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In this paper, we investigate Bianchi type − V cosmological models with bulk

viscous fluid and time varying cosmological Λ and Newtonian G parameters.

The Einstein’s field equations have been transformed into a coupling non-linear,

first-order differential equations, and the fourth-order Runge-Kutta method of

numerical integration has been used to integrate the differential equations with

appropriate initial conditions consistent with current cosmological

observations. We show that the model describes a universe that starts off

with a negative cosmological term, as well as a matter-dominated and

decelerated early epoch that, eventually becomes Λ-dominated and

expanding with acceleration, in concordance with current observations.

KEYWORDS

time dependent G and ∧, bianchi metric, viscous fluid, anisotropy, cosmological
parameter

1 Introduction

Bianchi cosmological models are homogeneous and anisotropic models that can be

viewed as a generalization of the homogeneous and isotropic Friedman-Lemaître-

Robertson-Walker (FLRW) space-times on which the concordance cosmology is

based. These models are interesting because, although the universe is almost isotropic

on the largest possible scales, small-scale anisotropies are a feature of the observed

universe. Current cosmological observations (Perlmutter et al., 1997; Perlmutter et al.,

1998; Riess et al., 1998; Perlmutter et al., 1999) point out that the universe is expand with

acceleration that was previously thought to be decelerating. Dark energy (DE), which in

the standard Λ-Cold Dark Matter (ΛCDM) paradigm is represented by the cosmological

constant in Einstein Field Equations (EFEs) of general relativity (GR), is thought to be

responsible for the late-time accelerated expansion. Whereas DE is estimated to account

for about 70% of the total matter-energy budget of the universe, the significant other

proportion of 25% is thought to exist in the form of dark matter (DM), a non-luminous,
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and yet-to-be discovered, form of matter whose presence can

only be detected through its gravitational effects.

Several proposals have been put forward to address the issues

of DE and DM, such as additions of exotic matter forms (such as

Λ, the Chaplygin gas, scalar fields, etc.), or modifications of GR

itself [in the form of f(R), f(T), f(R, T), f(Q), etc. (Nojiri and

Odintsov, 2004; Bergliaffa, 2006; Bertolami et al., 2007; Bertolami

and Sequeira, 2009; Sotiriou and Faraoni, 2010; Liu and

Reboucas, 2012; Atazadeh, Darabi; Wang and Liao, 2012;

Sharif and Ikram, 2016; Bamba et al., 2017; Moraes et al.,

2019; Mandal et al., 2020; Arora et al., 2021)] or the non-

relativistic limit of Newtonian theory (MOND) in the case of

DM. Another consideration in the literature has been one based

on Dirac’s hypothesis on the evolution of the fundamental

“constants”. P. Dirac hypothesized that Λ must be a time-

dependent function (Dirac, 1937) because the theoretical

prediction from quantum field theory (QFT) differs

significantly from observations in the value of Λ (Chen and

Wu, 1990; Sahni and Starobinsky, 2000). Since then, various

scientists have indicated an interest in investigating cosmological

models in the context of GR with time-dependent cosmological

constant Λ. Many authors have investigated different forms of Λ
with standard and non-standard cosmological models based on

the same assumption (Vishwakarma and Abdussattar, 1996a;

Vishwakarma and Abdussattar, 1996b; Vishwakarma et al., 1999;

Vishwakarma, 2000; Vishwakarma, 2001; Vishwakarma, 2005;

Bali et al., 2012; Alfedeel et al., 2018; Alfedeel and Abebe, 2020).

