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The propagation of linear and nonlinear electron acoustic waves (EAWs) in an

unmagnetized plasma, comprising dynamical inertial electrons, hot (r, q)

distributed electrons, warm electron beam, and immobile ions is studied.

The linear dispersion relation is investigated for varying beam velocity. The

Korteweg-de Vries (KdV) equation for EAWs is derived in the small amplitude

limit. Depending on the beam density, temperature and velocity, we get a

critical condition for which the quadratic nonlinearity vanishes from the plasma

system. For such a condition, the modified Korteweg de Vries (mKdV) equation,

with cubic nonlinearity, is derived, which admits both negative and positive

potential solitary structures. It is noted that the spectral indices r and q of the

generalized (r, q) distribution, the concentration of the cold, hot and the beam

electrons, and the temperature ratios, significantly affect the fundamental

properties of the propagation and interaction of electron acoustic solitary

waves (EASWs). The types of possible overtaking interaction of two mKdV

solitons are investigated. The spatial regime for the two soliton interaction is

found to vary in accordance with the variation of single soliton for various

plasma parameters. The results of present study may be beneficial to

comprehend the interaction between two EASWs in laboratory, space and

astrophysical plasmas.
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1 Introduction

Fried and Gould first predicted the existence of electron acoustic waves (EAWs) while

studying the numerical solutions of electrostatic dispersion relation in an unmagnetized,

homogeneous plasma (Fried and Gould, 1961). They found the existence of this heavily

Landau damped mode besides ion acoustic and Langmuir modes. It was found later on

that the presence of cold and hot electrons can make this mode weakly damped

(Watanabe and Taniuti, 1977). Tokar and Gary (1984) presented a parametric survey

and showed that the existence condition for the electron-acoustic waves is that the hot to

cold electron temperature ratio ought to be larger than 10, and that the percentage of the

hot electron component ought to be more than 20 percent of the total electron density.

The high frequency regime of broad electrostatic noise (BEN) that has been reported in
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numerous regions of space plasmas like plasma sheet boundary

layer (PSBL), inner magnetosphere and geomagnetic tail has

been successfully explained in terms of EAWs (Dubouloz et al.,

1991; Lakhina et al., 2011; Dillard et al., 2018). Due to its

significance with regard to the magnetosphere, the

propagation of EAWs has been thoroughly investigated by

several researchers in unmagnetized (Dubouloz et al., 1991;

Berthomier et al., 2000; Sabry and Omran, 2013) and

magnetized plasmas (Mace and Hellberg, 2001; Mamun et al.,

2002; Shukla et al., 2004; El-Labany et al., 2012).

There have been observations of drifting electrons along the

magnetic field from the solar wind in the upper layer of the

Earth’s magnetosphere, generally termed as the electron beam in

a two electron temperature population plasma (Lin et al., 1984;

Ogilvie et al., 1984; Tokar and Gary, 1984; Pottelette et al., 1990;

Dubouloz et al., 1991; Matsumoto et al., 1994; Cattell et al., 1998;

Tsurutani et al., 1998; Berthomier et al., 2000; Mace and Hellberg,

2001; Mamun et al., 2002; Shukla et al., 2004; Lakhina et al., 2011;

El-Labany et al., 2012; Sabry and Omran, 2013; Dillard et al.,

2018), which are surmised to excite EAWs and alter the

propagation regimes of the formation of nonlinear structures.

The auroral BEN emissions that are frequently encountered in

the Earth’s magnetosphere have been shown to correlate strongly

with the magnetic field aligned electron beams (Dubouloz et al.,

1991). The GEOTAIL observations of the terrestrial auroral zone

have revealed that the BEN is composed of nonlinear localized

electrostatic solitary waves that are intimately related to the

nonlinear dynamics of the electron beam instability

(Matsumoto et al., 1994). Electron beams have also been

reported to trigger the formation of electrostatic solitary waves

in the polar cap boundary layer (PCBL) region (Tsurutani et al.,

1998). The Magnetospheric Multiscale (MMS) mission of the

terrestrial magnetosphere has indicated that the electrostatic

solitary waves in the magnetosheath and magnetopause are

most likely be supported by a cold (~ 1 − 20eV) field-aligned
drifting electron component (Ergun et al., 2016; Holmes et al.,

2018). The effects of the electron beam on the propagation of

EAWs have been extensively studied in the literature (Lin et al.,

1984; Ogilvie et al., 1984; Pottelette et al., 1990; Matsumoto et al.,

1994; Cattell et al., 1998; Tsurutani et al., 1998; Berthomier et al.,

2000; Mace and Hellberg, 2001; Mamun et al., 2002; Shukla et al.,

2004; El-Taibany, 2005; Elwakil et al., 2007; Lakhina et al., 2008;

Singh et al., 2011; El-Labany et al., 2012; Ergun et al., 2016;

Holmes et al., 2018). The nonlinear dispersive electron acoustic

structures in space, in general, can either be compressive or

rarefactive and the amplitude of their electric fields are found to

have values of a few mV/m in plasma sheet boundary layer to

several 100mV/m in the dayside auroral zone (Pickett et al.,

2004).

