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Asteroid families are groups of asteroids with a common origin, such as prior

collisions or the parent body’s rotational fission. In proper [a, e, sin(i)] element

domains, they are generally observed using the hierarchical clustering

technique (HCMs), but the method may be ineffective in high-density

regions, where it may be unable to separate near families. Previous works

employed a different technique in which nine different machine learning

classification algorithms were applied to the orbital distribution in proper

elements of 21 known family constituents for the goal of new members’

identification. Each algorithm’s optimal hyper-parameters for every family

were extensively investigated, which proved to be a time-consuming and

repetitive procedure. Herein, we used a genetic algorithm-based tool to

identify the most optimal machine learning algorithm for the same studied

asteroid families as an alternative to the originally utilized parameter search

mode. When compared to the same evaluative metrics utilized in the previous

machine learning application study, the precision values of the new genetic

machine learning algorithms have been consistently comparable,

demonstrating that this alternative technique can be satisfactorily efficient

and fast.
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1 Introduction

Asteroid families are groups of minor planets that can be identified in domains of

proper elements [a, e, sin(i)], with a being the asteroid’s proper semi-major axis, e the

proper excentricity, and i the proper inclination. Contrary to osculating elements that

change on timescales of days or less, proper elements are constant inmotion and are stable

on timescales of millions of years when non-gravitational forces are not considered.

Proper elements can be obtained either through perturbation theory approaches or, most

commonly, through numerical methods involving N-body simulations of the planets and

asteroids’ orbits and Fourier analysis (Knežević and Milani, 2003). The latter elements are

called synthetic proper elements. Since the 90s, the most commonly used method for

detecting asteroid families has been the hierarchical clustering method (HCM, hereafter,

Zappalà et al. (1995); see also Bendjoya and Zappalà (2002) for a later review). This

approach has been very successful in detecting new asteroid families and is the current

standard for recent surveys, like those conducted by Nesvorný et al. (2015), and for the
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families available at the Asteroid Families Portal (AFP, http://

asteroids.matf.bg.ac.rs/fam/index.php, Radović et al. (2017)). As

discussed in Milani et al. (2014), however, the large number

density of asteroids in some regions of the main belt may

introduce a problem not present in the smallest databases

used in the 90s. Nearby asteroid families may overlap and be

very close in proper element domains. As an effect, traditional

HCM may fail to recognize these groups as separate. This

problem, referred to as chaining by Milani et al. (2014), may

be overcome if machine learning (ML) methods are employed.

Carruba et al. (2020) used supervised ML algorithms to identify

new members of known asteroid families, as listed at the AFP.

The basic idea behind these approaches was to train MLmethods

to recognize patterns among the [a, e, sin(i)] distribution of

already known family members, so that new asteroids with

similar values of [a, e, sin(i)] could be attached to these

groups without the issue of chaining. One limitation of that

approach was that those algorithms were dependent on free

hyper-parameters, the optimal values of which had to be found

by searching over extended phase space. This was a time-

consuming endeavor. Genetic algorithms, as described in

Section 2.3, allow for the selection of the best-performing

method and of its most optimal values of hyper-parameters

automatically. The goal of this work is to verify if their use

could be a safe and viable option.

2 Methods

2.1 The use of ML methods for asteroid
family identification: Some background

In 2020, the AFP site reported data for asteroid families

identified among a database of 631,226 numbered asteroids using

the hierarchical clustering method [HCM, Bendjoya and Zappalà

(2002)]; 21 asteroid families from the AFP were used to train the

(ML) algorithms by dividing the samples into two parts: one for

asteroids with an absolute magnitude H lower than 14, the

TABLE 1 Table of the main belt orbital regions. We report the region name, where H.I. indicates for highly inclined, the amin value and the Jupiter
mean-motion resonance name associated with that value, amax value and its related Jupiter mean-motion resonance name, and the minimum
value of sin(imin).

