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To investigate the role of magnetic fields in the evolution of the interstellar

medium, formation and evolution of molecular clouds, and ultimately the

formation of stars, their three-dimensional (3D) magnetic fields must be

probed. Observing only one component of magnetic fields (along the line of

sight or parallel to the plane of the sky) is insufficient to identify these 3D vectors.

In recent years, novel techniques for probing each of these two components

and integrating them with additional data (from observations or models), such

as Galactic magnetic fields or magnetic field inclination angles, have been

developed, in order to infer 3D magnetic fields. We review and discuss these

advancements, their applications, and their future direction.
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1 Introduction

The Gaia mission (Gaia Collaboration et al., 2016), particularly with its stellar parallax

distances (Luri et al., 2018) and radial velocities (Soubiran et al., 2018), has enabled

significant advances in various areas of astrophysics, ranging from the Galaxy structure

(e.g., Kounkel and Covey, 2019) and evolution (e.g., Poggio et al., 2020; Ruiz-Lara et al.,

2020) to binary systems (Wyrzykowski et al., 2020). Thanks to Gaia, the three-

dimensional (3D) density field of the Galaxy, especially of nearby molecular clouds

(Großschedl et al., 2018; Rezaei Kh et al., 2020; Zucker et al., 2021; Rezaei Kh and

Kainulainen, 2022) and the solar neighborhood (e.g., Zucker et al., 2022), can now be

mapped, enabling us to study the interstellar medium (ISM) evolution (e.g., Bialy et al.,

2021; Kounkel et al., 2022). However, studies of the ISM evolution are incomplete without

observing 3D magnetic fields, as the two are interdependent (e.g., Tahani et al., 2022b;

Kounkel et al., 2022).

Magnetic fields influence the star-formation process, from the evolution of diffuse

ISM (Haverkorn, 2015) and formation of molecular clouds (e.g., Iwasaki et al., 2019)

to formation of sub-structures and stars (e.g., Pattle et al., 2022, and references

therein). However, their role remains undetermined (e.g, Hennebelle and Inutsuka,

2019; Krumholz and Federrath, 2019). Magnetic fields can stabilize the clouds against
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gravity (e.g., Fiege and Pudritz, 2000a,b), allow for the

formation of denser structures and stars (e.g., Inoue et al.,

2018), reduce the star-formation rate (see Hennebelle and

Inutsuka, 2019, and references therein), or regulate gas flow

(e.g., Seifried and Walch, 2015).

Magnetic field orientation relative to density structures may

indicate their role in the ISM evolution (e.g., Soler and

Hennebelle, 2017). Observations of plane-of-sky magnetic

fields (BPOS; e.g., Planck Collaboration et al., 2016; Soler,

2019) show that they tend to be perpendicular to high-

column-density structures (NH > 1021.7) and parallel to low-

column-density ones. The relation between the transition from

parallel to perpendicular alignment and gravitational collapse or

Alfvén Mach number (MA) is being studied (e.g., Chen et al.,

2016; Soler et al., 2017; Soler and Hennebelle, 2017; Pattle et al.,

2021). 3D magnetic field measurements are necessary to

understand this alignment (Girichidis, 2021, particularly since

field lines may be inclined along the line of sight).

The magnetic field inclination angle with respect to the plane

of the sky (γ) also complicates inferring MA and mass-to-flux

ratio (μϕ), two key quantities in examining the role of magnetic

fields in star formation.MA and μϕ quantify the cloud’s magnetic

energy relative to its kinetic/turbulent and gravitational energies,

respectively (see Pattle et al., 2021, and references therein).

Without estimating the 3D fields, a sub-Alfvénic cloud

(MA < 1; with highly inclined ordered field lines) may be

misinterpreted as a super-Alfvénic cloud (MA > 1 with

tangled field lines dominated by the flow; Falceta-Gonçalves

et al., 2008). Additionally, using field strengths based on a

single component instead of 3D vectors may lead to incorrect

estimates of μϕ and the relationship between the cloud’s magnetic

field and gravitational energies (Crutcher et al., 2010;

Mouschovias and Tassis, 2010; Clemens et al., 2016; Pillai

et al., 2016).

Moreover, 3D magnetic field observations allow comparison of

their morphologies to cloud-formation model predictions, enabling

us to investigate ISM evolution and molecular-cloud formation.

While observed magnetic field morphologies are consistent with

some cloud-formation models (e.g., Inoue and Fukui, 2013;

Inutsuka et al., 2015, 2016; Gómez et al., 2018; Inoue et al.,

2018; Abe et al., 2021), observing the 3D magnetic fields of a

large number of clouds is required to study their formation scenario

and determine how magnetic fields influence the evolution of these

clouds into filaments, cores, and, eventually, stars.

Despite the rise of recent techniques to observe interstellar

magnetic fields (Clark et al., 2014; González-Casanova and

Lazarian, 2017; Lazarian and Yuen, 2018; Tahani et al., 2018;

Hu et al., 2019), probing the 3D fields remains exceedingly

challenging. To infer the 3D fields, observations of both line-

of-sight magnetic fields (BLOS) and BPOS are required. Common

techniques for observing the interstellar magnetic fields (see

Pattle et al., 2022, and references therein for details) include

Zeeman splitting (Crutcher and Kemball, 2019), Faraday rotation

(Brown et al., 2008), dust emission polarization (Draine, 2003),

starlight (dust extinction) polarization (Voshchinnikov, 2012),

and synchrotron emission (Beck, 2015). This mini-review focuses

on molecular clouds1 (a few to ~ 100 pc). For molecular clouds,

Zeeman splitting and the Faraday-based technique of Tahani

et al. (2018) provide BLOS, while dust emission and starlight

polarization provide BPOS.We present techniques for probing the

3D magnetic fields of molecular clouds in Section 2 and discuss

their applications and future directions in Section 3.

2 3D magnetic fields

Several methods (e.g., Chen et al., 2019; Hu et al., 2021b,a;

Tahani et al., 2019, 2022a,b; Hu and Lazarian, 2022) have

examined the 3D magnetic fields of molecular clouds. Chen

et al. (2019) and Hu and Lazarian (2022) use BPOS (dust

polarization) observations and their polarization fraction (p)

to recover the mean inclination of the ordered2 magnetic

fields of molecular clouds, whereas (Tahani et al. 2022a;

Tahani et al. 2022b, scales of a few to ~ 100 pc) incorporate

BLOS and BPOS observations along with Galactic magnetic field

(GMF) models.

Numerous observatories, including the James Clark Maxwell

Telescope (JCMT; e.g., Eswaraiah et al., 2021; Ngoc et al., 2021;

Hwang et al., 2021; Kwon et al., 2022), Planck Space Observatory

(e.g., Planck Collaboration et al., 2016; Alina et al., 2019), Atacama

Large Millimeter/sub-millimeter Array (ALMA; e.g., Pattle et al.,

2021; Cortés et al., 2021), Sub-Millimeter Array (SMA; e.g., Zhang

et al., 2014), and Stratospheric Observatory for Infrared Astronomy

(SOFIA; e.g., Chuss et al., 2019) have observed BPOS of numerous

star-forming regions. However, the number of BLOS observations of

molecular clouds are still limited. Although Zeeman splitting is a

powerful technique for probing BLOS and the most accurate method

for determining field strengths, it requires lengthy observing runs,

making it challenging to observe. The observing technique of

Tahani et al. (2018) can be used to map BLOS of numerous

molecular clouds.

2.1 Line-of-sight magnetic fields

Tahani et al. (2018) developed a new technique to probe BLOS
associated with molecular clouds, using Faraday rotation. We

provide a brief summary of the technique in this section.

1 A number of recent studies have examined the 3D magnetic fields of
the diffuse ISM (e.g., Ferrière, 2016; Van Eck et al., 2017; Alves et al.,
2018; Clark and Hensley, 2019; Hensley et al., 2019; Panopoulou et al.,
2019).

2 Ordered: ignoring the random component due to turbulence or
smaller-scale variations.
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2.1.1 Faraday rotation
Due to the lower abundance of electrons in molecular clouds

(compared to ionized regions), it was previously believed that

Faraday rotation3 could not be used to investigate the magnetic

fields of molecular clouds. Tahani et al. (2018) developed a

technique to successfully determine BLOS of molecular clouds

using Faraday rotation measures (RM), while previous attempts

(Reich et al., 2002; Wolleben and Reich, 2004) were unable to

provide a map of BLOS observations across the cloud.

2.1.2 Methodology and results
In this technique (Tahani et al., 2018), the non-cloud

(background and foreground; Galactic) contribution to the

RM (RMref) is subtracted from the observed RM of extra-

galactic point sources (radio galaxies or quasars) using an on-

off approach. Numerous catalogs (e.g., Taylor et al., 2009)

provide observed RM point sources. Following the

determination of the cloud’s RMs, the electron column

densities associated with each RM point are calculated using a

chemical evolution code and extinction maps. Any chemical

evolution code (e.g., one used by Gibson et al., 2009) and

extinction map (e.g., Kainulainen et al., 2009), or even

Hydrogen column density map (Lombardi et al., 2014; Zari

et al., 2016), can be utilized. To find electron column

densities, the cloud is divided into sub-layers aligned along

the line of sight using extinction values and the chemical

code. The electron column density in each sub-layer is

obtained separately. Calculating the average BLOS along the

line of sight is made possible by adding the electron column

density contributions of these sub-layers.

Tahani et al. (2018) mapped BLOS of the Orion A, Orion B,

California, and Perseus molecular clouds and found that their

results were consistent with existing molecular Zeeman

measurements. They found that the BLOS direction of the

Orion A (see left panel of Figure 1) and California clouds

reverses from one side to the other (along the short axis of

the cloud). Their Perseus results suggested a weak indication of

this reversal. The BLOS reversal across Orion A was previously

observed via Zeeman splitting (Heiles, 1997), in the same

directions as Tahani et al. (2018).

Identifying 1) direction and 2) strength are the two

components of BLOS determination in this technique. The

direction uncertainty arises from uncertainties in 1) observed

RM values and 2) RMref. The strength uncertainty arises from

FIGURE 1
3Dmagnetic field of the Orion A cloud. (A) The grayscale image illustrates the hydrogen column density map of Orion A (Lombardi et al., 2014).
The circle and square markers represent BLOS, with the square indicating non-detection points (with high uncertainties that may cause a change in
BLOS direction) and blue (red) representing pointing toward (away from) us. The drapery lines represent the BPOS observed by the Planck Space
Observatory. The red vector depicts the modeled Galactic Magnetic field projected onto the plane of the sky. The same BLOS reversal
throughout the cloud was previously detected using Zeeman measurements (Heiles, 1997, see their Figure 15). We note that in Zeeman
measurements, the negative sign indicates magnetic field directed toward us, while in RM studies, it indicates magnetic field directed away from us.
(B) From our vantage point, the inferred 3D ordered magnetic field of Orion A is semi-convex. Without identifying the inclination angle of the cloud,
rotations of up to 50° along the black arrowmay be possible, resulting in both B (1) and B (2) (see Section 2 of Tahani et al., 2022a). The red vector, bent
gray cylinder, and blue vectors represent the modeled GMF, cloud, and 3D magnetic field of the cloud, respectively.

3 A number of review articles discuss Faraday rotation and its
observations (e.g., Brown et al., 2008; Noutsos, 2012; Han, 2017).
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assumptions of 1) constant BLOS along the line of sight, 2)

symmetry of the cloud along the line of sight, 3) parameters

taken to estimate electron densities (cloud’s initial temperature

and density and Ultra-Violet and cosmic ionization rates), and 4)

extinction maps.

2.2 Plane of sky magnetic fields

Dust emission polarization has been successfully applied to

molecular clouds (e.g., Planck Collaboration et al., 2016; Pattle

and Fissel, 2019). The technique is based on the alignment of the

long axis of amorphous dust grains (e.g., Draine, 2009)

perpendicular to magnetic fields, resulting in linear

polarization and explained by radiative torque alignment

(RAT; Draine and Weingartner, 1997; Lazarian, 2007;

Lazarian and Hoang, 2007; Andersson et al., 2015; Hoang and

Lazarian, 2016). The Davis-Chandrasekhar-Fermi technique

(DCF; Davis and Greenstein, 1951; Chandrasekhar and Fermi,

1953) or its subsequent modified versions (e.g., Ostriker et al.,

2001; Houde et al., 2009; Skalidis et al., 2021a; Skalidis and Tassis,

2021) are utilized to estimate BPOS strengths (see Pattle and

Fissel, 2019; Pattle et al., 2022, for more information and the

technique’s limitations).

2.3 Reconstructing the mean 3Dmagnetic
fields of molecular clouds

Using BLOS observations, Tahani et al. (2019, 2022a,b)

studied the 3D magnetic field morphologies of the Orion A

and Perseus molecular clouds. Tahani et al. (2019) constrained

models of the ordered, cloud-scale magnetic field, using BPOS
angles and BLOS estimates, whereas Tahani et al. (2022a,b)

inferred cloud-scale magnetic field vectors in 3D4, given a set

of model assumptions. We discuss these techniques in this

section.

2.3.1 Analytical models of the ordered magnetic
field within clouds and comparison to synthetic
observations

Tahani et al. (2019) constructed models that could explain

the observed BLOS reversal discussed in Section 2.1.2, obtained

synthetic observations from the models, and compared these

synthetic observations with BLOS (direction and strengths) and

BPOS (angle and strength; using Planck5) estimates of Orion A.

They concluded that an arc-shaped morphology (see right panel

of Figure 1) is the most probable magnetic morphology for Orion

A, based on Monte-Carlo analysis, chi-square probability values,

and examination of a range of systematic biases between BLOS
and BPOS observations. In the arc-shaped morphology, field lines

bend around the filamentary cloud in response to environmental

interaction (first proposed by Heiles, 1997), enabling mass to

flow along the field lines and accumulate on the cloud (Inoue

et al., 2018).

2.3.2 Using Galactic magnetic field models to
reconstruct the cloud-scale ordered magnetic
field 3D vector

Tahani et al. (2022a,b) reconstructed the cloud-scale, ordered

magnetic field vectors of the Orion A and Perseus clouds in 3D.

Using BLOS and BPOS observations, along with large-scale GMF

models (Jansson and Farrar, 2012a,b), they inferred the

approximate orientation and direction6 of the 3D ordered

magnetic field of these clouds (including their BPOS direction).

Although the BPOS orientation of numerous molecular clouds

had been observed previously, their BPOS direction remained

undetermined even in the 3D study by Tahani et al. (2019).

Moreover, by estimating MA values and/or comparing

estimates of initial magnetic field vectors (using GMF models)

with BPOS maps, Tahani et al. (2022a,b) suggest that the magnetic

fields of the Orion A and Perseus clouds retain a memory of the

Galactic magnetic fields. Although some studies (e.g., Stephens

et al., 2011) have suggested that the magnetic fields of molecular

clouds are dissociated from larger Galactic scales, others (e.g.,

Han and Zhang, 2007) have concluded that they largely retain the

large-scale Galactic magnetic fields.

We note that this technique relies on correctly identifying the

ordered GMF vector at the cloud location. This vector provides

an approximation of the initial magnetic fields prior to the

cloud’s evolution (allowing us to ignore the GMF random

component caused by cloud-scale turbulence). Since GMF

models vary (Jaffe, 2019), this technique is applied to clouds

in a region of the Galaxy (pointing anti-Galactic and nearby)

where there is less disagreement between the GMF models. For

example, all models in Figure 2 from Jaffe (2019), except panel h

(Fauvet et al., 2011), generate similar ordered GMF vectors at the

locations of the Orion A and Perseus clouds. Moreover, the

limited number of BLOS observations per cloud and the use of two

tracers (dust emission and a Faraday-based technique) may

increase the technique’s uncertainties. Upcoming observations

are required to advance these studies (see Section 3).

4 Approximate 3D morphology at scales of a few to 100pc (ignoring
turbulence and smaller-scale variations).

5 http://www.esa.int/Planck.

6 In this mini-review we distinguish between the terms direction and
orientation. Knowing the direction reveals orientation, but not the
other way around. For example, the direction of BLOS indicates either
away from us or toward us, whereas the orientation of BLOS indicates
only that the line is parallel to the line of sight without specifying its
direction. Similarly for BPOS, direction refers to the complete 2D vector,
while orientation refers only to the line without specifying the vector’s
endpoint.
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2.4 Inclination angle: Statistical studies of
polarization fraction

The 3D morphologies identified by Tahani et al. (2022a,b)

can be improved by inferring γ at various points across the cloud

and combining their method with studies that estimate γ (e.g.,

Chen et al., 2019; Hu et al., 2021a, 2022; Sullivan et al., 2021; Hu

and Lazarian, 2022). In recent years, γ has been inferred in

molecular clouds (e.g., Sullivan et al., 2021) and diffuse ISM7 (e.g.,

Hensley et al., 2019), using the dependence of p and polarization

angle dispersion (S) on γ (e.g., Falceta-Gonçalves et al., 2008;

Hensley et al., 2019), under the assumption of homogeneous

grain alignment efficiency.

King et al. (2018) compared the p and S values of the Vela C

cloud with their 3D, ideal magnetohydrodynamics (MHD)

colliding flow simulations. The simulations were performed

using the ATHENA code (Stone et al., 2008) and included

gravity. Statistical comparisons (using relative orientation of

column density and magnetic fields, average γ, and S)
between these simulations and observations explored the effect

of γ on p and S and were made possible by the high resolution

and sensitivity of the Balloon-borne Large Aperture Sub-

millimeter Telescope for Polarimetry (BLASTPol) observations

of the Vela C (Fissel et al., 2016) cloud. These comparisons

indicated that the Vela C observations and its high polarization

angle dispersion were consistent with simulations of magnetic

fields with high inclination angles. However, due to the

degeneracy between disorder caused by turbulence and

disorder caused by a large inclination angle (the field disorder

seen in the plane of the sky), they were unable to infer a γ value

for the Vela C cloud.

Chen et al. (2019) extended the study of King et al. (2018) and

determined γ for the Vela C cloud, assuming a small total S
(applicable only to sub-Alfvénic regions). Using a statistical

examination of the p values of the cloud and the maximum

polarization fraction (associated with zero inclination), they

calculated γ. They found an average γ value of ~ 60° for the

Vela C cloud, with an estimated accuracy of ≤ 10° − 30°.
Subsequently, Sullivan et al. (2021) analyzed the 3D magnetic

field properties of nearby molecular clouds8 and estimated their

cloud-averaged γ values. This technique can be used to examine

the relative alignment of magnetic field lines and the orientation

of filamentary dense gas in 3D (Fissel et al., 2019).

The technique’s inherent uncertainty is dominated by the

following assumptions: 1) presence of a location within the cloud

with zero γ, corresponding to the observed maximum p; 2)

FIGURE 2
BPOS direction required for 3D field determination. The 3Dmagnetic field vectors B1 and B2 have the same inclination angle (γ), run parallel to the
Galactic longitude axis when projected onto the plane of the sky, and point toward us when projected along the line of sight. However, due to the
difference in their BPOS directions, they are two distinct 3D vectors. Since the projections of these two vectors onto the plane of the sky are parallel to
the longitude axis, their inclination angle with respect to the plane of the sky is the angle between the 3D vector and the longitude axis. The left
and right panels display two different viewing angles. Distinguishing between these two vectors is particularly important in studies of relative
alignment of field lines and clouds, as a cloud aligned with B1 may be approximately perpendicular to B2 depending on the value of γ.

7 Where dust emission intensity per atomic hydrogen column density
may also be used to infer γ (Hensley et al., 2019).

8 The Aquila Rift, Cepheus, Chameleon-Musca, Corona Australis, Lupus,
Ophiuchus, Perseus, Taurus, and Vela C clouds.
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homogeneous grain alignment efficiency across the cloud 9; 3)

neglecting depolarization effects along the line of sight; 4)

assuming uni-directional magnetic fields along the line of sight;

and 5) ordered field line, which was addressed by Hu and Lazarian

(2022). Hu and Lazarian (2022) augmented the technique of Chen

et al. (2019) by incorporating magnetic field fluctuations and

dispersion (making the technique applicable to trans- and super-

Alfvénic regions as well). Theymodified the equations of Chen et al.