Many investigations in plasma physics in the past assumed

Maxwellian distribution to study the dynamics of constituent

charged particles, however, the satellite observations have shown

distribution functions that show a significant departure from the

Maxwellian distribution especially in space plasmas (Abid et al.,

2017). Vasyliunas (1968) was the first scientist to make use of

kappa or generalized Lorentzian distribution as an empirical

formula to explain various features observed in the satellite data.

There is a spectral index κ in this distribution that basically shows

the energetic tail of the distribution function from which the

Maxwellian distribution is retrieved as κ → ∞. Besides the

observations of high energy tails, many satellite missions have

observed flat topped electron velocity distributions in the high

entropy region behind the terrestrial bow shock and in the

magnetotail (Feldman et al., 1983; Masood et al., 2006; Asano

et al., 2008; Masood and Schwartz, 2008).

The distribution function comprising flat top and modified

tail cannot be described by a single index unlike the Maxwellian,

kappa and Cairns distributions. Almost 2 decades ago, Qureshi

et al. (2004) devised a double spectral index (r, q) distribution to

fit the distribution functions with modified low and high energy

behavior. The q-index was used to alter the electron population

in the tail of the distribution whereas the r-index was used to give

the flat tops at low energies. Since then, the effects of double

spectral index (r, q) on the linear and nonlinear propagation of

plasma waves have been investigated by a few researchers. Since

the successful explanation of terrestrial lion roars employing (r,

q) distribution by Qureshi et al. (2014), there has been a

substantial literature that highlights importance of using

double index (r, q) distribution to explain numerous features

observed in space plasmas and also the theoretical exploration of

the effects of low and high energy electrons in the distribution

function on the linear and nonlinear propagation of waves in

plasmas (Shah et al., 2018; Qureshi et al., 2019; Khalid et al., 2020;

Naeem et al., 2020; Ullah et al., 2020; Ali et al., 2021; El-Taibany

et al., 2021; El-Bedwehy, El-Taibany; Shohaib et al., 2021;

Masood et al., 2022; Shohaib et al., 2022).

The standard Korteweg de Vries (KdV) equation involves

the quadratic nonlinearity and the balance between

nonlinearity and dispersion gives emergence to the solitary

wave. The literature is replete with the investigation of KdV

equation in a variety of physical situations of interest (Korteweg

and Vries, 1895; Kakutani et al., 1968; Jeffrey, 1973; Mamun

et al., 1996; Ali et al., 2020). It is well known that in a multi-

component plasma, there is a certain critical range of plasma

parameters for which the quadratic nonlinearity ceases to exist

and one then needs to go to the higher order to obtain

physically meaningful solutions. Generally, one obtains the

modified Korteweg de Vries (mKdV) equation which

contains cubic nonlinearity. Lately, the critical point has also

been taken care of and in such a case one obtains Gardner

equation which involves both the quadratic and cubic

nonlinearities. Many researchers have explored these

equations and their versions in the higher dimensions in the

recent past (Mannan and Mamun, 2011; Masud et al., 2012;

Abdikian et al., 2020; Tamang et al., 2020; Tamang and Saha,

2020; Nawaz et al., 2021; Nawaz et al., 2022).
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Multi-soliton solutions are significantly valuable in the

context of studying nonlinear wave propagation in real

systems and apprehend the properties of interaction of

nonlinear waves in physical systems. Solitons maintain

their identity after interaction, besides a phase shift, which

is important regarding transport of energy and momentum.

There are a few methods to comprehend the multi-soliton

solutions of nonlinear partial differential equations (nPDEs),

such as Bäcklund transform (Miura et al., 1968), Darboux

transformation (Matveev and Salle, 1991), inverse scattering

transform (Ablowitz et al., 1991), Hirota’s bilinear formalism

(Hirota, 1971; Hirota, 2004), etc. Hirota’s method has the

advantage that it converts the nPDE to a simple, solvable

algebraic equation in terms of the Hirota operators. In

Hirota’s formalism, the transformations are used in terms

of dependent variable functions for which the perturbation

expansions truncate the higher orders to obtain the multi-

soliton solutions. Multi-soliton solutions of Korteweg-de

Vries (KdV) (Jahangir et al., 2015; Jahangir and Masood,

2020), Kadomtsev Petviashvili (KP) equation (Jahangir

et al., 2016), Zakharov Kuznetsov (ZK) equation (Yousaf

Khattak et al., 2021) and their variants (Verheest and

Hereman, 2019; Nawaz et al., 2021; Nawaz et al., 2022)

have been studied in magnetized and unmagnetized

plasmas using Hirota’s method.

In this manuscript, we study the single and multi-soliton

solutions of EAWs in an unmagnetized, collisionless plasma with

cold inertial electrons, (r, q) distributed hot electrons, drifting

electron beam and stationary ions. The model is analyzed

numerically for the parameters of Viking observations in the

auroral region of broadband electrostatic noise (BEN) and

compared with the observational data. The layout of the

manuscript is given as: Section 2 deals with a physical model

for EAWs in a four component plasma. Employing the reductive

perturbation technique, we derive the KdV and modified

Korteweg-de Vries (mKdV) equations in Section 3, along with

the critical condition where quadratic nonlinearity coefficient

vanishes. Section 4 presents numerical analysis and discusses the

characteristics of electron acoustic solitary waves (EASWs) for

parameters of auroral region. Section 5 briefly summarizes main

conclusions of the manuscript.

2 Model for electron acoustic waves

We consider an unmagnetized, collisionless plasma

comprising cold inertialess electrons (with Tc ≠ 0), (r, q)

distributed hot electrons, stationary background ions and

warm streaming electron beam. It should be noted at the

outset that the words cold and hot electrons are used here to

distinguish between the temperatures of the two electron species

and cold electrons should not be confused with the standard

definition which essentially implies that the thermal velocity of a

particular specie is much less than the phase velocity of the wave

under consideration. In order to study the propagation of a small

but finite amplitude electron acoustic wave (EAW) along x-axis,

we use the reductive perturbation technique. The nonlinear

properties of EAWs in an unmagnetized plasma are governed

by the following continuity and momentum equations,

respectively

znj
zt

+ z

zx
njvj � 0, (1)

zvj
zt

+ vj
zvj
zx

� e

mj

zϕ

zx
− 1
mjnj

zPj

zx
, (2)

for cold and beam electrons, and the Poisson’s equation reads as

z2ϕ

zx2
� 4πe nh + nc + nb − ni0( ), (3)

Here j = c, b for cold and beam electrons, nh,c,b are the number

densities of hot, cold and beam electrons, vc,b are the velocities of

cold and beam electrons and Pj (≡ njTj) is the adiabatic pressure.

We can normalize the above system of equations by scaling the

variables in terms of their equilibrium values. Therefore, nh,c,b are

FIGURE 1
Variation of roots of phase velocity λ(= ω/k) for different values of vb0. (A); vb0 = 0.2 (B); vb0 = 0.3 (C); vb0 = 3.8. Remaining fixed parameters are
q = 2.5, r = 0.8, σc = 0.001, σb = 0.01, nc0 = 0.5cm−3, nh0 = 2.5cm−3, nb0 = 1cm−3.
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normalized by their corresponding equilibrium densities nh0, nc0
and nb0, respectively, vc,b are normalized by the acoustic speed

Ce � (Th/αme)1/2, where Th is the hot electron temperature in

energy units and ϕ is the electrostatic potential normalized by Th/

e. The space and time coordinates are scaled by Debye length

λd � (Th/4πe2nh0)1/2and inverse plasma frequency

ωpc � (4πe2nc0/me)−1/2, respectively. Thus, the set of

normalized equations reads as

znj
zt

+ z

zx
njvj � 0, (4)

zvj
zt

+ vj
zvj
zx

� α
zϕ

zx
− ασj

nj

znj
zx

, (5)

and

z2ϕ

zx2
� 1
α
nh + nc + 1

β
nb − 1 + 1

α
+ 1
β

( ), (6)

where the ratios are defined as

α � nh0
nc0

, β � nh0
nb0

, σc � Tc

Th
and σb � Tb

Th
. (7)

The inertialess hot electrons, providing the restoring force to

EAWs, are governed by the generalized double spectral (r, q)

distribution (Qureshi et al., 2004), given as

f r,q( ) v( ) � A 1 + 1
q − 1

v2 − 2eϕ/me

Bv2th
( )r+1[ ]−q

, (8)

where

A � 3Γ q[ ] q − 1( )−3/ 2+2r( )

4πB3/2v3thΓ q − 3
2+2r[ ]Γ 1 + 3

2+2r[ ], (9)

and

B � 3 q − 1( )−1/ 1+r( )Γ q − 3
2+2r[ ]Γ 3

2+2r[ ]
2Γ q − 5

2+2r[ ]Γ 5
2+2r[ ] . (10)

Here Γ is the gamma function. The normalized number density

of generalized (r, q) distributed hot electrons is obtained by

integrating over the velocity space

nh � 1 +∑∞
s�1

γsϕ
s, (11)

where the expansion coefficients γs are given as

γ1 �
Γ q − 1

2 + 2r
[ ]Γ 1

2 + 2r
[ ] q − 1( ) −1

1+r

2BΓ 3
2 + 2r
[ ]Γ q − 3

2 + 2r
[ ] ,

γ2 �
−Γ −1

2 + 2r
[ ]Γ q + 1

2 + 2r
[ ] q − 1( ) −2

1+r

8B2Γ 3
2 + 2r
[ ]Γ q − 3

2 + 2r
[ ] ,

γ3 �
Γ q + 3

2 + 2r
[ ]Γ −3

2 + 2r
[ ] q − 1( ) −3

1+r

16B3Γ 3
2 + 2r
[ ]Γ q − 3

2 + 2r
[ ] ,

(12)

and so on. The spectral indices “q” and “r” are the tail and flatness

parameters, respectively, that describe the superthermality of

high energy particles and flatness of the curve for low energy

particles. This is the general distribution such that the

Maxwellian distribution is retrieved for r = 0 and q → ∞ and

kappa distribution is recovered for r = 0 and q→ κ + 1.Moreover,

for physically meaningful results, the following conditions must

be fulfilled: q > 1 and q (r + 1) > 5/2 (Qureshi et al., 2004).

3 Korteweg de Vries and modified
Korteweg de Vries equations with
beam electrons

We follow the well-known reductive perturbation technique

(RPT) to stretch the space-time coordinates and expand the

dependent variables nj, vj, and ϕ to study the EAWs in the

presence of beam electrons. Thus, the required stretchings and

expansions for KdV are given by

ξ � ϵ1/2 x − λt( ), and τ � ϵ3/2t, (13)

where λ represents the phase speed of the wave normalized by Ce,

ϵ is the dimensionless parameter (0 < ϵ ≤ 1) determining the

small amplitude of nonlinearity, and

Rj x, t( ) � Rj0 +∑∞
i�1

ϵiRji x, t( ). (14)

Note that Rj (x, t) = [nj, vj, ϕ], where j = c, b stands for cold and

beam electrons and Rj0 = [1, vj0, 0] where only beam electrons are

considered to stream with a constant speed vb0 and vc0 = 0. Now,

employing the stretching (13) and expansion (14) into the

governing Eqs 1–3 along with Eq 14, we get set of equations

for various orders of ϵ. The lowest–order of ϵ (i.e., ϵ3/2-order)
terms can be solved simultaneously to give following expressions

of the first order perturbed quantities

nj1 � −αϕ1

λ − vj0( )2 − ασj( ),
vj1 �

−α λ − vj0( )ϕ1

λ − vj0( )2 − ασj( ),
(15)

and the linear dispersion relation becomes

γ1 −
1

λ2 − ασc

− α

β λ − vb0( )2 − ασb( ) � 0. (16)

This equation is biquadratic and gives four distinct roots of λ.

Here, the dispersion relation depends upon the spectral

indices of electron distribution function (r, q) via γ1, as

well as the number densities and temperatures of all three

types of electrons and the streaming velocity vb0. This relation

concurs well with the previous result of non-thermal

distribution and dynamical ions studied by Singh et al.
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(2016) provided we assume stationary ions and (r, q)

distribution function. In the absence of beam electrons

(i.e., vb0 → 0 and β → ∞), the dispersion relation becomes

quadratic and the phase velocity becomes λ �
�������
1
γ1
+ ασc

√
.

Now collecting the next-order (i.e., ϵ5/2-order) terms, we

obtain the equations in terms of the first and second order

perturbed quantities. The algebraic simplifications of higher

order equations yield the following nonlinear partial

differential equation (nPDE)

zτϕ1 + Pϕ1zξϕ1 + Qzξ,ξ,ξϕ1 � 0. (17)

This is the most renowned Korteweg de Vries (KdV) equation

having soliton solutions. Here, the coefficients of quadratic

nonlinearity P and dispersion Q are defined, respectively, as

P � X2

X1
, andQ � 1

X1
, (18)

with

X1 � 2λ

λ2 − ασc( )2 + 2α λ − vb0( )
β λ − vb0( )2 − ασb( )2, (19)

and

X2 � α −3λ2 + ασc( )
λ2 − ασc( )3 + α2 −3 λ − vb0( )2 + ασb( )

β λ − vb0( )2 − ασb( )3 − 2γ2. (20)

It is observed that (r, q) distribution of hot electrons modifies the

nonlinearity coefficient P (through γ2), while the parameters of

beam electrons affect all the coefficients. Here, the nonlinearity

coefficient may become zero due to the positive and negative

competing terms. Then X2 = 0 and we get a critical condition on

β = nh0/nb0 as

βc �
α −3 λ − vb0( )2 + ασb( ) λ2 − ασc( )3

λ − vb0( )2 − ασb( )3 2γ2 λ2 − ασc( )3 − α −3λ2 + ασc( )( ).
(21)

It may be noted that the critical value of density ratio β depends

upon all the remaining temperatures and densities of electrons,

beam speed vb0 and the spectral indices q and r. For this critical

value, the quadratic nonlinearity vanishes and KdV equation

ceases to exist. The solitary structures are no longer formed as the

dispersion is not balanced out by nonlinearity. Therefore, we

need to change our stretchings of space and time coordinates

which gives the nonlinearity other than quadratic to get the

modified Korteweg de Vries (mKdV) for this critical value.

For mKdV equation, the stretching becomes (Abdikian et al.,

2020; Tamang et al., 2020)

ξ � ϵ x − λt( ), and τ � ϵ3t. (22)

Using this stretching for the model equations, we get the same

first order perturbed quantities as given by Eqs 15, 16 for the

lowest order of ϵ (i.e., ϵ2 now). For ϵ3-order, we obtain

nj2 � −α
λ − vj0( )2 − ασj

⎛⎝ ⎞⎠ϕ2 +
α2 3 λ − vj0( )2 − ασj( )
2 λ − vj0( )2 − ασj( )3 ϕ

2
1,

vj2 �
−α λ − vj0( )
λ − vj0( )2 − ασj

⎛⎝ ⎞⎠ϕ2

+
α2 λ − vj0( ) λ − vj0( )2 + ασj( )

2 λ − vj0( )2 − ασj( )3 ϕ2
1,

(23)

and

FIGURE 2
Variation of normalized electric field E1 (ξ, τ) of EASW against
the normalized spatial scale ξ by varying the spectral indices r and q
and comparison with Maxwellian distribution. Here, nc0 = 0.5cm−3,
nh0 = 2cm−3, nb0 = 1cm−3, σc = 0.001, σb = 0.01, vb0 = 0.1 and
τ = 0.