Bulk viscosity is important in cosmology because it plays a role in

the universe’s accelerated expansion, also known as the

inflationary phase. Over the course of the universe’s history,

bulk viscosity could manifest in a variety of ways (Ellis, 1971). It

is believed that viscosity emerges when neutrinos disengage from

the cosmic fluid (Misner, 1968), at the time of galaxies formation

and particle synthesis at the early stages of our cosmos (Hu et al.,

1983). For all these reasons, there have been many attempts to

study non-standard cosmological models involving viscous

fluids. Several researchers have recently studied various

Bianchi-type cosmological models with varying cosmological

constant (Λ) and bulk viscous fluid, including (Huang, 1990;

Arbab, 1997; Arbab, 1998; Bali and Pradhan, 2007; Bali and

Kumawat, 2008; Tiwari et al., 2016; Tiwari et al., 2017a; Tiwari

et al., 2017b; Tiwari et al., 2018a; Tiwari et al., 2018b). For

example, the influence of bulk viscosity on cosmic evolution has

been studied in (Huang, 1990; Bali and Pradhan, 2007; Bali and

Kumawat, 2008). Singh et al. (Singh et al., 2016) investigated the

Bianchi type − V cosmological models for a viscous fluid,

assuming that the Hubble parameter H is a linear hyperbolic

function of cosmic time t. They discovered that using the

proposed functional form for the Hubble parameter results in

cosmological models that are compatible with current

observations. Bali et al. (Bali et al., 2012) studied the Bianchi

type − V cosmological model for viscous fluid distribution with

variable cosmological term Λ. They analyzed a cosmic scenario

after assuming the rule of variation for the Hubble parameter H,

i.e., H = a(R−n + 1), where a, n are constants and R is the average

scale factor. They discovered that the model isotropizes

asymptotically, and that the existence of shear viscosity speeds

up the isotropization. Singh and Baghel (Singh and Baghel, 2010)

have investigated Bianchi type − V cosmological models in the

presence of bulk viscosity. They derived an accurate solution for

the EFEs by assuming that the shear scalar σ is proportional to the

volume expansion θ, and that the coefficient of bulk viscosity is a

power function of energy density ρ or volume expansion θ. They

discovered that Λ should be negative, and the models derived are

expanding, shearing, and non-rotating, with no approach to

isotropy at late periods. The same authors analyzed spatially

homogenous and anisotropic Bianchi type −V space-times with a

bulk viscous fluid source and a time-dependent cosmological

term (Singh and Baghel, 2009). They arrived to cosmological

models by assuming a law of variation for the Hubble parameter,

which results in a constant deceleration parameter q = m − 1,

where m is a constant. They came to the conclusion that the

model reflected the universe’s accelerating phase for particular

values of m. Padmanabhan and Chitre (Padmanabhan and

Chitre, 1987) looked at the influence of bulk viscosity on the

development of the cosmos as a whole. They demonstrate that

the bulk viscosity can result in inflation-like solutions.

Motivated by the above discussion, in this paper we will

investigate the Bianchi type − V cosmological model for bulk

viscous universe with time-dependent cosmological

parameter Λ and Newtonian gravitational parameter G,

which is inspired by previous works as mentioned above.

We will not assume any coupling relation between the

metric variables in this study when solving the gravitational

field equations for model physical parameters or imposing any

extra constraints, as others do. Instead, we will recast the

geovering equations for the Bianchi type − V model as

adimension less, non-linear, first order, coupling

differential equation for cosmological observations h(z),

Ωm(z), ΩΛ, Ωχ, and Ωσ, then integrate them in parallel to

estimate the other model characterized parameters. The

following is how the rest of this paper is organized: Section

2 introduces the Bianchi type − V metric and the field

equations that go with it. The solution to the field equation

is presented in Section 3. Section 4 will offer several

cosmological models based on the selection of time-varying

shear and bulk viscosity. Finally, we bring the article to a close

with our conclusion in Section 5.

