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This work is divided to two parts; the first part analyzes the features of
Hénon–Heiles’s potential and finding the energy levels for bounded and
unboundedmotions. The critical points are explored in different phase spaces from
the classical potential to the generalized one. In the second part, the possible
solutions of the generalized (fifth-degree) Hénon–Heiles system are analyzed
using the averaging theory. Two consequent transformations are used to set the
Hamiltonian of this system in standard form for applying the averaging theory. In
this context, eight solutions are found, where one of them is not convenient for
the proposed assumptions, and the other seven solutions are proper and adequate
to represent seven periodic orbits for the generalized Hénon–Heiles dynamical
system, which has at least seven periodic orbits.

KEYWORDS
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1 Introduction

The Hénon–Heiles system has been stated initially to describe the stars’ motion around a
galactic center, and it remains a vital topic in both mathematical and physical sciences since it
was first proposed in 1964 (Hénon and Heiles, 1964). The Hénon–Heiles system gives fertile
dynamical behavior, and it is to be noted that the Wada property cannot be investigated in the
Hamiltonian system, but it can be observed in the Hénon–Heiles system (Aguirre et al., 2001).
In general, this system can be used to explore many dynamical concepts in particle motion
passing by regular and periodic orbits to resonance behavior going to chaotic motion. It is
considered one of the most important systems for characterizing how chaos appears.

In Churchill et al. (1979), some evaluated periodic orbits have been specified using
geometric constructions, and the stability of these orbits is analyzed in terms of the variation
of the energy levels of the system. Also, De Figueiredo et al. (1998) studied the dynamics of the
two degrees of freedomwithin the Hénon–Heiles Hamiltonian system.They investigated many
dynamical features such as existence of stochastic regions in specified parts of phase space,
which are linked to two canonical invariants that can be explicitly evaluated. In Vallejo et al.
(2003), different prototypical distributions of the finite-time Lyapunov exponent are calculated
for a 2-dimensional Hénon–Heiles Hamiltonian system. Several forms are evaluated for each
dynamical state, which characterize the local instability of the system.

In the framework of the general formula for the classical Hénon–Heiles potential, the
non-linear stability features of the equilibrium points, which are like Lagrangian points, are
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studied. The conditions for the stability have been shown on the free
parameters. Also, the stable character of the origin point has been
proven for classical potential (Iñarrea et al., 2015). A considerable
work is addressed in Antipov and Nagaitsev (2017), where the
possibility of creating a Hénon–Heiles Hamiltonian system using
sextupoles in a realistic accelerator lattice is studied. A special
sextupole channel is proposed in order to generate the desired
potential at the integrable optics test accelerator ring and study the 3-
dimensional single-particle dynamics by frequency map analysis and
Poincaré cross-section.

Dubeibe et al. (2018) constructed a series expansion up to
the fifth degree, considering the axial and reflection symmetries
of Hénon–Heiles potential. With some specified assumptions
and mathematical transformations, the formula of the so-called
generalized Hénon–Heiles potential is computed. Then, bounded
and unbounded motions are analyzed, using the Poincaré section
technique, while the corresponding Newton–Raphson basins of
convergence to the equilibrium points, which are considered the
attractors of the convergence process, are analyzed using a numerical
approach. Hence, the locations and linear stability of these points are
studied. Also, with the help of the multivariate version of the classical
Newton–Raphson scheme, the regions of attraction are revealed
and the basin entropy of the attracting domains is also investigated
(Zotos et al., 2018).

Although the Hénon–Heiles system and its modified versions
have been analytically and numerically extendedly studied, it remains
a vivid subject in dynamical systems. In fact, we aim to study the
possible periodic solutions of the generalized Hénon–Heiles system
by using the averaging theory of dynamical systems. However, first,
we will shed light on the importance of the periodic orbits and
the used perturbation methods. Periodic orbits are special solutions
corresponding to a dynamical system of differential equations, where
these solutions repeat themselves after specified periods of time. In
the case of the dynamical systems which display s periodic orbits, this
phenomenon can be called an oscillator; otherwise, it can be called
unstable.

The study of periodic solutions of non-linear ordinary differential
systems is one of the main problems in qualitative theory, where
periodic orbits are found in most of the dynamical systems
that have an application in physics, quantum mechanics (Kottos
and Smilansky, 1999), and celestial mechanics (Ershkov, 2017;
Pathak et al., 2019a; Pathak et al., 2019b; Abozaid et al., 2020).
These solutions can be used to describe the motion of planetary
and stellar systems. In the framework of either the existence or
non-existence of periodic orbits analytically, many and different
techniques can be used to examine the existence (non-existence)
of periodic orbits for autonomous dynamical systems, for example,
index theory, Bendixson’s criterion, Poincare–Bendixson theorem
(Guckenheimer et al., 1984), Liénard systems (Hannsgen, 1979), and
Fast–SlowPlanar Systems (Grasman et al., 1978;Mis’enko et al., 1994).

One of themain problems in celestial mechanics is Kepler motion,
which is periodic under the mutual universal gravitational law when
the energy takes a negative value. Furthermore, the solution of
the restricted three-body problem, that comprises the basis of the
Hill–Brown theory in celestial mechanics, is periodic. The major
existence of oscillators’ phenomena is in the motion of celestial
objects, which can be described by two- or three-body systems or
N−body systems with periodic solutions. Many methods can be

used to find periodic solutions, such as Lindstedt–Poincaré, multiple
scales, and KB averaging methods (Kang, 2001; EAbouelmagd et al.,
2015; Abouelmagd et al., 2016; Abouelmagd, 2018; Abouelmagd et al.,
2020b). In the case of the extended first and second kind of periodic
orbits, which are established by Poincaré, Barrar (1965) investigated
the existence of these orbits by using Delaunay variables, while
Abouelmagd et al. (2019) proved that these orbits for the unperturbed
restricted three-body problem can be extended to the perturbed
problem by solar sail and oblate effects.

We recall that periodic solutions can be calculated by using
some numerical techniques when the solutions are stable by finding
the basins of convergence via a numerical integration with proper
selection for initial conditions. However, in the case of the instability
of periodic solutions, we can use, for example, the Newton–Raphson
scheme to calculate these solutions, rather than using it in the case of
stable periodic solutions (Parker and Chua, 1989).

The averaging theory is a powerful perturbation method that can
be used to find periodic orbits for some non-integrable systems and
in galactic dynamics (Llibre and Jiménez-Lara, 2011; El-Sabaa et al.,
2021). This method is used to show that there are two periodic orbits
for the anisotropic Kepler system under the small anisotropy effect.
Also, two approximate analytic solutions for these orbits are calculated
(Abouelmagd et al., 2017). However, the global dynamics of the
relativistic perturbed Kepler problem are studied in Abouelmagd et al.
(2020a) using the same theory.

We remark that periodic orbits play a serious and substantial
role for understanding the manner and modality of non-linear
dynamical systems. In particular, the authors investigated the features
of attractors in Celletti (2009). The periodic orbits have particular
importance in the qualitative theory of differential equations, integral
equations, functional differential equations, etc. Therefore, it is very
important to obtain information on the qualitative behavior of
periodic solutions of differential equations when there is no analytical
expression for the solutions. Thus, the objective of this paper is
using the averaging theory to prove the following theorem, which is
considered the main result of the current work.

Theorem 1: At every positive energy level, the fifth-degree Hénon-
Heiles Hamiltonian system (Ershkov, 2017) has at least seven periodic
orbits.

This work is organized as follows: a literature review on periodic
orbits and the used methods are presented in Section 1. The
feature analysis of Hénon–Heiles’s potential and the related critical
points in different phase spaces are explored in Section 2. The
generalized Hénon–Heiles systems are derived in Section 3. The
fundamental results on the second-order averaging theory for a
dynamical system are shown in Section 4. The standard form of
generalized Hénon–Heiles systems is derived in Section 5 to apply the
averaging theory. Themain result, which is represented byTheorem 1,
is established in Section 6. Finally, a conclusion is stated in the last
section.

2 Hénon–Heiles potential properties

Through the work of Hénon and Heiles on the analysis of a star
motion over the galactic center in the same plane, they found the
third integral ofmotion in the framework of galactic dynamics (Hénon
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and Heiles, 1964). To study the existence of this integral, a non-linear
potential with cylindrical symmetry was introduced to represent the
galaxy gravitational potential in the following form:

V0 (x,y) =
1
2
(x2 + y2) + x2y− 1

3
y3. (1)

We remark that the potential is formulated by adding two
cube terms to the two-dimensional oscillator potential as in Eq. 1.
Hénon and Heiles proved that the third integral can exist only for
a limited range of initial conditions. The non-linear motions of
stars in the framework of the classical Hénon–Heiles potential (we
mean that the given potential in Eq. 1) are considerably studied, see,
for example, Szücs-Csillik (2010); Llibre and Jiménez-Lara (2011),
while a significant analysis on these motions within the frame of
generalized Hénon–Heiles potential is conducted in Dubeibe et al.
(2018); Zotos et al. (2018).

The generalized Hénon–Heiles or fifth-degree potential (V) is
given by

V (x,y) = V0 + δ[x4y+ x2y3 − y5 − (x2 + y2)
2] , (2)

where δ is an arbitrary parameter, which embodies the transition
from the classical Hénon–Heiles potential to the generalized one;
details of constructions are given in Dubeibe et al. (2018). We can
see the difference between the classical and generalized Hénon–Heiles
potential through the isopleth of both potential in Figure 1 for
different values of the transition parameter (δ).

The contour lines or isopleth of Hénon–Heiles potential are shown
in Figures 1A–D when δ = 0, .2, .6,1. In brief, these figures show the
plane sections of Hénon–Heiles potential for different values of the
transition parameter or characterize the intensity map of the potential
with some equipotential curves. After examining these figures, we
remark that the plane sections of zero potential enlarge with the
increase of the transition parameter value. In general, the contour lines
form region boundaries of possible motions at different equipotential
levels.

The sketched potential V(x,y) in Figure 1 has some interesting
characteristics: when y is constant (say y = k), then the potential in
Eq.2 can be rewritten as

V (x,k,δ) = 1
6
k2 (3− 2k) + 1

2
(2k+ 1)x2

− δ[k4 (k+ 1) − k2 (k− 2)x2 − (k− 1)x4] . (3)

It is clear from Eq. 3 that the potential is represented
by a biquadratic function when y is constant. Thereby,
V (x,k,δ) = V (−x,k,δ) and the potential is symmetric about the
V−axis; hence, the potential has the same infinite limit when x tends
to positive or negative infinity. If the coefficient of x4 is positive, then
the potential function will increase to positive infinity at both ends,
and thus the potential function has a global minimumpoint. Likewise,
if the coefficient of x4 is negative, the potential function will decrease
to negative infinity and has a global maximum point. In both cases,
it may or may not have another local maximum and another local
minimum.

If y is constant, the curves of the Hénon–Heiles potential are
shown in Figure 2 for some particular values of y. The classical
potential (V0) will be represented by a parabola formula. Also,
the generalized Hénon–Heiles potential Eq. 3 will satisfy the same
property when δ ≠ 0 and k = 1. The potential function Eq. 3 has

different formulae depending on the value of the transition parameter;
hence,

V (x,y,δ) =

{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{
{

1
2
(2k+ 1)x2 − 1

6
k2 (2k− 3) , when y = k ≠ − 1

2
, δ = 0

1
2
(x2 − 2δx4) when y = k = 0, δ ≠ 0

1
2
(3− 2δ)x2 + 1

6
(1− 12δ) , when y = k = 1, δ ≠ 3

2
1
6
k2 (3− 2k) + 1

2
(2k+ 1)x2

−δ[k4 (k+ 1) − k2 (k− 2)x2 − (k− 1)x4] , when y = k ≠ 0, δ ≠ 0

.

(4)

It is clear from the particular potential formulae in Eq.4 (when y
is constant) that both of the classical and generalized Hénon–Heiles
potential are represented by parabola formulae or straight lines as
shown in Figure 2. In the case of y = 0 or y = 1 with some non-
zero values for the parameter δ, the potential curves are shown in
Figures 2A, B, while in the case of y = −.5, 0, 1.5 and δ = 0, 1.5, the
potential curves are shown in Figure 2C.

We remark that the particular potential relation at y = k ≠ −1/2
and δ = 0 has a critical point (0,k2(3− 2k)/6), which will be
minimum point when k ∈ (−1/2,∞) and a maximum point when
k ∈ (−∞,−1/2). It is also observed that V0(x,−1/2,0) and V(x,1,3/2)
are constants, i.e., the classical and generalized potential relations
represent two parallel lines, as shown in Figure 2C

In the case of y = 0 at δ ≠ 0, the potential has three critical
points, one is a minimum point at (0,0) and two maximum points at
(−1/2√δ,1/16δ) and (1/2√δ,1/16δ), where δ is a positive number.The
minimum (maximum) point when y is constant will provide a stable
(unstable) point on X−axes.

Now, we will investigate the properties of the potential when x is a
constant (say x = q); then, the potential Eq. 2 can be rewritten as

V (q,y,δ) = 1
2
(q2 + y2) + q2y− 1

3
y3

+ δ[q4 (y− 1) + q2 (y− 2)y2 − y4 (y+ 1)] , (5)

Eq. 5 represents a quintic function in variable y; hence, the
potential is represented by a polynomial of degree 5. In general, the
graph of the quintic function is similar to that of the cubic function,
unless it may possess extra localminimum and localmaximumpoints.
Furthermore, Eq. 5 can be rewritten as

V (x,y,δ) =

{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{
{

1
2
y2 − 1

3
y3, when x = q = 0, δ = 0

1
2
q2 + q2y+ 1

2
y2 − 1

3
y3, when x = q ≠ 0, δ = 0

1
6
(3− 2y)y2 − 1

6
δ(6y3 + 6y2)y2, when x = q = 0, δ ≠ 0

1
2
q2 + q2y+ 1

2
y2 − 1

3
y3

+δ[q4 (y− 1) + q2 (y− 2)y2 − y4 (y+ 1)] . when x = q ≠ 0, δ ≠ 0

.

(6)

Equation 6 shows that the potential function may have one local
minimum and one local maximum point when x is a constant and
δ = 0. In the case of x = q = 0 and δ = 0, there are two critical points,
where one of them isminimum (0,0) and the other ismaximumpoints
(0,1/6). In the case of x = q ≠ 0 and δ = 0, the potential function has
two critical points (y1,V1) and (y2,V2), where the first is a minimum
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FIGURE 1
Isopleth of the generalized Hénon–Heiles potential.

point and the second is maximum, which are given by

y1 =
1
2
(1−√4q2 + 1),

V1 = −
1
3
(4q2 + 1)3/2 + 1

2
(5q2 + 1) + q2√4q2 + 1,

y2 =
1
2
(1+√4q2 + 1),

V2 =
1
3
(4q2 + 1)3/2 + 1

2
(5q2 + 1) − q2√4q2 + 1.

For the remaining two cases x = q = 0, δ ≠ 0 and x = q ≠ 0, δ ≠ 0,
the potential is represented by a quintic function and there is at least
one critical point.

If x is a constant, the curves of the Hénon–Heiles potential are
shown in Figure 3 for some particular values of x at different values
of the parameter δ, see Figures 3A, Bwhen x = 0 while Figures 3C, D
when x = 1.The classical potential relation (V0) will be represented by
a cubic curve. However, the generalized Hénon–Heiles potential will
be represented by a quintic curve.

2.1 Bounded and unbounded motion within
the generalized Hénon–Heiles system

In order to investigate more properties of the Hénon–Heiles
potential, we found first the critical points of the classical potential (we
mean that δ = 0); hence, we found that there exist four points, which
are (0,0,0) (0,1,1/6), (−√3/2,−1/2,1/6), and (√3/2,−1/2,1/6). After
applying the derivative test, we found that the first point is a minimum
point, but the last three are saddle points.

For graphical investigations, we zoomed the isopleth of plane
sections in Figure 1 about the contour curve of V = 1/6 in Figure 4.
In the zoomed diagram, the saddle points form the three vertices of
the triangle for the equipotential curve of V = 1/6, which is shown
in Figure 4A. The area of the triangle, which is determined by the
potential curve V = 1/6, forms the region boundaries of bounded
motions. This means that the motions are bounded inside the region
of the triangle and will be bounded when the total system energy is
lower than 1/6. It is also clear that from the contour lines the orbits
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FIGURE 2
Hénon–Heiles potential for different values of transition parameter δ when y is constant.

of motion have a special appearance and form closed paths, which
may vary from circular shape to a triangle, which can be seen at the
equipotential curves V = 1/84, 1/24, and 1/12 in Sub–Figure 4A.

The Hamiltonian of the generalized system is defined by

H (x,y, ẋ, ẏ) = 1
2
(ẋ2 + ẏ2 + x2 + y2) + x2y−

y3

3
+ δ[x4y+ x2y3 − y5 − (x2 + y2)2] , (7)

where ẋ = ∂x/∂t and ẏ = ∂y/∂t are the conjugate momenta per unit of
mass of x and y, respectively. Since the total system energy is conserved
whenH is constant (i.e.,H = E = constant), then the kind of motion is
restricted to the defined region by

E (x,y) ≥ 1
2
(x2 + y2) + x2y−

y3

3
+ δ[x4y+ x2y3 − y5 − (x2 + y2)2] ,

We found the critical minimum and maximum values of energy,
Emin and Emax, respectively, at different values for transition parameter

δ, as shown in Table 1 (in fact, we extended the evaluated values
in Dubeibe et al. (2018) to include more critical minimum and
maximum values of energy for transition parameter δ), in order
to identify the kind of motions. We mean that the motion will
be bounded when E < Emin and unbounded when E > Emax. If the
total energy E is equal to or less than Emin, the equipotential curves
are closed and the body cannot escape from the region where its
motion is bounded, while if E > Emim, the curves of the equipotential
open, creating passageways, where the body may find its escaping
gates to infinity way, which is shown in Figures 4B–D, when δ ≠ 0.
Furthermore, the escape energy is identified by the value of Emim,
where the body can be escaped if its energy is larger than Emim.

It is observed that the size of these gates enlarges with the
increasing of the value of the transition parameter δ, which makes the
escaping soft and rapid. The motion is stable with periodic orbits in
the closed regions, while at every gate, the periodic orbits of motion
are unstable, which are called Lyapunov orbits; these orbits havemajor
significance for escaping from the system, where escaping is possible
when the body orbit crosses one of these orbits. We demonstrated that

Frontiers in Astronomy and Space Sciences 05 frontiersin.org

https://doi.org/10.3389/fspas.2022.945236
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Alhowaity et al. 10.3389/fspas.2022.945236

FIGURE 3
Hénon–Heiles potential for different values of transition parameter δ when x is constant.

the escape energymust be equal to or greater than theminimum value
of critical energy (Eesc ≥ Emin). Thus, we conclude that the value of
the parameter δ increases while the energy of escape decreases; this
property is shown graphically in Figure 5; see also for details (Antipov
and Nagaitsev, 2017; Dubeibe et al., 2018).

3 Generalized Hénon–Heiles system

The Hamiltonian of the Hénon–Heiles system of fifth degree is
given by

H =H0 + δH1, (8)

where

H0 =
1
2
(p2x + p

2
y) +

1
2
(x2 + y2) + x2y−

y3

3
,

H1 = x4y+ x2y3 − y5 − (x2 + y2)
2,

(9)

Utilizing Eqs 8–9, the Hamiltonian equations of motion are given
by

ẋ =px, ẏ = py,

ṗx =−
∂H0

∂x
− δ

∂H1

∂x
,

ṗy =−
∂H0

∂y
− δ

∂H1

∂y
.

(10)

The system (Eq. 10) is equivalent to the following differential
equation system

ẋ =px, ṗx = −x+ 2xy− δ[4x
3y+ 2xy3 − 4x(x2 + y2)]

ẏ =py, ṗy = −y− x
2 + y2 − δ[x4 + 3x2y2 − 5y4 − 4y(x2 + y2)] .

(11)

It is clear that the aforementioned system is not convenient for
applying the averaging theorywhich needs the system to be a particular
normal form. Indeed, a technical mathematical procedure is described
in the following section for obtaining the adequate form of the
previous system to apply the averaging theory.
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FIGURE 4
Zoomed view of Figure 1 near x,y ∈(1,1).

4 On averaging theory

In this section, using the averaging theory of the second order of
dynamical systems as a fundamental tool (Buică and Llibre, 2004), we
are able to state the following result.

Theorem2: Let us consider a systemof ordinary differential equations
in the normal form in the following way:

ẋ (t) = νF1 (t,x) + ν
2F2 (t,x) + ν

3G (t,x,ν) , (12)

with F1,F2: ℝ×D→ℝn,G: ℝ×D× (−ν f ,ν f) → ℝn being
continuous real maps and periodic in the variable t with period T .
Here, D is a subset of ℝn with open boundaries and ν is a small
parameter as usual.

Let us define the real maps f1, f2: D→ℝ
n as follows:

f1 (x) = ∫
T

0
F1 (t,x)dt,

f2 (x) = ∫
T

0
[DxF1 (t,x)∫

t

0
F1 (s,x)ds+F2 (t,x)]dt.

TABLE 1 Critical values of energy at different values of the transition
parameter for boundedmotion (E < Emin) and unboundedmotion (E > Emax).

δ Emin Emax

0.0 .1666670 .1666670

0.1 .0905433 .1012720

0.2 .0675957 .0769172

0.3 .0552201 .0631492

0.4 .0472091 .0540518

0.5 .0415033 .0475016

0.6 .0371891 .0425182

0.7 .0337897 .0385774

0.8 .0310291 .0353702

0.9 .0287345 .0327014

1.0 .0267918 .0304408

Frontiers in Astronomy and Space Sciences 07 frontiersin.org

https://doi.org/10.3389/fspas.2022.945236
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Alhowaity et al. 10.3389/fspas.2022.945236

FIGURE 5
Critical values of energy versus transition parameter values for bounded
motion (E < Emin) and unbounded motion (E > Emax).

Assume that the system holds the following two conditions.

1) F1(t, ⋅) ∈ C1(D) for each t ∈ ℝ,F1,F2,G, and DxF1 are locally
Lipschitz in the second variable, and G is twice differentiable with
respect to ν.

2) There exists V ⊂ D, such that for each ν ∈ (−ν f ,ν f)\{0}, there
exists a ∈ V holding f1(a) + νf2(a) = 0 and dB ( f1 + ν f2) ≠ 0 where
dB ( f1 + ν f2) denotes the degree Brouwer for the real map f1 +
ν f2:V→ℝ

n at its fixed point a.

Then, there exists a periodic solution φ(⋅,ν) of period T for the
system (Eq. 11), such that φ(0,ν) → a as ν→ 0.

For sufficient conditions for showing that the Brouwer index
degree of a realmap f at its fixed non-zero point a, which is the Jacobian
of the real map f at a (when it is defined), is non-zero, see for more
details (Lloyd, 1978).

It is to be noted that if the averaging map of first-order f1 is not
identically 0, then the zeros of f1 + νf2 are mainly the zeros of f1 if ν
is small enough. In this case, the previous theorem provides the so-
called averaging theory of first order for differential systems. Also, if
the map f1 is identically zero and the averaging map of second-order
f2 is not identically 0, then the zeros of f1 + νf2 are the zeros of f2. In this
case, the previous theorem provides the so-called averaging theory of
second order for differential systems.

5 Standard form of the generalized
Hénon–Heiles system

In order to apply the averaging theory, the following scales will be
used:

x = νX, y = νY,

px = νpX, py = νpY,

where ν is a very small parameter.
Now, we can rewrite the system (Eq. 11) with the new variables as

Ẋ = pX, ṗX = −X+ 2νXY− ν
3δ(4X3Y+ 2XY3)

+ 4ν2δX(X2 +Y2) ,

Ẏ = pY, ṗY = −Y− ν(X
2 −Y2) − ν3δ(X4 + 3X2Y2 − 5Y4)

+ 4ν2δY(X2 +Y2) ,

(13)

This system again is a Hamiltonian system, and its Hamiltonian is
given by

H̃ =1
2
(p2X + p

2
Y) +

1
2
(X2 +Y2) + ν(X2Y− Y

3

3
)

− ν2δ(X2 +Y2)2 + ν3δ(X4Y+X2Y3 −Y5) ,

It is clear from Eq. (13) that the form of the new system is
different from the standard form of Eq. (12); thus, we cannot apply the
averaging theory. In order to use the averaging theory, two consequent
transformations will be used to set the Hamiltonian of this system in
the standard form in the following two subsections.

5.1 First transformation

In the context of setting the Hénon–Heiles system in the standard
way, we use the following transformation:

X = r C (χ) , pX = r S (χ) ,
Y = ϱ C (χ+ψ) ,pY = ϱ S (χ+ψ) ,

where S and C denote the trigonometric maps sin and cos,
respectively, to avoid overlength in equations.

We remark that this is a transformation in variables when r > 0
and ϱ > 0. Furthermore, the angular variables χ and ψ will appear in
the system with this transformation. Also, the χ−variable will be used
to find the periodicity which is necessary for applying the averaging
theory. Hence, the fixed value of energy in polar coordinates is

h = 1
2
[r2 + ϱ2] + ν(r2ϱ (C (χ))2 C (χ+ψ) − 1

3
ϱ3(C (χ+ψ))3)

− ν2δ[r2(C (χ))2 + ϱ2(S (χ))2]2 + ν3δ[r4ϱ (C (χ))4 C (χ+ψ)

+r2ϱ3(C (χ))2 (C (χ+ψ))3 − ϱ5(C (χ+ψ))5] , (14)

and the equations of motion are controlled by

̇r =R11ν+R12ν
2 +R13ν

3,

χ̇ =− 1+R21ν+R22ν
2 +R23ν

3,

ϱ̇ =R31ν+R32ν
2 +R33ν

3,

ψ̇ =R41ν+R42ν
2 +R43ν

3,

(15)

where

R11 =− 2 rS (χ)C (χ)ϱ C (χ+ψ)
R12 =− 2 rS (χ)C (χ)(−2 δ r2(C (χ))2 − 2 δ ϱ2(C (χ+ψ))2)

R13 =− 2 rS (χ)C (χ)(2 δ r2(C (χ))2ϱC (χ+ψ) + δ ϱ3(C (χ+ψ))3) ,

R21 =− 2(C (χ))2ϱC (χ+ψ)
R22 =+ 4 δ r2(C (χ))4 + 4 δ (C (χ))2ϱ2(C (χ+ψ))2

R23 =− 2 δ (C (χ))2ϱ3(C (χ+ψ))3 − 4 δ r2(C (χ))4ϱ C (χ+ψ) ,
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R31 = −S (χ+ψ)(r2(C (χ))2 − ϱ2(C (χ+ψ))2)

R32 = −S (χ+ψ)(−4 δ ϱ3(C (χ+ψ))3 − 4 δ r2(C (χ))2ϱ C (χ+ψ))

R33 = −S (χ+ψ)(3 δ r2(C (χ))2ϱ2(C (χ+ψ))2 − 5 δ ϱ4(C (χ+ψ))4

+ δ r4(C (χ))4) ,

R41 =
1
ϱ
(−C (χ+ψ) r2(C (χ))2 + ϱ2(C (χ+ψ))3

+2 (C (χ))2ϱ2 C (χ+ψ))

R42 =
1
ϱ
(−4 δ r2ϱ(C (χ))4 − 4 δ (C (χ))2ϱ3(C (χ+ψ))2

+ 4 δ ϱ3(C (χ+ψ))4 + 4 δ ϱ (C (χ+ψ))2r2(C (χ))2)

R43 = +
1
ϱ
(2 δ (C (χ))2ϱ4(C (χ+ψ))3 + 4 δ r2(C (χ))4ϱ 2C

× (χ+ψ) + 5 δ ϱ4(C (χ+ψ))5 − C (χ+ψ)δ r4(C (χ))4

−3 δ r2(C (χ))2ϱ2(C (χ+ψ))3) .

5.2 Second transformation

Now, we will change the old independent variable (t) by the
new independent variable χ to make the left-hand side of the
differential system (Eq. 15) be periodic to obtain the periodicity
which is necessary for applying the averaging theory. Scaling system
(Eq. 15) by 1/χ̇ and eliminating the χ̇ equation, system (Eq. 15) can be
read as

r′ = 2 rS (χ)C (χ)ϱ C (χ+ψ)υ− 4 rS (χ)C (χ)(δ r2(C (χ))2

+ δ ϱ2(C (χ+ψ))2 + (C (χ))2ϱ2(C (χ+ψ))2)υ2 +O(υ3) ,

ϱ′ = S (χ+ψ)(r2(C (χ))2 − ϱ 2(C (χ+ψ))2)υ

− 2S (χ+ψ)ϱ C (χ+ψ)(2 δ ϱ 2(C (χ+ψ))2 + 2 δ r2(C (χ))2

+ (C (χ))4r2 − (C (χ))2ϱ 2(C (χ+ψ))2)υ2 +O(υ3) ,

ψ′ = 1
ϱ
(C (χ+ψ)(r2(C (χ))2 − ϱ2(C (χ+ψ))2 − 2 (C (χ))2ϱ2))υ

+ (4 δ r2(C (χ))4 + 4 δ (C (χ))2ϱ2(C (χ+ψ))2

− 4 δ (C (χ+ψ))4ϱ2 − 4 δ (C (χ+ψ))2r2(C (χ))2

− 2 (C (χ+ψ))2(C (χ))4r2 + 2 (C (χ+ψ))4(C (χ))2ϱ2

+ 4 (C (χ+ψ))2(C (χ))4ϱ2)υ2 +O(υ3) .

(16)

By applying Theorem 2 to the Hamiltonian (Eq. 14) when H = h,
where h > 0 and ϱ1 ≠ 0 and then solving H = h for ϱ = ϱ0 + νϱ1 +
O(ν2), one obtains

ϱ = √2h− r2 + 1
6
ν(−4 (S (χ))3(S (ψ))3h+ 2 (S (χ))3(S (ψ))3r2

−6 r2(C (χ))3C (ψ) + 6 r2(C (χ))2S (χ)S (ψ)
+4 (C (χ))3(C (ψ))3h− 2 (C (χ))3(C (ψ))3r2

+12 C (χ)C (ψ) (S (χ))2(S (ψ))2h− 6 C (χ)C (ψ) (S (χ))2

×(S (ψ))2r2 − 12 (C (χ))2(C (ψ))2S (χ)S (ψ)h
+6 (C (χ))2(C (ψ))2S (χ)S (ψ) r2) +O(ν2) .

With some simple calculation, the aforementioned equation can
be rewritten as

ϱ = √2h− r2 + 1
3
ν(T1 +T2 +T3) +O(ν2) (17)

where

T1 = (2h− r2)[(C (χ))3(C (ψ))3 − (S (χ))3(S (ψ))3]

T2 = −
3
4
(2h− r2)S (2χ)S (2ψ)C (χ+ψ)

T3 = −3(2h− r2) r2(C (χ))2C (χ+ψ)

(18)

Utilizing Eqs (17–18), we obtain

ϱ = √2h− r2 + 1
3
νC (χ+ψ)((2h− r2)(C (χ+ψ))2

−3(2h− r2) r2(C (χ))2) +O(ν2) (19)

Substituting ϱ in system (Eq. 16) and developing it in power series
of ν, we obtain the following two equations:

r′ = (2rS (χ)(C (χ))2√2 h− r2C (χ) − 2 r(S (χ))2C (χ)

×√2 h− r2S (ψ))υ+ (−4r3S (χ)(C (χ))3δ− 8rS (χ)

× (C (χ))3δ h(C (ψ))2 + 16r(S (χ))2(C (χ))2δ hC (ψ)S (ψ)
− 8r(S (χ))3C (χ)δ h(S (ψ))2 + 4r3S (χ)(C (χ))3δ (C (ψ))2

− 8r3(S (χ))2(C (χ))2δ C (ψ)S (ψ) + 4r3(S (χ))3C (χ)δ
× (S (ψ))2 − 8rS (χ)(C (χ))5h(C (ψ))2 + 16r(S (χ))2

× (C (χ))4hC (ψ)S (ψ) − 8r(S (χ))3(C (χ))3h(S (ψ))2

+ 4r3S (χ)(C (χ))5(C (ψ))2 − 8r3(S (χ))2(C (χ))4C (ψ)
×S (ψ) +4r3(S (χ))3(C (χ))3(S (ψ))2)υ2 +O(υ3) ,

ψ′ = −C (χ+ψ)(−r2(C (χ))2 + (2 h− r2)(C (χ+ψ))2

+2 (C (χ))2 (2 h− r2)) 1
√2 h− r2

υ+ (4 δr2(C (χ))4

+ 4 δ (C (χ))2 (2 h− r2)(C (χ+ψ))2 − 4 δ (C (χ+ψ))2r2

× (C (χ))2 − 4 δ (C (χ+ψ))4 (2 h− r2) − 2 (C (χ+ψ))2

× (C (χ))4r2 + 2 (C (χ+ψ))4(C (χ))2 (2 h− r2)
+4 (C (χ+ψ))2(C (χ))4 (2 h− r2))υ2 +O(υ3) .

(20)

In the next section, we aim to proveTheorem 1.

6 Proof of theorem 1

It is observed that system (Eq. 20) satisfies the assumptions of
Theorem 2, and it has the normal form for system (Eq. 12) with F1 =
(F11,F12) and F2 = (F21,F22), where

F11 = r√2 h− r2 S (2χ) C (χ+ψ) ,

F12 =
C (χ+ψ)
√2 h− r2

[r2(C (χ))2 − (2 h− r2)((C (χ+ψ))2

+2 (C (χ))2)]

F21 = −2r3δS (2 χ)(C (χ))2 − r(2 h− r2)(δ+ (C (χ))2)S (2 χ)

× [1+ C (2 χ) + C (2ψ) −S (2ψ)]
F22 = 4 δS (ψ)S (2χ+ψ)[r2(C (χ))2 + (2 h− r2)(C (χ+ψ))2]

+ 2 (C (χ))2(C (χ+ψ))2 [(2 h− r2)[2 (C (χ))2

+(C (χ+ψ))2] − r2 (C (χ))2]
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The maps F1 and F2 are analytical when r ≠ 0. Moreover,
these functions will be 2π−periodic in the variable χ, which is the
independent variable of system (Eq. 20). The first-order averaging
theory cannot be used because the average maps of F1 and F2 over
the period vanish.

f1 (r,ψ) = ∫
2π

0
(F11,F12)dχ = (0,0) .

Since the map f1 ofTheorem 2 is 0, we will evaluate the map f2 by
applying the second-order averaging theory. Thus, f2 is defined by

f2 (r,ψ) = ∫
2π

0
[DrψF1 (χ, r,ψ) ⋅ y1 (χ, r,ψ) +F2 (χ, r,ψ)]dχ, (21)

where

y1 (χ, r,ψ) = ∫
χ

0
F1 (s, r,ψ)ds.

The two components of y1 are given by

y11 =∫
χ

0
F11 (s, r,ψ)ds,

y12 =∫
χ

0
F11 (s, r,ψ)ds,

Hence,

y11 =
2
3
r√2 h− r2 [C (ψ) −S (χ)S (ψ) − (C (χ))2C (χ+ψ)] ,

y12 = −
1

12√2 h− r2
[20 r2 − 32 h− 4 (2h− r2) (C (ψ))2

+ (2 h− r2)S [3 (χ+ψ)] + (4 h− 3 r2)S (3 χ+ψ)
+(12 h− 9 r2)S (χ−ψ) + (42 h− 27 r2)S (χ+ψ)] .

For the Jacobian matrix,

Dr,ψF1 (χ, r,ψ) =(

∂F11
∂r

∂F11
∂ψ

∂F12
∂r

∂F12
∂ψ

)

we obtain

DrψF1 (χ, r,ψ) =(
T11 T12

T21 T22

),

where

T11 = 2S (2χ)C (χ+ψ)[√2 h− r2 −
r2

√2 h− r2
]

T12 = −rS (2χ)S (χ+ψ)√2 h− r2

T21 =
r C (χ+ψ)
√2 h− r2

[6 (C (χ))2 − 2 (C (ψ))2 + (C (χ+ψ))2

+
r2 (C (ψ))2

(2 h− r2)
]

T22 = √2 h− r2 [2 (C (χ))2 +
3
2
C (χ+ψ)S [2 (χ+ψ)]

−
r2 S (χ+ψ)(C (χ))2

(2 h− r2)
]

Now, we evaluate the map (Eq. 21) and obtain

f2 (r,ψ) = (
π rS (2ψ)

12
(−19 r2 + 32 h− 12 δ r2 + 24 δ h) ,

π
6(2 h− r2)

[−25 r4 − 49 h2 − 48 δ h2 − 24 δ r4

+ 72 δ h r2 + 73 r2 h+ (C (ψ))2 [−108 r2 h+ 35r4

+ 64 h2 + 48 δ h2 + 24 δ r4 − 72 δ h r2]]).

Wehave to determine the zeros (r*,ψ*) of f2 (r,ψ) and examine the
Jacobian determinant

|Dr,ψ f2 (r
*,ψ*)| ≠ 0,

Solving f2(r,ψ) = 0, we obtain 8− solutions (r*,ψ*) with r* > 0,
namely,

(√3 h,0) , (
√2 h
2
,0),

(√
8 h (4+ 3 δ)
(19+ 12 δ)

, arccos[[

[

√
(365+ 816 δ+ 432 δ2)
16 (140+ 201 δ+ 72 δ2)

]]

]

),

(√
8 h (4+ 3 δ)
(19+ 12 δ)

, π− arccos[[

[

√
(365+ 816 δ+ 432 δ2)
16 (140+ 201 δ+ 72 δ2)

]]

]

),

(√
h (73+ 72 δ+√429+ 1008 δ+ 576 δ2)

2 (24 δ+ 25)
, ±π

2
),

(√
h (73+ 72 δ−√429+ 1008 δ+ 576 δ2)

2 (24 δ+ 25)
, ±π

2
).

The first solution is inconvenient for our assumptions because we
obtain from system (Eq. 17) the value of ϱ = √−h when ν = 0, which
is not a real number (it is supposed that h > 0) and ϱmust be positive;
thereby, the first solution is rejected. Finally, the generalized or fifth-
degree Hénon–Heiles system (Eq. 11) has at least seven periodic
orbits.

7 Conclusion

In this paper, a literature review on the Hénon–Heiles system,
the significance of periodic orbits, the averaging theory of dynamical
systems, and the main result are stated.

The generalized Hénon–Heiles potential and the critical values of
energy for different values of the perturbed parameter are analyzed.
The differences between the classical and generalized or fifth-degree
Hénon–Heiles potential are also investigated. The equations of
motion are derived in the framework of the fifth-degree Hamiltonian
Hénon–Heiles system.

The fundamental results of the secondorder of the averaging theory
for a dynamical system are stated. The standard or normal form of
the generalized Hénon–Heiles system has been also deducted in order
to apply the theory. We underline that this is a very technical work
conducted ad hoc for this system. Two consequent transformations
are used to set the Hamiltonian equations of this system in standard
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form. After that, the possible solutions of the generalized (fifth-
degree) Hénon–Heiles system are analyzed by using the averaging
theory. Consequently, eight solutions are found, but one of them is
not consistent with the proposed assumptions, while the other seven
solutions are proper and adequate to represent seven periodic orbits
for the generalized Hénon–Heiles dynamical system.

We demonstrate that the Hénon–Heiles system has at least seven
periodic orbits. However, we remark that the same model has been
studied by Álvarez-Ramírez and García–Saldaña (2020). They applied
the Lyapunov center and Weinstein–Moser theorems, as well as the
averaging theory, and proved that the system has at least two families
of stable periodic orbits for energy level h > 0. In fact, we aimed to
use such potential in the paper (Álvarez-Ramírez andGarcía–Saldaña,
2020), where such potential appears to be investigated further because
we obtained five new periodic orbits unknown for this model in the
literature complementing the previous work. Despite the fact that the
Hénon–Heiles dynamical system has been derived initially to analyze
the motion of stars around the center of the galaxy, it remains a vital
topic in bothmathematical and physical sciences since it was proposed
first in 1964.
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