FIGURE 3
Variation of normalized electric field E1 (ξ, τ) of EASW against
normalized ξ by varying the streaming speed of beam electron vb0
with q = 2.5, r = 0.4, nc0 = 0.5cm−3, nh0 = 2cm−3, nb0 = 1cm−3, σc =
0.001, σb = 0.01 and τ = 0.
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γ1ϕ2 +
1
α
nc2 + 1

β
nb2 + γ2ϕ

2
1 � 0, (24)

which finally gives X2ϕ1zϕ1/zξ = 0. Therefore, the quadratic

nonlinearity coefficient vanishes and we have to go for the higher

order of ϵ to obtain the nPDE. For ϵ4-order, we arrive at the

following equations

λ − vj0( )zξnj3 − zξvj3 � zτnj1 + zξ vj2nj1( ) + zξ vj1nj2( ),
− λ − vj0( )zξvj3 − αzξϕ3 + ασjzξnj3

� −zτvj1 − zξ vj2vj1( ) + ασjzξ nj1nj2( )
−ασjn2j1zξnj1,

1
α
nc3 + 1

α
nb3 + γ1ϕ3� zξ,ξϕ1 − 2γ2ϕ1ϕ2 − γ3ϕ

3
1. (25)

The tedious algebraic manipulation of the above equation along

with the values of first and second order perturbed quantities lead

to the following modified Korteweg de Vries (mKdV) equation

with cubic nonlinearity

zτΨ + RΨ2zξΨ + Szξ,ξ,ξΨ � 0, (26)

where, Ψ = ϕ1 and the coefficients of cubic nonlinearity and

dispersion are given, respectively, as

R � 3Y2

Y1
, andQ � 1

Y1
, (27)

Here,

Y1 � 2α
αλ

λ2 − ασc( )2 + λ − vb0( )
β λ − vb0( )2 − ασb( )2⎡⎣ ⎤⎦, (28)

and

Y2 �
α2 5λ4 − 4

3
λ2ασc + 1

3
α2σ2c( )

2 λ2 − ασc( )5
+
α3 5 λ − vb0( )4 − 4

3
λ − vb0( )2ασb + 1

3
α2σ2b( )

2β λ − vb0( )2 − ασb( )5 − γ3.

(29)

4 Multi-soliton solution of modified
Korteweg de Vries equation

For mKdV Eq 26, the following dependent variable Hirota

transformation (Wazwaz, 2010) is used

Ψ �
���
24S
R

√
zξ tan−1 f

g
( )[ ], (30)

to find the N-soliton solutions. The transformation generates

both compressive and rarefactive solitary solutions for mKdV

equation (The details of the solutions are included in

Supplementary Appendix A1). Therefore, the single

compressive soliton solution becomes

Ψ �
���
24S
R

√
zξ tan−1 ek1 ξ−Sk21τ( )( )[ ], (31)

where k1 is the arbitrary propagation vector. On the other hand,

the rarefactive single soliton solution of EAW is given as

Ψ �
���
24S
R

√
zξ tan−1 1

ek1 ξ−Sk21τ( )( )[ ]. (32)

The two-soliton solution of compressive electron acoustic

solitary wave (EASW) with (r, q) distributed electrons is given as

Ψ �
���
24S
R

√
zξ tan−1 ek1 ξ−Sk21τ( ) + ek2 ξ−Sk22τ( )

1 + a12ek1 ξ−Sk21τ( )+k2 ξ−Sk22τ( )( )[ ]. (33)

Here a12 � −((k1 − k2)2/(k1 + k2)2) is termed as the interaction

parameter. Furthermore, the rarefactive two soliton solution of

mKdV equation is of the form

Ψ �
���
24S
R

√
zξ tan−1 1 + a12ek1 ξ−Sk21τ( )+k2 ξ−Sk22τ( )

ek1 ξ−Sk21τ( ) + ek2 ξ−Sk22τ( )( )[ ]. (34)

5 Numerical results and discussion

In this section, the nonlinear characteristics of electron

acoustic solitary waves (EASWs) are numerically analyzed for

various plasma parameters and double spectral indices (r, q) of

the electron distribution function. The solitary structure

varies with the plasma parameters namely, the ratio of

densities and temperatures of cold, hot and beam electrons

(α, β, σc and σb), the speed of beam electrons, vb0, as well as the

flattening and superthermality indices, r and q, respectively.

The Viking observations in the auroral region of broadband

FIGURE 4
Normalized electric field E1 (ξ, τ) of EASW is plotted against the
normalized ξ by varying the beam to hot electron temperature
ratio σb with q = 2.5, r = 0.4, nc0 = 0.5cm−3, nh0 = 2cm−3, nb0 =
1cm−3, σc = 0.001, vb0 = 0.1 and τ = 0.
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electrostatic noise (BEN) have reported the observations of

both upward and downward energetic streaming electrons in

Earth’s magnetosphere (Dubouloz et al., 1991; Dubouloz et al.,

1993; Singh et al., 2016), which suggests the presence of beam

electrons for EAWs in this region. For this region, cold

electron density nc0 = 0.5cm−3, hot electron density nh0 =

1.5–2.0cm−3, beam electron density nb0 = 1.0cm−3, cold

electron temperature Tc = 2eV, hot electron temperature

Th = 250eV and beam electron temperature Tb = 50eV. The

plasma parameters chosen in this section are consistent with

the energetic burst of beam electrons in the auroral region

(Dubouloz et al., 1991). Moreover, the Viking satellite has

observed the Broadband electrostatic noise (BEN) bursts with

amplitudes of electric fields as high as 100 mV/m in the

dayside auroral zone (Dubouloz et al., 1991).

First, we numerically investigate the linear dispersion

relation given by Eq 16. We plot the four roots of the

phase velocity λ(= ω/k) in Figures 1A–C for various values

of beam streaming velocity vb0. For small values of beam

velocity vb0 (vb0 < 0.2), we obtain four distinct roots, out of

which two are forward propagating and the remaining two are

backward propagating. We term them as cold and beam

electron acoustic modes. With the increase in beam velocity

vb0 (i.e., vb0 ~ 0.3), only two acoustic modes exist which are the

beam electron acoustic modes as shown in Figure 1B. In this

case, the other two roots are complex and correspond to the

two stream instability, which is not the topic of interest here.

For large super-sonic beam velocity (e.g., vb0 > 3.8), three

forward propagating roots and one backward propagating

mode exist. Two forward propagating modes correspond to

the beam (we can term them as fast and slow with respect to

the beam velocity) and the third one is the cold electron mode,

whereas the backward propagating mode corresponds to the

cold electrons. It is important to mention here that these

particular values of vb0 for the existence of different regions of

modes are only valid for a fixed set of remaining plasma

parameters and change if the remaining parameters are

changed. For the nonlinear analysis presented in next

section, we only consider the range of vb0 for which all the

roots are real (to avoid two stream instability).

Berthomier et al. (2000) suggested that the inclusion of beam

electrons besides hot and cold population of electrons for

nonlinear EAWs gives rise to a critical condition that leads to

the formation of both positive and negative potentials for

EASWs. These positive and negative potential EASWs have

been observed in the auroral region of BEN. In the present

FIGURE 5
Variation of normalized electric field E1 (ξ, τ) of EASWs against
the normalized ξ versus the ratio of densities β(= nh0/nb0). Here q =
2.5, r = 0.4, nh0 = 2cm−3, nc0 = 0.5cm−3, σc = 0.001, σb = 0.01, vb0 =
0.1 and τ = 0.

FIGURE 6
Normalized electric field E1 (ξ, τ) of EASWs is plotted versus
the ratio of temperatures σc (= Tc/Th). Here q = 2.5, r = 0.4, nh0 =
2cm−3, nc0 = 0.5cm−3, .nb0 = 1cm−3, σb = 0.01, vb0 = 0.1 and τ = 0.

FIGURE 7
Variation of normalized electric field E1 (ξ, τ) of EASWs is
plotted versus the ratio of densities α(= nh0/nc0). Here q = 2.5, r =
0.4, nh0 = 2cm−3, .nb0 = 1cm−3, σc = 0.001, σb = 0.01, vb0 = 0.1 and
τ = 0.
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case, we have derived an analytical expression of critical

condition, which depends upon the parameters of beam

electrons, so that the quadratic nonlinearity coefficient

vanishes. Thus, we move to the higher order of nonlinearity

and obtain mKdV equation with cubic nonlinearity, which

generates both compressive and rarefactive EASWs. Therefore,

the inclusion of beam electrons for EASWs in our model

generates the solitons with both polarities.

In the previous sections, the multi-soliton solutions are

given in terms of electric potential. However, to compare our

results with the observed data, we convert them in terms of the

electric field, where, E (ξ, τ) = −zξΨ. Thus a hump or a dip of

solitary structure corresponds to a bipolar electric field

structure. Furthermore, an increase in the amplitude of

electric potential corresponds to the enhancement of

electric field amplitude as well. For mKdV equation, we

have obtained both compressive and rarefactive solutions,

however, for a single soliton, we study the variation of

plasma parameters for compressive solitary structures only

given by Eq 31 in the next subsection, since the rarefactive

solitons given by Eq 32 exhibit similar behavior.

5.1 Single soliton solution of modified
Korteweg de Vries equation

For the nonlinear case of EASWs, we first numerically

analyze the impact of spectral parameters r and q of hot

electron distribution function on the propagation properties of

solitary structures in Figure 2. It may be observed that enhancing

the flatness parameter r and the superthermality parameter q

increase the amplitude of electric field significantly. However,

increasing q is tantamount to decreasing the superthermal

electrons, so the amplitude reduces with the increasing

superthermality. Here, index r describes the population of

electrons in the low energy region, whereas, q describes the

population of the high energy particles in the tail of

distribution. The corresponding unnormalized values of

electric field amplitude enhance from 22.9mV/m to 33.7mV/

m. The comparison of (r, q) distribution with the limiting case of

Maxwellian distributed hot electrons shows that the amplitude of

electric field withMaxwellian distributed electrons is greater than

the (r, q) distributed electrons for lower values of parameters r

and q, whereas, the electric field amplitude with (r, q) distributed

FIGURE 8
Variation of normalized electric potential Ψ(ξ, τ) of two soliton solutions is plotted against the normalized scale ξ. (A); Interaction of two
compressive solitons (B); Interaction of two rarefactive solitons (C); Interaction of taller compressive with shorter rarefactive soliton (D); Interaction
of shorter compressive with taller rarefactive soliton. Here q=2.5, r=0.4, nh0 = 2cm−3, nc0 = 0.5cm−3, .nb0 = 1cm−3, σc=0.001, σb=0.01 and vb0 = 0.2.
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electrons exceeds the one with Maxwellian distributed electrons

for higher values of q and r.

Next, we observe the impact of beam parameters,

i.e., beam speed vb0, beam temperature through the ratio σb
(= Tb/Th) and the beam density through the ratio β(= nh0/nb0)

on the properties of electron acoustic solitons in Figures 3–5.

Figure 3 characterizes the impact of beam speed vb0 on the

EAW in a plasma with (r, q) distributed hot electrons. Note,

that the increased beam streaming velocity vb0 augments the

amplitude of electric field. This happens because the beam

electrons act as a source of free energy for the EASWs and,

therefore, the increasing beam speed enhances the

corresponding amplitude of soliton electric field. The

related electric field amplitude for vb0 in (0, − ,0.4) range

lies in the range of (21.4–32.6) mV/m. Figure 4 delineates the

effect of beam temperature through the ratio β on the electric

field of electron acoustic solitary structure. It can be seen from

the plots that enhancement of the ratio σb leads to the

reduction of the electric field amplitude. When the ratio σb

varies from 0.001 to 1 in Figure 4 for fixed values of remaining

parameters, the associated electric field reduces from 12.9 mV/

m to 2.7 mV/m. Furthermore, σb = 1 refers to the case when

Tb= Th and σb = 0 refers to the case of cold electron beam

which achieves the maximum amplitude of electric field. The

effect of beam number density on the EASW through the ratio

β is described in Figure 5. The plots indicate that the

amplitude of electric field mitigates with the increasing

value of ratio β and the electric field amplitude

corresponding to increasing β, reduces from

14.0, −,11.8 mV/m. However, the number density of beam

electrons being inversely proportional to β causes an

enhancement in the amplitude of electric field for an

EASW. Here, beam electrons energize the plasma system,

so increasing their concentration tends to increase the

amplitude of EASW.

Furthermore, we check the effects of concentrations and

temperatures of cold and hot electrons on the electric field of

EASW in Figures 6, 7. The effect of cold to hot electron

FIGURE 9
Variation of normalized electric potential Ψ(ξ, τ) of compressive two soliton solution is plotted against the normalized scale ξ by varying the
spectral indices r and q and comparison with Maxwellian distribution. Here, nc0 = 0.5cm−3, nh0 = 2cm−3, nb0 = 1cm−3, σc = 0.001, σb = 0.01 and
vb0 = 0.1.
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temperature ratio σc (= Tc/Th) is depicted in Figure 6, which

shows that the amplitude of EASW reduces with the increase of

temperature of cold electrons and the related electric field

reduces from 12.8mV/m to 1.5mV/m. The EAW with hot

and cold electron population usually exists when Th ≥ 10Tc or

σc ≤ 0.1 (Gary and Tokar, 1985), else the wave gets Landau

damped. Thus, increasing the temperature ratio Tc/Th reduces

the amplitude. It is important to mention that the necessary

condition for existence of EAWs is the presence of two

electron temperatures. Therefore, in the presence of warm

beam electrons, when Tc approaches Th (i.e., σc → 1), the beam

electrons act as cold electrons and sustain the existence of

EAW. Figure 7 specifies the effect of ratio of hot to cold

electron concentration α(= nh0/nc0) on amplitude of EASW.

The amplitude of solitons reduces with the increasing number

density of hot to cold electrons and the related electric field

exists in range (14.6–11.7)mV/m. It is pertinent to mention

here that the range of electric field associated with EASWs in

all above cases is in agreement with observational data

(Dubouloz et al., 1991), where the electric field varies upto

100 mV/m. Therefore, the present model of EAWs with beam

electrons is well suited to explain the electrostatic solitary

structures for BEN emissions in auroral region of Earth’s

magnetosphere.

5.2 Interaction of modified Korteweg de
Vries electron acoustic waves

For the two soliton solution, we study the interaction of both

compressive and rarefactive solitons, as they show peculiar

behavior during the interaction. For the variation of plasma

parameters belonging to auroral region, Figures 8A–D represent

the types of overtaking interactions that may take place for two

mKdV soliton solutions in terms of the electric potential Ψ.
Figure 8A depicts the two compressive solitons given by Eq 33

before, at and after the interaction times. Before interaction,

the taller soliton lags behind the shorter soliton. At the time

of interaction, the shape of the composite solitary structure

depends upon the ratio of the propagation vectors k1/k2,

where k1 (k2) denote the propagation vector of taller

(shorter) soliton. Therefore, we get a single humped

composite soliton if the ratio k1/k2 is high, else we get a

two humped solitary structure at the point of interaction.