Region name amin(au) Res. name amax .(au) Res. name sin(imin)

Hungaria region 1.780 - 2.253 7J:2A 0.000

H.I. inner main belt 2.257 7J:2A 2.465 3J:1A 0.300

H.I. central main belt 2.520 3J:1A 2.818 5J:2A 0.300

H.I. outer main belt 2.832 5J:2A 3.240 2J:1A 0.300

Cybele region 3.290 2J:1A 3.800 5J:3A 0.000

TABLE 2 Extratree and random forest classifier machine learning parameters as generated by the TPOT tool, with the number of estimators fixed at
100. The columns report the asteroid families IDs, the values of bootstrap, criterion, max_features, min_sample_leaf, and min_sample_split.

Family Bootstrap Criterion Max_features Min_sample_leaf Min_sample_split

170 Maria True Gini 0.65 3 2

847 Agnia True Gini 0.4 3 7

363 Padua False Gini 0.2 1 7

410 Chloris False Entropy 0.5 3 10

569 Misa False Entropy 0.9 2 3

221 Eos False Gini 0.9 3 15

24 Themis True Entropy 0.5 1 4

158 Koronis False Entropy 0.3 1 4

10 Hygiea False Gini 0.4 3 7

375 Ursula True Gini 0.5 1 4

1040 Klumpkea False Entropy 0.45 1 15

283 Emma False Entropy 1 2 11

845 Naema False Entropy 0.7 3 17
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training sample, and one for the rest, the test sample. This value

ofHwas justified based on the work of Milani et al. (2014), which

showed that asteroid families obtained for samples with H < 14

are not affected by the chaining issue and should present minimal

or no overlap with other nearby dynamical families.

These families have to satisfy the criteria of being available in

the Radović et al. (2017)catalog and of having at least

10 members with H < 14. The outcome of ML algorithms was

measured based on metrics defined using the similarity matrix.

As in the study by Carruba et al. (2019), one can define true

positive (TPos) asteroids identified as a family member by both

the HCM procedure method and the machine learning

application, false positive (FPos) as the ones identified only by

machine learning, and the false negatives (FNeg) as asteroids

identified by HCM alone. Based on these quantities, f1 or

“completeness,” “precision,” and the final parameter FP

metrics can be introduced. Completeness is defined as follows:

f1 � Completeness � TPos

TPos + FNeg
� TPos

NOr
. (1)

This formula alone is not a good parameter to measure the

algorithm’s performance. For example, if we have a small original

family with 100 members and a retrieved family of 10,000 that

includes all the 100 original members, the result of completeness

would be maximum. The retrieved family is not a good

approximation of the original one. To address this problem,

the precision formula was defined as follows:

Precision � TPos

TPos + FPos
� TPos

NRetr
, (2)

where NRetr= T Pos + FPos and is the number of asteroids in the

retrieved family. High precision values can also be associated with

a small family; for example, if we have an original family of

100 members and a retrieved one composed of 10 TPos objects,

the formula outcome will be 1, but again, the retrieved family

would not be a good representation of the original.

The two parameters can be combined into a single optimized

measure through the final parameter formula:

FP � 1�
2

√
�����������������������
Completeness2 + Precision2

√
. (3)

2.2 Machine learning methods

Current artificial intelligence research places a strong

emphasis on the machine learning field, and a variety of ML

TABLE 3 Table reports the metrics of the 21 asteroid families from the
Asteroid Families Portal using provided genetic machine learning
algorithm by TPOT. There is a representation of the metrics f1
(completeness), precision, the FP coefficients, and the best estimator
of each family.

Family ID f1 Precision FP Best estimator

20 Massalia 0.21 0.85 0.62 Gradient boosting classifier

163 Erigone 0.21 0.90 0.65 KNN

15 Eunomia 0.15 0.69 0.50 XGBoost

170 Maria 0.19 0.76 0.55 Random forest classifier

668 Dora 0.20 0.62 0.60 XGBoost

847 Agnia 0.19 0.83 0.60 Random forest classifier

363 Padua 0.12 0.77 0.55 Random forest classifier

1726 Hoffmeister 0.23 0.83 0.61 XGBoost

410 Chloris 0.22 0.95 0.69 Random forest classifier

808 Merxia 0.23 0.82 0.60 XGBoost

128 Nemesis 0.17 0.74 0.54 XGBoost

569 Misa 0.24 0.82 0.61 Extra tree

221 Eos 0.22 0.78 0.57 Extra tree

24 Themis 0.15 0.85 0.61 Random forest classifier

158 Koronis 0.27 0.83 0.61 Extra tree

10 Hygiea 0.16 0.85 0.61 Random forest classifier

375 Ursula 0.27 0.80 0.59 Random forest classifier

1040 Klumpkea 0.30 0.64 0.50 Random forest classifier

283 Emma 0.24 0.83 0.61 Extra tree

845 Naema 0.21 0.70 0.52 Extra tree

490 Veritas 0.27 0.79 0.59 XGboost

TABLE 4 Table with FP coefficient metric comparison results of
Carruba et al. (2020) and the current work. We report the asteroid
families’ names, the value of the result metric FP of 2020, the current
results of the FP, and a percentual comparison R (see Eq. 4).

Family id FP 2020 FP 2022 R

20 Massalia 0.64 0.62 −0.032

163 Erigone 0.78 0.65 −0.2

15 Eunomia 0.89 0.50 −0.78

170 Maria 0.85 0.55 −0.55

668 Dora 0.96 0.60 −0.6

847 Agnia 0.86 0.60 −0.43

363 Padua 0.74 0.55 −0.35

1726 Hoffmeister 0.89 0.61 −0.46

410 Chloris 0.87 0.69 −0.26

808 Merxia 0.90 0.60 −0.5

128 Nemesis 0.81 0.54 −0.5

569 Misa 0.81 0.61 −0.33

221 Eos 0.89 0.57 −0.56

24 Themis 0.95 0.61 −0.56

158 Koronis 0.96 0.61 −0.57

10 Hygiea 0.93 0.61 −0.52

375 Ursula 0.85 0.59 −0.44

1040 Klumpkea 0.91 0.50 −0.82

283 Emma 0.89 0.61 −0.46

845 Naema 0.94 0.52 −0.81

490 Veritas 0.94 0.59 −0.59
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algorithm methods have been developed. Decision tree-based

bagging and boosting are the most popular and widely used

principles of ML algorithm codes.

Decision tree is a simple machine learning algorithm that

makes decisions in the form of a tree, with branches representing

decision rules and leaf nodes representing results. Extra tree uses

decision trees to produce the best results by using the standalone

majority vote method.

The bagging boosting principle is followed by the bagging

classifier algorithm, in which the training sample is divided into

multiple samples, called bootstrap, and each one is used to train

an independent classifier, resulting in a variety of predictions.

The final result is a weighted average of the results of each

classifier.

Adaptive boosting, such as gradient methods, uses the

ensemble method to combine the results of multiple

standalone classifiers to arrive at the best result. However,

boosting methods use the concept of the least accurate

prediction getting lower weights, and the final result also

follows the bagging classier idea. Adaptive boosting

(AdaBoost) trains the classifier over the data points first, and

the ones that were incorrectly identified are given a higher

weight, influencing the outcome of the following interaction.

When there are no significant errors or the number of iterations

is reached, the process stops.

The gradient boosting (Gboost) algorithm applies the

gradient concept to the bagging weights idea, in which the

method finds under-performing estimators and attempts to fit

and correct them in the next iteration by adding new estimators.

When no further improvements are conceivable, the

process ends.

The eXtreme gradient boosting (XGboost) technique is

similar to Gboost, but it offers speed improvements such as

greater multicore support, processor cache use, and the ability to

control over-fitting using a more regularized model

formalization.

The non-parametric supervised learning technique K-nearest

neighbor (KNN) method is one of the simplest machine learning

algorithms. This simple method is based on the study of the

uncatalogued data’s neighbors. When the algorithm receives

unseen data, it examines the classes of its closest neighbors to

predict the new data category. For example, if there is an

unknown color ball (data) between others with well-defined

color (classes) balls, such as three reds and two blues, if we

just judge by the colors of the balls, the unknown data can be

identified as red due to the actual dominating class (the larger

number of neighbors with the same class). This principle may be

applied to any type of data and can be used to predict the class of

a point by looking at its surroundings.

2.3 Genetic algorithms

Genetics algorithms, initially developed by Bremermann

(1958) and popularized by Holland (1962), are a search and

optimization programming technique based on Darwin’s theory

of species evolution, where the strongest individual is favored and

his reproduction is more likely than those of the others, forming a

new generation.

In terms of the genetic algorithm, each individual in the

population is a solution, and every individual’s collection of

hyper-parameters (genes) determines this solution’s

characteristics when we have a problem to solve. A genetic

algorithm’s functionality can be divided into five sections:

population, fitness function, selection, crossover, and

mutation. The fitness function assigns a fitness score to each

solution, indicating the individual’s capacity to compete with the

others. The fittest solutions are chosen during the selection phase,

and their characteristics are passed down to the next generation.

Each pair of parents is mated, and a crossover point is picked at

random from the available genes. The offspring is formed by

exchanging the available genes until the stipulated crossover

point is reached, and then the newly formed individual is

included in the population. The crossover is defined by this

phase. At the mutation stage, newly produced offspring may be

subjected to a low-probability random mutation, altering their

TABLE 5 Table shows the Fp’s metrics percentual comparison R
between Carruba et al. (2020) machine learning algorithms
applied to an updated database (displayed in the second column) and
the current machine learning algorithms generated by genetic
algorithms (column FP 2022).

Family ID FP 2020 (new) FP 2022 R

20 Massalia 0.629 0.621 −0.013

163 Erigone 0.620 0.650 0.046

15 Eunomia 0.598 0.532 −0.124

170 Maria 0.477 0.555 0.141

668 Dora 0.612 0.598 −0.023

847 Agnia 0.610 0.605 −0.008

363 Padua 0.558 0.553 −0.009

1726 Hoffmeister 0.606 0.607 0.002

410 Chloris 0.649 0.690 0.059

808 Merxia 0.530 0.600 0.116

128 Nemesis 0.529 0.539 0.019

569 Misa 0.548 0.607 0.097

221 Eos 0.600 0.574 −0.045

24 Themis 0.610 0.610 0.000

158 Koronis 0.612 0.614 0.003

10 Hygiea 0.609 0.612 0.005

375 Ursula 0.612 0.598 −0.023

1040 Klumpkea 0.507 0.498 −0.018

283 Emma 0.579 0.621 0.068

845 Naema 0.534 0.520 −0.027

490 Veritas 0.606 0.559 −0.084
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genetic structure. The algorithm determines if the new

population is considerably different from the previous

generation at the termination phase and if the genetic

algorithm supplied a set of solutions to our problem. If not, a

new circle begins.

TPOT (Le et al., 2020; Olson et al., 2016a; Olson et al.,

2016b) is a Python-based automated machine learning tool

that employs genetic algorithms to identify the most

appropriate machine learning pipeline for a particular task.

The user must provide simple inputs after manually cleaning

the raw user data: generations (number of genetic algorithm

training iterations), population size (number of individuals

retained in the population each generation), cross-

validation—cv (used to evaluate each pipeline using a

simple parameter K, which corresponds to the number of

groups into which the data sample is divided), and the random

state (random number generator seed for reproducibility).

The tool then automatically produces the machine learning

pipeline’s best model.

2.4 Procedure

The main goal of the genetic algorithm is to find a minimum

in the fitness function. TPOT may not always find a global

minimum of this function. This means that, occasionally, the

machine learning pipeline produced by TPOT may not be the

best-performing one. In this work, we estimate the efficiency of

using genetic algorithms compared to other methods of

optimization of hyper-parameters like those used in Carruba

et al. (2020).

