. doi:10.1007/s11214-
015-0158-7

McAteer, R. T. J., Gallagher, P. T., and Ireland, J. (2005). Statistics of active region
complexity: A large-scale fractal dimension survey. Astrophys. J. 631, 628–635.
doi:10.1086/432412

Meunier, N. (2004). Complexity of magnetic structures: Flares and cycle phase
dependence. Astron. Astrophys. 420, 333–342. doi:10.1051/0004-6361:20034044

Meunier, N. (1999). Fractal analysis of michelson Doppler imager
magnetograms: A contribution to the study of the formation of solar active
regions. Astrophys. J. 515, 801–811. doi:10.1086/307050

Paniveni, U., Krishan, V., Singh, J., and Srikanth, R. (2010). Activity dependence
of solar supergranular fractal dimension.Mon.Not. R. Astron. Soc. 402 (1), 424–428.
doi:10.1111/j.1365-2966.2009.15889.x

Paniveni, U., Krishan, V., Singh, J., and Srikanth, R. (2005). On the fractal
structure of solar supergranulation. Sol. Phys. 231, 1–10. doi:10.1007/s11207-005-
1591-7

Pruessner, G. (2012). Self-organised criticality. Theory, models and
characterisation. Cambridge: Cambridge University Press.

Rathore, B., Carlsson, M., and Leenaarts, J. (2015). The formation of
irisdiagnostics. VI.The diagnostic potential of the C II lines at 133.5 nm in the solar
atmosphere. Astrophys. J. 811, 81. doi:10.1088/0004-637x/811/2/81

Rathore, B., and Carlsson, M. (2015). The formation of irisdiagnostics. V. A
quintessential model atom of C II and general formation properties of the C II lines
at 133.5 nm. Astrophys. J. 811, 80. doi:10.1088/0004-637x/811/2/80

Rieutord, M., Meunier, N., Roudier, T., Rondi, S., Beigbeder, F., and Pares, L.
(2008). Solar supergranulation revealed by granule tracking.Astron. Astrophys. 479,
L17–L20. doi:10.1051/0004-6361:20079077

Rieutord, M., Roudier, T., Rincon, F., Malherbe, J. M., Meunier, N., Berger, T.,
et al. (2010). On the power spectrum of solar surface flows. Astron. Astrophys. 512,
A4. doi:10.1051/0004-6361/200913303

Roudier, T., and Muller, R. (1986). Structure of the solar granulation. Sol. Phys.
107, 11–26. doi:10.1007/bf00155337

Sharma, A. S., Aschwanden, M. J., Crosby, N. B., Klimas, A. J., Milovanov, A. V.,
Morales, L., et al. (2016). 25 Years of self-organized criticality: Space and laboratory
plasmas. Space Sci. Rev. 198, 167–216. doi:10.1007/s11214-015-0225-0

Uritsky, V. M., and Davila, J. M. (2012). Multiscale dynamics of solar magnetic
structures. Astrophys. J. 748, 60. doi:10.1088/0004-637x/748/1/60

Uritsky, V. M., Davila, J. M., Ofman, L., and Coyner, A. J. (2013). Stochastic
coupling of solar photosphere and corona. Astrophys. J. 769, 62. doi:10.1088/0004-
637x/769/1/62

Uritsky, V. M., Paczuski, M., Davila, J. M., and Jones, S. I. (2007). Coexistence of
self-organized criticality and intermittent turbulence in the solar corona. Phys. Rev.
Lett. 99 (2), 025001. doi:10.1103/physrevlett.99.025001

Vilangot Nhalil, N. V., Nelson, C. J., Mathioudakis, M., Doyle, G. J., and
Ramsay, G. (2020). Power-law energy distributions of small-scale impulsive events
on the active Sun: Results from IRIS. Mon. Not. R. Astron. Soc. 499, 1385–1394.
doi:10.1093/mnras/staa2897

Watkins, N. W., Pruessner, G., Chapman, S. C., Crosby, N. B., and Jensen, H. J.
(2016). 25 Years of self-organized criticality: Concepts and controversies. Space Sci.
Rev. 198, 3–44. doi:10.1007/s11214-015-0155-x

Frontiers in Astronomy and Space Sciences 14 frontiersin.org

https://doi.org/10.3389/fspas.2022.999319
https://doi.org/10.1103/physreva.38.364
https://doi.org/10.1103/physrevlett.59.381
https://doi.org/10.1007/bf00646483
https://doi.org/10.1086/432708
https://doi.org/10.1023/a:1005023819431
https://doi.org/10.1023/a:1010344827952
https://doi.org/10.1086/174329
https://doi.org/10.1007/s11207-007-9074-7
https://doi.org/10.1051/0004-6361:20065951
https://doi.org/10.1023/a:1005220606223
https://doi.org/10.1007/s11207-014-0485-y
https://doi.org/10.1007/s11207-014-0500-3
https://doi.org/10.1086/341195
https://doi.org/10.1007/s11207-014-0609-4
https://doi.org/10.1023/a:1005200809766
https://doi.org/10.1086/303951
https://doi.org/10.1086/303951
https://doi.org/10.1134/s1063773708030080
https://doi.org/10.1051/0004-6361:20031168
https://doi.org/10.1086/177430
https://doi.org/10.1007/bf00147499
https://doi.org/10.1086/172841
https://doi.org/10.1086/172841
https://doi.org/10.1086/186180
https://doi.org/10.1007/s11214-015-0158-7
https://doi.org/10.1007/s11214-015-0158-7
https://doi.org/10.1086/432412
https://doi.org/10.1051/0004-6361:20034044
https://doi.org/10.1086/307050
https://doi.org/10.1111/j.1365-2966.2009.15889.x
https://doi.org/10.1007/s11207-005-1591-7
https://doi.org/10.1007/s11207-005-1591-7
https://doi.org/10.1088/0004-637x/811/2/81
https://doi.org/10.1088/0004-637x/811/2/80
https://doi.org/10.1051/0004-6361:20079077
https://doi.org/10.1051/0004-6361/200913303
https://doi.org/10.1007/bf00155337
https://doi.org/10.1007/s11214-015-0225-0
https://doi.org/10.1088/0004-637x/748/1/60
https://doi.org/10.1088/0004-637x/769/1/62
https://doi.org/10.1088/0004-637x/769/1/62
https://doi.org/10.1103/physrevlett.99.025001
https://doi.org/10.1093/mnras/staa2897
https://doi.org/10.1007/s11214-015-0155-x
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles

