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We present a random forests machine learning model for prediction of

plasmaspheric hiss spectral classes from the Van Allen Probes dataset. The

random forests model provides accurate prediction of plasmaspheric hiss

spectral classes obtained by the self organizing map (SOM) unsupervised

machine learning classification technique. The high predictive skill of the

random forests model is largely determined by the distinct and different

locations of a given spectral class (“no hiss”, “regular hiss”, and “low-

frequency hiss”) in (MLAT, MLT, L) coordinate space, which are the main

predictors of the simplest and most accurate base model. Adding to such a

base model any other single predictor among different magnetospheric,

geomagnetic, and solar wind conditions provides only minor and similarly

incremental improvements in predictive skill, which is comparable to the

one obtained when including all possible predictors, and thus confirming

major role of spatial location for accurate prediction.
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Introduction

The plasmasphere is a region of the Earth’s inner magnetosphere consisting of

low-energy (cool) plasma and is filled with a plasma wave mode called hiss: a

broadband superposition of whistler-mode waves (Thorne et al., 1973). Hiss

efficiently scatters electrons, facilitating their loss to the atmosphere and thereby

playing a significant role in shaping inner magnetospheric electron populations,

including the radiation belts. For this reason, predictive understanding of hiss waves

is a critical component of inner magnetosphere research (e.g., Millan and Thorne,

2007; Ripoll et al., 2020).

The Van Allen Probes mission has greatly expanded our understanding of hiss. Li

et al. (2015) showed that Van Allen Probes provided capability of measurement’s of

the low-frequency part of hiss waves (starting from 20 Hz). The previous hiss waves

model was based on the CRESS measurements and was limited by the low frequency

cut off being at ≈ 100Hz. However, realistic hiss wave frequency spectra are critical in

evaluating pitch angle scattering rates inside the Earth’s plasmasphere and plumes.
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Indeed accounting for the low-frequency part of the hiss

spectrum decreases the decay time scale by a factor of two for

the multi-MeV electrons (Li et al., 2015). Additionally,

accounting of the low-frequency hiss improves the

numerical simulation of radiation belt electrons (Saikin

et al., 2022).

The traditional approach for studying plasmaspheric hiss

is based on calculating spatial averages of the magnetic field

power spectra (Meredith et al., 2018). This technique has a

disadvantage since it does not take into account the different

shapes of power spectra that occur in a given L-shell vs MLT

bin. Malaspina et al. (2017) showed that low-frequency hiss is

a very distinct wave population in comparison to the hiss in

the “regular” frequency range ( > 150 Hz). In this study we

show that low- and regular-frequency hiss have different

spatial distributions, which is in agreement with results

from Malaspina et al. (2017).

Vech et al. (2022) used an unsupervised machine

learning technique of self organizing maps (SOM) for

identification of plasma waves (Vech and Malaspina,

2021) to categorize plasmaspheric hiss power spectra,

namely “no-hiss’, “low-frequency” and “regular”.

Random forests (RF) is a well established machine

learning technique for both regression and classification

problems that found wide use is geosciences, such as in

climate research (Kondrashov et al., 2007) and more

FIGURE 1
Distribution of spectral hiss classes: left column - “no hiss”; center column—“regular hiss”; right column - “low frequency hiss”; top row—(MLT,
MLAT); middle row - (MLT, L); bottom row - (MLAT, L); color bar corresponds to class membership (number count of spectral shapes) in a given bin.
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recently in space physics (Engell et al., 2017; Smith et al.,

2020; Reep and Barnes, 2021; Zewdie et al., 2021; Bristow

et al., 2022; Kasapis et al., 2022). In this work, we use RF to

predict plasmaspheric hiss spectral classes by considering

multiple magnetospheric, geomagnetic, and solar wind

predictors, including information on the plasmapause

that has been previously shown to be important in

characterizing plasmaspheric hiss (Malaspina et al.,

2017). Our predictive RF model can be used to enable

additional statistical studies of distinct populations of

the hiss waves.

Data and methods

Data

For this study we use the Van Allen Probes datasets of

measurements from the Electric Fields and Waves (EFW)

instrument (Wygant et al., 2013) and the Electric and

Magnetic Field Instrument Suite and Integrated Science

(EMFISIS) instrument suite (Kletzing et al., 2013). We used

the same methodology of the hiss waves identification as in

Malaspina et al. (2017), but with a different definition of the

FIGURE 2
Same as in Figure 1 but normalized by the total number of spectral shapes for all three classes combined in each bin; white color corresponds to
no data in the bin.
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plasmapause location. Data outside the plasmasphere (Ne <
50 cm−3) and data recorded during spacecraft charging events,

eclipses, thruster firings, or EFW bias sweeps were excluded from

our analysis (see (Malaspina et al., 2017) for details of the data

cleaning). This Van Allen Probes data was used to classify

spectral hiss classes with the self-organizing maps technique

(see Vech et al. (2022) for details) and is briefly summarized next.

Plasmaspheric hiss spectral signatures
classification using self-organizing maps

SOM is applied to identify plasmaspheric hiss power spectra

that have “similar” shapes and without averaging together

vastly different spectral shapes. SOM consists of a two-

dimensional grid of nodes where the number of nodes is

typically between a few dozen and a few hundred; in this

study, we use 100 nodes. The goal of the training process is

to assign each input vector (i.e., power spectra as a function of

frequency at one time slice) to a node while ensuring that

“similar” input vectors are assigned to the same or

neighbouring nodes, while “dissimilar” input vectors are

assigned to nodes far from each other. The dataset in this

study is based on 1.76M normalized electric field power spectra

measured by Van Allen Probes. The dataset was limited to

approximately 250 days which were randomly selected from

Probe A due to computationally expensive processing of SOM.

After excluding data points contaminated by magnetosonic

waves we are left with dataset containing 1.51M power

spectra (see Vech et al. (2022) for details). We then

categorized the power spectra by SOM as “regular hiss,” with

38 nodes and 0.65 million spectra; “low frequency hiss,” with

26 nodes and 0.33 million spectra; and “no hiss,” with 36 nodes

and 0.53 million spectra. The “no hiss” class has no wave

activity in the range of 20–2000 Hz; and the “regular hiss”

has a peak in the power spectra in the range of 150–2000 Hz,

while the “low-frequency hiss” has additional wave activity that

extends below 150 Hz (see Figure 1 in Vech et al. (2022)).

Figure 1 shows binned distribution of resulting

plasmaspheric hiss spectral classes in different 2D planes of

(MLAT, MLT, L) coordinates, where MLAT is magnetic

latitude, MLT is magnetic local time, and L is spatial location

FIGURE 3
Overall classification error and receiver operating characteristic (ROC) curves (zoomed in) for predicting specific spectral classes of
plasmaspheric hiss by random forest models using different predictors; “base” model—(MLAT, MLT, L); “base1” model — (MLAT, MLT, Lpp, dL)
predictors; “all” model - all predictors.
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(L-shell) in Earth radii. The spectral classes occupy distinct and

different regions that are largely separated from each other,

especially in the (MLT, L) plane. Figure 2 shows occurrence

rate obtained by normalizing distribution in Figure 1 by

normalizing to the total samples of all three spectral classes in

each bin. Furthermore, different classes tend to occur in separate

sectors of (MLAT, MLT, L) space, in agreement with Figures 1, 2

indicates that low-frequency hiss occurs more frequently from

noon to dusk sector and at a larger L (≳ 5), which is generally

similar to results of Shi et al. (2017). On the other hand, regular

hiss is more dominant around noon sector. He et al. (2020, 2021)

have also studied distribution of hiss, reporting a larger coverage

in MLT. However, direct comparison with these studies is

complicated due to details and differences in definitions of

hiss wave measurements, including that our spectral

classification does not consider the wave amplitude but only

the shape of the wave spectra, as well as various geomagnetic

activity levels (such as AE index).