The main criteria for a family to be included in this research

are that 1) it has to be listed in the Radović et al. (2017) catalog

and 2) it has to have at least 10 members with H < 14 and be

FIGURE 1
Proper (a, e) and (a,sin(i)) projections of the 15 Eunomia family. Results with Carruba et al. (2020) machine learning algorithms applied to an
updated database of Asteroid Families Portal site are shown in the left panels, while the current genetic algorithm applied to the same family database
appears on the right. The original family members are represented by the black dots, while the retrieved members are represented by the red points.
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located in the main belt regions (Carruba et al., 2013); 21 asteroid

families satisfy our selection criteria on the Asteroid Families

Portal (AFP). For these families, we first selected the region

where the group is located (Table 1). We then label asteroids in

the region with 1 if the asteroid belongs to a given family of

interest, and 0 otherwise. TPOT is then used to train on this set of

elements, yielding the optimum machine learning pipeline for

this family.

3 Results

The main objective of the research is to investigate the use of

genetic algorithms to optimize machine learning predictions of

new asteroid family members as an improvement to the work

carried out by Carruba et al. (2020). The machine learning

algorithm parameters generated by TPOT are listed in Table 2

for extra tree and random forest classifier methods. The other

families’ algorithm parameters (XGBoost, gradient boosting

FIGURE 2
Same as in Figure 1 but for the 170 Maria family.

FIGURE 3
Histogram of R (Eq. 4). The graphics display the percentual
frequency of R on the 21 studied asteroid families. Data distribution
moments: mean = 0.0086, standard deviation = 0.063,
skewness = 0.268, and kurtosis = 0.485.
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classifier, and K neighbors classifier) are available upon request.

Table 3 shows the new metrics values, as well as the best TPOT,

generated machine learning algorithm for each family1.

Carruba et al. (2020) used machine learning parameter

algorithms applied to an old database of numbered asteroids

at the Asteroid Families Portal, making a direct percentual

comparison (Eq. 4) to current results, which are based on an

updated asteroid database, complicated. Previously, HCM was

applied to a database of 631,226 numbered asteroids. There

were 793,310 registered objects in May 2022. Changes between

the FP’s (Eq. (3)) coefficient metrics obtained in Carruba et al.

(2020) and the current ones are displayed in Table 4.

R � FP2022( ) − FP2020( )
FP2022( ) , (4)

where (FP 2020) refers to the final parameter metric of Carruba

et al. (2020) machine learning applications and (FP 2022) is linked

to the current work metrics.

This problem can be handled by reapplying the Carruba et al.

(2020) machine learning algorithms to the updated database of

the 21 asteroid families investigated. Table 5 shows the new

percentual difference R.

Figures 1 and 2 show the distribution of the original and

retrieved family members in the cases of the Eunomia and

Maria families. Those families were chosen based on the

metric comparison: 15 Eunomia had the worst value of R

(-0.124), while Maria displayed the best result, with R = 0.141.

In all cases, the algorithms were able to retrieve asteroids in

the right orbital regions of the asteroid families, with modest

gains for the case of genetic algorithms applied to the Maria

family.

The frequency of R distribution in the 21 studied asteroid

families can be seen in Figure 3.

4 Conclusion

According to the histogram data (Figure 3), the R

distribution is slightly positively skewed (to the right, where

the genetic algorithms perform better) and has more values in the

tails than a normal distribution. A small standard deviation

shows that the sample values are condensed close to the

mean, indicating a homogeneous sample.

The R fluctuation demonstrates a connection between old

machine learning codes and current genetic algorithm

implementations. Although there is a minor improvement in

some families’ precision and a small drop in others using the

genetic method, the overall picture shows that the new

application is satisfactory, demonstrating that using the

genetic algorithm to solve this problem is safe.
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