These two humped solitary waves correspond to the tripolar

electric field structures which have been identified in space

plasmas (Pickett et al., 2004). Furthermore, the linear

superposition principle fails to follow at the point of

interaction as the interaction takes place between

nonlinear solitary structures. After interaction, the taller

soliton overtakes the shorter soliton and leads the shorter

soliton. Figure 8B delineates the interaction among two

rarefactive solitons obtained by Eq 34, which shows similar

behavior for rarefactive soliton interaction to that of

compressive soliton interaction in Figure 8A at various

times. Figures 8C,D represent the cases when a

compressive soliton interacts with the rarefactive soliton.

These cases are considered by taking different signs of the

propagation vectors k1 and k2. We consider the interaction of

a taller compressive soliton with a shorter rarefactive soliton

in Figure 8C. Now, the composite structure formed at the

point of interaction carries a taller compressive (hump) and

two shorter rarefactive (dip) structures. However, when a

taller rarefactive soliton overtakes a shorter compressive

soliton, two shorter humps and a taller dip are produced at

interaction time as shown in Figure 8D. This peculiar type of

interaction of compressive and rarefactive solitons may only

be observed for mKdV type equations (Nawaz et al., 2022) and

cannot be seen for KdV type equations (Jahangir et al., 2015;

Jahangir et al., 2016; Jahangir and Masood, 2020).

The effect of spectral parameters (r, q) of the distribution

function, beam parameters and cold and hot electron

parameters may also be analyzed on the interaction of two

solitons. Figures 9A–Dmanifest the impact of indices (r, q) on

the two soliton solution given by Eq 33 in terms of the contour

plots of electric potential Ψ. The comparison of Figures 9A,B

show that when the value of superthermality index q

enhances, the interaction regime stretches from 432 to

599 km. This is in accordance with the result of single

soliton since the parameter q increases the amplitude of

single solitary EAW, thereby, increasing the speed of the

soliton. Therefore, the interaction time speeds up or

equivalently the spatial regime of interaction stretches.

Figures 9A,C show that the interaction regime extends

from 432 to 790 km as we enhance the values of the

flatness parameter r, since increasing r enhances the

amplitude of soliton. Figure 9D shows the broadening of

spatial regime of two soliton interaction to 731 km for the

case of Maxwellian distributed hot electrons. So, in a nutshell,

the spatial regime of Maxwellian distributed electrons is

broadened as compared to (r, q) distributed hot electrons

with lower values of r and q, but is contracted as compared to

(r, q) distributed hot electrons with higher values of r and q. It

is discerned that all the remaining effects of plasma

parameters of beam, hot and cold electrons for two soliton

interaction show a behavior in agreement with their impact on

single soliton solutions and, therefore, have not been plotted

here due to the paucity of space.

6 Conclusion

Linear and nonlinear electron acoustic waves (EAWs)

have been studied in an unmagnetized, collisionless plasma

comprising hot (r, q) distributed electrons, cold inertial

electrons, warm electron beam and the immobile ions.
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Introducing an electron beam in such a plasma has led to a

Doppler shifted velocity due to the beam velocity. The linear

dispersion relation has been investigated for varying beam

velocity, which showed that four distinct (two forward

propagating and two backward propagating) modes exist

for the lower values of beam velocity. For higher beam

velocity (vb0 ~ 0.3), two of the modes have been found to

become imaginary. Moreover, for high super-acoustic beam

speeds, three modes have been found to become forward

propagating while one has been observed to remain

backward propagating. We have derived the Korteweg-de

Vries (KdV) equation for EAWs in the small amplitude limit.

We have obtained a critical condition for which the

coefficient of quadratic nonlinearity vanishes for the given

plasma parameters. For this condition, we have derived the

modified Korteweg de Vries (mKdV) equation with cubic

nonlinearity that has been found to admit both hump and dip

solitary structures. We have shown that the spectral indices r

and q (that control the shape of the distribution function at

low and high energies), the temperature ratio of beam, hot

and cold electrons and their relative concentrations

considerably affect the propagation features and

interaction of electron acoustic solitary waves (EASWs). It

has been found that the increased concentration of cold and

beam electrons increase the amplitude of electric fields while

the enhanced temperatures of cold and beam electrons

reduce the amplitude of electric fields. The types of

possible overtaking interaction of two mKdV solitons have

also been investigated. The interaction regime of two soliton

interaction has been found to vary in a manner similar to that

of the variation of single soliton for various plasma

parameters. Finally, the comparison of (r, q) distribution

with the limiting case of Maxwellian distributed hot electrons

has shown that the amplitude of soliton with Maxwellian

distributed electrons is greater than the (r, q) distributed

electrons with lower values of parameters q and r, but smaller

than the (r, q) distributed electrons for higher values of q and

r. We have shown that the results presented in this paper

concur very well with the satellite observations in the auroral

region. Finally, we would like to say that the beam of

electrons can potentially make the electron acoustic waves

unstable which can lead to the local heating of the plasma and

charged particle acceleration.
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