Random forests model

Random forests (RF) is an advanced classification procedure

that generalizes classification and regression trees (CART); it is

described in greater detail in Breiman (2001). The key idea is to

assign a given data point to a class based on information

contained in a set of predictors in an ensemble of regression

or classification trees, or bag of trees. It is important to note that

for RF the split into training and test dataset is done intrinsically

during construction of the model. Each tree in the RF is

constructed from a random sample of the training data, using

sampling with replacement, and is then used to “predict” the class

of each observation held out in the replacement when that tree

was grown. The final classification of each observation is

determined by a majority vote over all such tree-by-tree

classifications. In our case, there are three classes of response

variables, classified as “no hiss,” “regular hiss,” and “low-

frequency hiss” event.

FIGURE 4
Partial dependence (Eq. 2) computed on the“no hiss” data points; color bar corresponds to the score of RF model.
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The most credible measures of RF model performance

discussed in Sect. 3, such as classification errors, partial

dependence scores, and receiver operating characteristics, are

also derived from the held-out data. In addition, when each

potential partitioning of the data is considered, only a random

sample (without replacement) of predictors are candidates to

define the split; this restriction helps one to take into account

highly specialized predictors that fit only a few observations.

RF have several features that make the algorithm attractive

for our purposes, among other machine learning methods. First,

for the kinds of highly nonlinear and noisy relationships analyzed

in this paper, there are no classifiers to date that consistently

classify and forecast more accurately (Breiman, 2001). Second, it

has been proven (Breiman, 2001) that RF does not overfit, which

implies that the results will generalize well to new random

samples from the same population. Third, because key

performance measures are computed from the observations

not used in tree construction, they are honest indicators of

classification skill. Fourth, random forests provides

informative plots of the relationships between inputs and

outputs (i.e., predictors and predicted scores of spectral classes).

Results

For each data point, the RF classification model outputs a

score in the [0, one] range for each of the three spectral classes,

and the highest score determines the predicted class. Figure 3

shows the resulting overall classification error (fraction of

misclassified observations) independent of the number of

grown trees for RF models using different predictors. In

addition to MLAT, MLT, and L-shell predictors, we have

considered Kp, AE, and Dst geomagnetic indices, cold plasma

density Ne, as well as solar wind V and solar wind dynamic

pressure P. Recently, Malaspina et al. (2018) showed that

plasmaspheric hiss waves power strongly depends on the

plasmaspheric density and the location of the plasmapause.

Hence, we additionally consider the location of plasmapause

Lpp and distance from the plasmapause dL = L-Lpp as a RF

predictor.

The overall classification error of the “base” RF model using

only MLAT, MLT, and L-shell predictors reaches the minimum

and saturates at ≈ 0.15, meaning that ≈ 85% of data points are

classified correctly. The classification error for given spectral class

FIGURE 5
Partial dependence (Eq. 2) computed on “low-frequency hiss” data points; color bar corresponds to the score of RF model.
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is also at ≈ 0.15. On the other hand, the classification error of the

“base1” model that utilizes information on the plasmapause

location with (MLAT, MLT, Lpp, dL) predictors is a bit

higher at 0.165. Adding to the “base” model, any other single

predictor from the list of considered predictors, provides only a

minor improvement in classification error to 0.14, and it is

comparable to the one obtained when including all possible

predictors in the “all” model.

A Receiver Operating Characteristic (ROC) curve informs on

the quality of classifiers (such as RF) over a range of trade-offs

between true positive and false positive error rates by applying

threshold values across the interval [0,1] to classifier results. For a

given threshold value and particular class i, true positive ratio

(TPR) is the number of outputs whose actual and predicted class

is class i, divided by the total number of outputs whose predicted

class is class i, thus including also wrongfully made predictions.