2 Metric and field equations

The Bianchi type − V line-element in orthogonal space and

time coordinates is represented by the following formula:

ds2 � dt2 − A2dx2 − e2mx B2dy2 + C2dz2[ ] . (1)
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where A = A(t), B = B(t) and C = C(t) are the metric potential and

m is constant. We assume that the universe is filled by a viscous

fluid whose distribution in space is represented by the following

energy-momentum tensor:

Tij � ρ + �p( )vivj + �pgij − 2ησ ij , (2)

where ρ is matter energy density, p is the isotropic pressure, η and

ξ are coefficient of shear and bulk viscosity respectively, vi = (v1,

v2, v3, v4) = (0, 0, 0, 1) is 4-velocity vector of the cosmic fluid and it

is time-like quantity that satisfying viv
i = −1, σij is the shear and �p

is the effective pressure which is given by

�p � p − ξvi;i � p − 3ξ − 2η( )H . (3)

Note that the bulk and shear viscosities, ξ and η, are both

positive, i.e., η > 0, ξ > 0. We will assume them as either constant

or function of time or energy, such as η ~ H and ξ ~ ρn and n is a

numerical constant. Here, the cosmic fluid is assumed to satisfy a

linear equation of state

p � wρ , −1≤w≤ 1 ,

where w is the equation of state parameter (EoS) which relates p

to the energy density. The shear tensor is given by

σ ij � vi;kh
k
j + _vj;kh

k
i( ) − 1

3
θhij , (4)

where hij = gij + vivj is the projection tensor. The Einstein field

equations (EFEs) of the gravitation with time-varying

cosmological constant (Λ) in geometrical units where c = 1

are given by

Rij − 1
2
gijR � −κGTij + Λgij. (5)

Here κ ≡ 8π and Rij is Ricci tensor, R is Ricci scalar and gij is the

symmetric second-rank metric tensor. Using Eqs 1–4, the EFEs

in Eq. 5 for a viscous fluid distribution reduce to the following set

of partial differential Eq. 1:

m2

A2
− €B

B
− €C

C
− _B

B

_C

C
+ 2η

_A

A
� κG p − ξ − 2

3
η( )θ[ ] − Λ , (6)

m2

A2
− €A

A
− €C

C
− _A

A

_C

C
+ 2η

_B

B
� κG p − ξ − 2

3
η( )θ[ ] − Λ , (7)

m2

A2
− €A

A
− €B

B
− _A

A

_B

B
+ 2η

_C

C
� κG p − ξ − 2

3
η( )θ[ ] − Λ , (8)

−3m
2

A2
+ _A

A

_B

B
+ _A

A

_C

C
+ _B

B

_C

C
� κGρ + Λ , (9)

_B

B
+ _C

C
− 2

_A

A
� 0 . (10)

Generally, one can consider that the covariant derivative of

the energy-momentum tensor Tij is proportional to the time

variation of the cosmological “constant” and the gravitational

“constant”, thus:

κG _ρ + �p + ρ( ) _A

A
+ _B

B
+ _C

C
( )[ ] + κρ _G + _Λ − 4κGησ2 � 0. (11)

_ρ + 3H p + ρ − 3ξ − 2η( )H[ ] − 4ησ2 � 0 , (12)
κρ _G + _Λ � 0. (13)

Using �p � p − (3ξ − 2η)H, if the total matter content of the

universe is conserved, Eq. 11 can be split into two independent

equations:

According to Eq. 13, G turns out to be constant for non-

zero energy density ρ when Λ is constant or Λ = 0. Note that

we have used H ≡ 1/3( _A
A + _B

B + _C
C) as we will show later, and σ is

the scalar shear tensor is given by

σ2 � 1
2
σ ijσ

ij � σ20
a6
, (14)

where σ0 is a constant that is related to the universe

anisotropy. The spatial volume V for Bianchi type − V

space-time given by

V � a3 �
������
| − gij|

√
� ABC , (15)

where (a) is the average scale factor of universe. In addition to

that, the generalized Hubble parameter H, and the deceleration

parameter q are defined as

H ≡
_a

a
� 1
3

Hx +Hy +Hz( ), q ≡ − a€a

_a2
� − _H

H2
− 1 , (16)

where Hx, Hy and Hz are the directional Hubble parameters

along x, y and z directions respectively. The

components of the shear tensor σij for the metric in Eq. 1

are calculated as

σ11 � Hx −H, σ22 � Hy −H, σ33 � Hz −H, σ44 � 0 ,

(17)
and the shear scalar σ now gives

σ2 � 1
6

_A

A
− _B

B
( )2

+ _B

B
− _C

C
( )2

+ _C

C
− _A

A
( )2⎡⎣ ⎤⎦ . (18)

The average anisotropy parameter Ap is defined as

Ap � 1
3
∑3
i�1

Hi −H

H
( )2

. (19)

Subtracting the field Eqs 7, 8 gives

€B

B
− €C

C
+ _B

B
− _C

C
( ) 1

2

_B

B
+ _C

C
( ) + 2η{ } � 0, (20)

which can be integrated to give

_B

B
− _C

C
� k1
a3
e
−2∫ ηdt

, (21)
1 Overdots represent partial differentiation with respect to cosmic time t.
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Similarly, the rest of the field Eqs 6–10 can also be solved to

give a coupled first order differential equation for the metric

variables A, B and C as

_A

A
� _a

a
, (22)

_C

C
− _A

A
� k2
a3
e
−2∫ ηdt

. (23)

Integrating Eq. 22 and absorbing the constant of integration

into A or B yields

A � a. (24)

Thus, plugging Eq. 24 into Eqs 21, 23 produces

_B

B
� _a

a
+ k1
a3
e
−2∫ ηdt

, (25)

_C

C
� _a

a
+ k2
a3
e
−2∫ ηdt

. (26)

Integrating these equations one more time gives an

expression for the metric function B and C as

B � d1a exp ∫ k1
a3
e
−2∫ ηdt⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠dt

⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (27)

C � d2a exp ∫ k2
a3
e
−2∫ ηdt⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠dt

⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (28)

where k1, k2, d1 and d2 are constants of integration. Eqs 6–10 can

be written in terms of H, σ and q as

κG�p − Λ � H2 2q − 1( ) − σ2 + m2

A2
, (29)

κGρ + Λ � 3H2 − σ2 − 3m2

A2
. (30)

Eq. 29 and Eq. 30 are the generalized Friedmann equations for

Bianchi type-V spacetimes endowed with the viscous-fluid model

under consideration. The generalized Raychaudhuri equation reads:

_H + 3H2 − 2m2

a2
− Λ + κG

2
p − ρ( ) − κG

3ξ
2
− η( )H � 0. (31)

This equation cannot be solved as it stands because of the

unknown variables η, ξ, a, G, Λ, p and ρ. In order to facilitate the

solution process by providing extra information in the form of

initial conditions and a constraint, we divide the re-arranged

form of the Friedmann Eq. 30 by 3H2 and write

1 � Ωm +ΩΛ + Ωσ +Ωχ (32)
such that

Ωm ≡
κGρm
3H2

, ΩΛ ≡
κGρΛ
3H2

, Ωσ ≡
σ2

3H2
, Ωχ ≡

3m2

3H2a2
.

(33)

The present-day values of the above dimensionless quantities

are given by

Ωm0 �
κG0ρm0

3H2
0

, ΩΛ0 �
κG0ρΛ0

3H2
0

, Ωσ0 �
σ20
3H2

0

,

Ωχ0
� 3m2

3H2
0a

2
0

,
(34)

FIGURE 1
The variation of the fractional energy densities of dark energy ΩΛ and matter Ωm with redshift. The current values from (Aghanim et al., 2020)
h(0) = 1, Ωm(0) ≡Ωm0 = 0.321, ΩΛ(01) ≡ΩΛ0 = 0.679, Ωχ0 = −0.056 and Ωσ0 = 1 − Ωm0 − ΩΛ0 − Ωχ0 are used as initial conditions along with the fourth-
order Runge-Kutta method to integrate the system numerically.
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In terms of the dimensionless parameters defined here, Eqs.

12, 13 can be rewritten as:

_Ωm + 2
_H

H
− _G

G
( )Ωm + 3H 1 + wm( )Ωm − κG

3H
3ξ − 2η( )[ ] − 4κGηΩσ � 0,

(35)

_ΩΛ + 2
_H

H
ΩΛ + _G

G
Ωm � 0. (36)

These evolution equations together with the constraint (Eq.

32) need one extra equation to solve for the different Ωi’s. Thus

we give the following additional evolution equations for the

fractional energy density of the:

_Ωχ + 2 H + _H

H
( )Ωχ � 0, (37)

_Ωσ + 6H + 2
_H

H
( )Ωσ � 0. (38)

Our next step is to numerically integrate these equations and

see if/how the results compare with those of the ΛCDM model.

3 Numerical integration

We observe that a viscous fluid Bianchi type-V model with

time varyingG andΛ is characterized byA, B, C, h. q,Ωm,ΩΛ and

G, but the system of equations Eqs 6–10, 12, 13 only provides five

differential equations. To complete the solutions processes an

extra equation or assumption is required. According to the Dirac

(Dirac, 1937) ansatz, the gravitational constant must decrease

with time, and based on this we assume that

G t( ) � G0a
δ 0 _G � GδH , (39)

where δ = −1/60 is a constant obtained from observational

constraints (Williams et al., 2009). In order to transform the

governing Bianchi type-V evolution equations in redshift space,

we use

_Q � dQ

dt
� dQ

dz

dz

da

da

dt
� − 1 + z( )HQ′ (40)

for any time-dependent quantity Q, and with the dimensionless

parameters

h ≡
H

H0
, a � 1

1 + z( ) ,

ξ � αH0 ρm/ρm0( )n , and η � βH.

Here α and β are dimensionless constants and 0≤ n≤ 1. We

can thus rewrite our previous Eqs 31, 35–37 in fully

dimensionless forms as follows:

h′ � h

1 + z( ) 3 − 2Ωχ − 3ΩΛ − 3
2

1 − wm( )Ωm[ ]
− 3ακG0

2
h2Ωm

Ωm0
( )n

− κG0βh[ ] 1

1 + z( )1+δ (41)

Ωm′ �−2h′
h
Ωm + 1

1+z Ω+3+3wm( )Ωm − 3ακG0

h 1+z( )1+δ
h2Ωm

Ωm0
( )n

+ 2κG0β

1+z( )1+δ −
4βκG0Ωσ

1+z( )1+δ ,
(42)

ΩΛ′ � −2h′
h
ΩΛ − δ

1 + z
Ωm, (43)

Ωχ′ � −2h′
h
Ωχ + 2Ωχ

1 + z
, (44)

Ωσ′ � −2h′
h
Ωσ + 6Ωσ

1 + z
, (45)

FIGURE 2
The variations of the normalized expansion rate h and the deceleration parameter qwith redshift. The current values from (Aghanim et al., 2020)
h(0) = 1, Ωm(0) ≡Ωm0 = 0.321, ΩΛ(0) ≡ΩΛ0 = 0.679, Ωχ0 = −0.056 and Ωσ0 = 1 − Ωm0 − ΩΛ0 − Ωχ0 are used as initial conditions along with the fourth-
order Runge-Kutta method to integrate the system numerically.
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Eqs 41–45 are first-order coupled differential equations that

describe the evolution of h, Ωm and ΩΛ with respect to the

redshift z. The deceleration parameter q, the metric variables A, B

and the volume expansion V are given by:

q � 2 − 2Ωχ − 3ΩΛ − 3
2

1 − wm( )Ωm − 3ακG0

2h 1 + z( )δ
h2Ωm

Ωm0
( )n

+ βκG0

1 + z( )δ ,
(46)

B � d1

1 + z( ) exp
κ1
H0

∫ 1 + z( )2+2α
h

dz{ } , (47)

C � d2

1 + z( ) exp
κ2
H0

∫ 1 + z( )2+2α
h

dz{ }, (48)

V � ABC � d3

1 + z( )3 exp
κ3
H0

∫ 1 + z( )2+2α
h

dz{ }, (49)

where d3 = d1d2 and κ3 = κ1 + κ2 are numerical constants.