(2019) on the assumption that field fluctuations are perpendicular to

the mean field. Additionally, we note that these studies still require

both BLOS and BPOS directions to infer 3D vectors (see Figure 2).

2.5 Other approaches

While this mini-review focuses on the techniques discussed

in Section 2.3 and Section 2.4 and their combination for

recovering the 3D magnetic fields of molecular clouds, we note

that other more theory-based techniques can also be used in

clouds (e.g., Yan and Lazarian, 2005; Tritsis and Tassis, 2018; Hu

et al., 2021a; Skalidis et al., 2021b) or within its high density

regions (i.e., clumps or cores Houde et al., 2000a; Kandori et al.,

2017, 2020a,b,c). We briefly discuss these techniques here,

excluding those applicable only to core scales (e.g., Kandori

et al., 2017, 2020a,b,c).

2.5.1 Ion-to-neutral line-width
Houde et al. (2000a,b, 2002, 2004) proposed a method for

measuring γ based on the ion-to-neutral line-width ratios. Their

observations showed that, in the presence of strong magnetic fields,

the line-width of ions is narrower than that of coexisting neutrals.

They suggest that when the field lines are perpendicular to the line of

sight, the difference in line-widths should be the greatest, enabling

them to infer γ. Some studies found supporting (Li and Houde,

2008; Hezareh et al., 2010; Houde, 2011; Tang et al., 2018) or

inconsistent (Pineda et al., 2021) observational evidence.

2.5.2 Atomic alignment
The atomic alignment (or ground state alignment) technique

(Yan and Lazarian, 2005, 2006, 2007, 2012; Yan et al., 2019) relies

on the alignment of the angular momentum of atoms in their

ground state with the photons’ angular momentum from

background anisotropic radiation, followed by their

realignment with external magnetic fields. For best outcomes,

absorption lines are used. Calculating the degree of alignment

with magnetic field lines, Yan and Lazarian (2007) obtained the

Stokes parameters of absorbed radiation and compared them

with observations to infer γ and the 3D field lines. This method is

most applicable to diffuse ISM (Yan and Lazarian, 2012), but may

also be applied to molecular clouds and their envelopes.

2.5.3 Young stellar objects and position-
position-velocity space techniques

Based on the observable anisotropy of turbulence eddies in

the presence of magnetic fields, Hu et al. (2021b) estimate

magnetic fields using structure function analysis (SFA). They

demonstrate that for sub-Alfvénic regions, the ratio of

perpendicular to parallel10 velocity fluctuations has a power-

law relation with MA, enabling determination of 3D field

strengths. Hu et al. (2021a) extended the SFA analysis of Hu

et al. (2021b) to infer 3D fields by incorporating Gaia

observations of young stellar objects (for estimating 3D

velocity fluctuations; assuming they inherit the velocity of

their parent cloud).

2.6 Potential insights from 3D field
mapping

This section briefly discusses the potential takeaways from the

aforementioned 3D studies. Assuming a GMFmodel and given BLOS
and BPOS observations, Tahani et al. (2022b,a) inferred the 3D

ordered magnetic field vectors of two molecular clouds. Including

γ can enhance these studies. Inferring the 3D magnetic fields of

numerous molecular clouds will enable us to compare them with

models and numerical simulations to constrain cloud formation

models (see Hennebelle and Inutsuka, 2019, and references therein),

3D structure and evolution of the ISM (e.g., Hacar et al., 2022), 3D

GMF models (e.g., Jaffe, 2019), and the role of magnetic fields in

cloud evolution (e.g., Fiege and Pudritz, 2000a).

For example, Tahani et al. (2022b) employed velocity

information of the Perseus cloud along with GMF models to

predict the cloud-averaged ordered line-of-sight and 3D

magnetic field of this cloud based on the model of Inutsuka

et al. (2015) 11 and found the predictions to be consistent with

their inferred 3D field and BLOS data. The cloud-formationmodel of

Inutsuka et al. (2015) requires multiple compressions caused by

expanding interstellar bubbles to form filamentary molecular

clouds. Using dynamics and bubble observations of the Orion A

and Perseus clouds, Tahani et al. (2022a,b) proposed similar

formation scenarios for their 3D fields: the field lines should

have been initially bent on a large scale by recurrent supernovae

shocks. This bending of field lines by bubbles has been detected in

numerical simulations (Kim and Ostriker, 2015) and large- and

small-scale observations (Soler et al., 2018; Bracco et al., 2020;

9 King et al. (2019) suggest that the correlation between S and γ used in
the Chen et al. (2019) technique is maintained, even in the absence of
homogeneous grain alignment efficiency, assuming a power-law
relation between grain alignment efficiency and local gas density.

10 Relative to the magnetic field.

11 Also see simulations by Inoue et al. (2018).
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Arzoumanian et al., 2021). Subsequently, interaction with a

secondary bubble may have pushed the H I gas surrounding the

clouds, causing a sharp field line bending (arc-shaped field)

associated with the molecular cloud.

Velocity profile observations may also shed light on the

formation process or 3D structure of clouds (e.g., Arzoumanian

et al., 2018; Tritsis and Tassis, 2018; Bonne et al., 2020). Position-

position-velocity space studies of these clouds can improve the

precision and accuracy of these 3D fields to explore their

consistency with theoretical and numerical models (e.g., Clark

et al., 2014, 2015; González-Casanova and Lazarian, 2017; Clark,

2018; Clark andHensley, 2019; Hu et al., 2019, 2020, 2021a,b, 2022).

3 Discussion

Observing the 3D magnetic fields of molecular clouds and

their substructures is essential for understanding their formation

mechanism and the role magnetic fields play in star formation.

Observations of BLOS and BPOS are necessary but insufficient for

determining the 3D fields. While BLOS observing techniques

provide both the strength and direction of this component,

BPOS observing techniques provide only the orientation and

strength of this component, but not its direction. Knowing the

strengths and complete directions of BLOS and BPOS enables us to

infer the ordered, line-of-sight-averaged 3D field vectors. However,

due to systematic biases between the techniques for determining

field strengths, additional observations, such as observing the

magnetic field inclination angles are required. The BLOS
strength and direction, γ, and BPOS orientation (without its

direction) do not fully infer the 3D fields, as they can lead to

two different vectors depicted in Figure 2. Other techniques such as

the use of GMF models (Tahani et al., 2022a,b) can help resolve

this issue.

The studies of BLOS, BPOS, γ, and GMF could enable us to infer

the 3D ordered magnetic fields of molecular clouds with improved

precision. Upcoming observations will 1) enhance the precision

and accuracy of the inferred 3D magnetic field of each cloud, 2)

result in 3D magnetic field maps of more regions, and 3) produce

more accurate GMF models, thereby enhancing the technique’s

underlying assumptions.

The forthcoming Zeemanmeasurements (Robishaw et al., 2015,

for the most accurate determination of field strengths) and Faraday

rotation measure catalogs by the Square Kilometer Array (SKA)

project (Heald et al., 2020) or the Australian Square Kilometer Array

Pathfinder (ASKAP), such as the Polarisation Sky Survey of the

Universe’s Magnetism (POSSUM) rotation measure catalog

(Gaensler et al., 2010), will provide the BLOS of numerous

molecular clouds with lower uncertainties and greater source

density than previous catalogs (e.g., Taylor et al., 2009). These

observations will increase the number of BLOS detections per

molecular cloud by a factor of ~ 10. These BLOS maps and future

BPOS observations, such as those by the Fred Young Sub-millimeter

Telescope (FYST; CCAT-Prime collaboration et al., 2021), will

enable 3D magnetic field maps of many molecular clouds.

Finally, starlight polarization observations (e.g., Pereyra and

Magalhães, 2007) combined with Gaia-observed parallax

distances allow us to differentiate between, and separate,

various cloud components along the line of sight (e.g., Doi

et al., 2021). This is made possible by existing and upcoming

starlight polarization observations, including the Galactic Plane

Infrared Polarization Survey (GPIPS; Clemens et al., 2020) and

the upcoming optical polarimetry survey with the Polar-Areas

Stellar Imaging Polarization High Accuracy Experiment

(PASIPHAE; Tassis et al., 2018).
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