Similarly, false positive ratio (FPR) is the number of outputs

whose actual class is not class i, but the predicted class is class i,

divided by the number of outputs whose predicted class is not

class i. Obtained ROC’s are presented in Figure 3 separately for

each of spectral classes and different RF models, as well zoomed

into the area of high TPR and small FPR, which both vary in

[0 one] range. The larger area under the curve (AUC) values

indicates a better classifier performance, and the perfect classifier

would have the maximum AUC equal to 1, that is TPR being

equal to one when FPR is zero. Resulting AUCs are very high,

such as with a “base” RF model: ≈ 0.95 for “no hiss” class, ≈ 0.94

for “regular hiss” class, and ≈ 0.97 for “low-frequency hiss” class,

confirming overall very good predictive skill of RF.

Discussion

To help with interpretation of our RF results and understand

the origin of such high predictive skill for our base model with

MLAT, MLT and L predictors, we use partial dependence which

quantifies the relationship between the subset of selected

predictor variables XS and predicted responses (scores of

classes) by averaging remaining predictors XC. A predicted

response (in our case it is the score of three classes in the [0,

one] range) f(X) depends on all MLAT, MLT and L predictor

variables:

f X( ) � f XS, XC( ). (1)

FIGURE 6
Partial dependence (Eq. 2) computed on “regular hiss” data points; color bar corresponds to the score of RF model.
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The highest score among three classes determines the predicted

class by RF model. The partial dependence is then estimated as:

fS XS( ) � ∑
N

i�1
f XS,XC

i( ), (2)

where N is the number of observations and Xi � (XS
i , X

C
i ) is the

ith data point. We compute partial dependence in 2-D planes of

(MLT, MLAT, L) coordinates; for example, XS=(MLT, MLAT)

and XC = L, etc. Furthermore, we compute partial dependence of

scores for each class and separately on the three subsets of our full

dataset associated with three spectral classes: “no hiss”, “low-

frequency hiss,” and “regular hiss,” shown in Figures 4–6,

respectively. As can be seen from the 2-D partial dependence

plots, the highest scores for the subset of data associated with a

given spectral class, largely match the spatial distribution of that

class on Figure 1, as well as exceeding scores of the other two

classes. This model feature is most pronounced in MLT-L and is

common for all partial dependence plots in Figures 4– 6. For

example, the maximum of “low frequency hiss” class occurrence

is roughly at 4 < L < 6 and 10 <MLT < 24 (Figure 1), same as for

the one for 2-D partial dependence computed on the subset of

‘low frequency hiss” class (Figure 5). Similarly, the maximums of

“no hiss” class occurrence and associated partial dependence are

at narrow regions L < 1 or MLT < 10 (Figure 1 and Figure 4),

while for the “regular hiss” these maximums are at 2 < L < 5 and

7 <MLT < 15. In other words, the RF model picks up the distinct

spatial location of a given spectral class and yields the highest

score with respect to other classes in that location. This feature

explains a high predictive skill of RF model by using only these

location-based predictors.

Conclusion

We have developed the RF model for prediction of

plasmaspheric hiss spectral classes obtained by SOM classification

of the Van Allen Probes dataset. The RF model provides accurate

prediction that is largely determined by distinct and different

locations of a given spectral class in (MLAT, MLT, L) coordinate

spaces, which are main predictors of the simplest RF base model.

Adding any other single predictor among different magnetospheric,

geomagnetic, and solar wind conditions provides only minor and

similar incremental improvement in predictive skill, which is

comparable to the one obtained when including all possible

predictors.

A somewhat unexpected result is that adding predictors

informing on the plasmapause location did not lead to a

higher predictive skill. Because the SOM classification of

plasmaspheric hiss spectral classes does not take into account

the wave power, and considers spectral shape only, low-hiss class

does not exclude the presence of regular hiss. If the classification

model also were to take into account wave power, we might

expect greater significance of plasmapause location, but this is

beyond the scope of this study and is left for future research.
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