4 Results and discussion

The model governing system of Eqs 41–43 is numerically

solved for h(z), Ωm and ΩΛ along with the normalized initial

conditions h(0) = 1, Ωm(0) ≡Ωm0 = 0.321, ΩΛ(0) ≡ΩΛ0 = 0.679,

Ωχ0 = −0.056 and Ωσ0 = 1 − Ωm0 − ΩΛ0 − Ωχ0 using the fourth-

order Runge-Kutta method. The numerical results were obtained

for several values of the constant n in the range 0 ≤ n ≤ 1 and α =

β = κG0 = 1. The behaviors of Ωm, ΩΛ, h, q, ξ and Ap are

graphically represented in Figures 1–3.

From Figure 1 we see that Ωm starts evolving with redshift

from having large value at an earlier stage of cosmic evolution

gradually decreasing to its minimum value around z ~ 1, then

reaching its current value of Ωm0 at z = 0, whereas ΩΛ grew

from a small value at the early times to its current positive

value at z = 0. This result is in agreement with results from the

ΛCDM model.

As seen in Figures 2, 3, the normalized Hubble parameter h, the

bulk viscosity ξ and the anisotropy parameter Ap have become

smaller today compared to their values at larger redshifts, for all vales

of n considered. It appears from our analysis, however, that the

anisotropy term at about z ~ 1 (when the fractional energy density

was at itsminimum) reaches amaximumvalue before it decreases to

its minimum value today.

The right panel of Figure 2 shows demonstrates that the

deceleration parameter changes sign at small redshift values, from

negative q > 0 at the early times to q < 0 at the present time for all

different values of n considered. The change in q indicates that the

universe expansion in this model has gone through a phase transition

from slowing (decelerating) early epoch on to a speeding up

(accelerating) universe now, with the transition from deceleration

to acceleration happening at z ~ 0.5, as predicted by observations

as well.

5 Conclusion

The major goal of this paper was to investigate the

homogeneous and anisotropic Bianchi type − V

cosmological model in the presence of shear η and bulk ξ

FIGURE 3
The variation of the bulk viscosityξ and anisotropy Ap parameters with redshift. The current values from (Aghanim et al., 2020) h(0) = 1, Ωm(0)
≡Ωm0 = 0.321,ΩΛ(0) ≡ΩΛ0 = 0.679,Ωχ0 = −0.056 andΩσ0 = 1 −Ωm0 −ΩΛ0 −Ωχ0 are used as initial conditions alongwith the fourth-order Runge-Kutta
method to integrate the system numerically.
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viscosities in the cosmic fluids for time-varying gravitational

G and cosmological Λ parameters. The governing background

EFEs were simplified to second-order differential equations

for the metric variables A, B and C, as well as generalized

Friedman equations. In this research we have transformed the

basic governing equations into non-linear first-order

differential equations for h, Ωm, ΩΛ, Ωσ, Ωχ in the redshift

space, which may solved by numerically integrating in parallel

using the fourth-order Runge-Kutta method. Unlike previous

studies that required a relationship between the model’s

characteristic parameter to describe the model in time

domain, the current method of integration is significant

because it allows us to determine the behaviour of the

model directly from redshift-dependent measurable

quantities and to compare it to current and future data.

Our results showed that the model describes a universe that

starts off with a negative cosmological term, dominated by

non-relativistic matter and decelerated, that eventually

becomes dark energy-dominated and hence expanding with

acceleration, in concordance with current observations. Our

future endeavour in this direction will involve a more rigorous

data analysis to observationally constrain the different

assumed parameters of the model.
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