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Rapid stellar rotation is an important phenomenon in stellar physics, particularly

for massive and intermediate massmain-sequence stars. This affects all aspects

of the star’s physics including its structure, evolution, and pulsations, andmakes

it necessary to use 2D numerical approaches rather than the 1D approaches

typically used. In this contribution, we will review 2D numerical methods for

modelling and interpreting pulsation modes in rapidly rotating stars. We will

start by deriving the pulsation equations, both in an adiabatic and non-adiabatic

setting, then provide a description of the 2D numerical implementation. We will

then explain approximate implementations of the effects of rotation, namely

first, second, and third order perturbative approaches, as well as the traditional

approximation. This will then be followed by a description on how to calculate

disk-integratedmode visibilities in various photometric bands, and how to apply

this to mode identification in rapid rotators. Finally, we will review some of the

recent works that interpret the pulsation spectra of various stars as viewed in

either a single photometric band or in multiple bands, and including

supplementary constraints from interferometry and spectroscopy.

KEYWORDS

stars: pulsation, stars: rotation, stars: interior, stars: evolution, numerical simulations,
stars: individual: µ Eridani, β Pictoris, Altair

1 Introduction

Much progress has been made in our understanding of stellar physics thanks to the

advent of elaborate 1D numerical simulations of stars. The basic hydrostatic structure,

energy transport, and essential stages of stellar evolution are understood. Nonetheless, the

shortcomings of 1D spherically symmetric models are becoming increasingly apparent,

particularly on a macroscopic scale. Indeed, rotation, convection, and transport processes

remain poorly understood and require the use of higher dimensional simulations to be

modelled correctly. In particular, rapid stellar rotation causes significant departures from

spherical symmetry thanks to centrifugal distortion and gravity darkening, as confirmed

by increasingly sophisticated observations such as those coming from interferometry (e.g.,

Domiciano de Souza et al., 2003; Monnier et al., 2007). Furthermore, it affects the

evolution, lifetimes, and chemical yields of such stars (Meynet andMaeder, 2000) through

transport processes caused by rotation-related instabilities. As can be seen in Figure 1,

based on Royer, (2009), the majority of intermediate and high mass main sequence stars

rotate rapidly. Accordingly, in order to describe such stars, it is necessary to use a 2D

approach when modelling the structure, evolution, and pulsations of these stars.
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In the present contribution, we will focus on the 2D

modelling and interpretation of stellar pulsations in rapidly

rotating stars. Understanding such pulsations is one of the

keys to understanding such stars and the effects of rotation, as

it is currently the only way to probe their internal structure.

However, rotation greatly complicates the pulsation spectra of

these stars thus making them more difficult to decipher. In

particular, correctly identifying modes, i.e., finding the match

between observed and theoretically calculated pulsations, is a

long-standing obstacle but also a prerequisite to detailed seismic

investigations of such stars. Therefore, various strategies have

been devised in order to overcome this obstacle as described

below.

This contribution is organised as follows: Section 2 describes

how to calculate stellar pulsations in rotating stellar models.

More specifically, it briefly addresses rotating stellar models

before explaining how to carry out 2D pulsation calculations,

both in the adiabatic and non-adiabatic cases. It also describes

approximate methods for including the effects of rotation,

namely the perturbative approach and the use of the

traditional approximation. Section 3 briefly describes some of

the impacts of rapid rotation on stellar pulsations and introduces

acoustic island modes. Section 4 describes some of the mode

observables that may be used to help identify the observed

modes, namely mode visibilities, amplitude ratios, and phase

differences. Section 5 then provides a few recent examples of

mode identification and seismic interpretation of rapidly rotating

stars. Finally, Section 6 briefly concludes this paper.

2 Calculating stellar pulsations

2.1 Rotating models

The equations describing stellar pulsations are obtained by

perturbing the fluid dynamic equations around an equilibrium

model of the star. Accordingly, in order to fully account for the

effects of rotation, it is essential to have at one’s disposal an

equilibrium model that fully takes into account the effects of

rotation. In particular the effects of centrifugal acceleration on

the hydrostatic equilibrium of the model are crucial for

calculating pulsations, even when the adiabatic approximation

is being made, i.e., where energy exchanges are neglected during

the pulsations. This is expressed via the following relation:

�v0 · �∇ �v0 � −
�∇P0

ρ0
− �∇Ψ0 (1)

where �v is the fluid velocity field, ρ the density, P the pressure,Ψ
the gravitational potential, and where we have neglected

viscosity. The subscript “0” signifies that these are

equilibrium quantities as opposed to perturbations resulting

from oscillations (see following section). The velocity field is

mainly caused by rotation and therefore takes on the expression
�v0 � Ω(s, z)s �eϕ, where Ω(s, z) is the rotation profile.

Accordingly, the left-hand side of the above equation takes

on the following expression:

�v0 · �∇ �v0 � −Ω2 s, z( )s �es (2)

FIGURE 1
Distribution of projected equatorial velocities, v sin i, as a function of stellar spectral type. As can be seen, there is a clear distinction between
stars earlier than F0, and later type (solar-like) stars (Credit: F. Royer, based on Royer, 2009).
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where we have used cylindrical coordinates (s, ϕ, z) and their

associated unit vectors for convenience. This expression is easily

recognised as the centrifugal acceleration.

Various models fully take into account centrifugal

deformation such as ROTORC models (Deupree, 1990;

Deupree, 1995), Self-Consistent Field (SCF) models (Jackson

et al., 2005; MacGregor et al., 2007), or Evolution STEllaire en

Rotation (ESTER) models (Espinosa Lara and Rieutord, 2013;

Rieutord et al., 2016). Another approach is to deform 1D

(i.e., spherically symmetric) models by subsequently

introducing the effects of the centrifugal acceleration. This

approach was first proposed by Roxburgh, (2006) for arbitrary

2D rotation profiles. More recently, Manchon, (2021) applied a

similar strategy for CESTAM models (Marques et al., 2013). The

advantage of such an approach is the possibility of using highly

sophisticated 1D stellar evolution models which take into

account in a 1D formalism the horizontally-averaged effects of

rotation (Meynet andMaeder, 2000; Palacios et al., 2003; Maeder,

2009; Marques et al., 2013).

If one wishes to take into account energy exchanges during

the pulsations, i.e., carry out fully non-adiabatic pulsation

calculations, it is necessary to deal with the energy

conservation equation in a self-consistent way in the model

itself. Taking these effects into account leads to baroclinic

models, i.e., models where lines of constant pressure,

density, and temperature do not coincide. Indeed, lines of

constant pressure are determined by the hydrostatic

equilibrium whereas lines of constant temperature depend

on the propagation of energy inside the star, and typically

tend to be more spherical. As a result, this leads to baroclinic

flows, namely a non-conservative (i.e., non-cylindrical) rotation

profile and meridional circulation. To show the link between

non-cylindrical rotation and baroclinicity, one can take the curl

of Eq. 1:

−s zΩ
2

zz
�eϕ �

�∇ρ0 ×
�∇P0

ρ20
(3)

The right hand side of this equation differs from zero

because lines of constant pressure and density do not

coincide, and thus leads to a vertical gradient of the rotation

profile. Figure 2 illustrates a differential rotation profile and

meridional circulation resulting from baroclinic effects1,

obtained in an ESTER model. This in turn causes various

instabilities, turbulence, and transport processes. Currently,

the only models where the energy equation and baroclinic

effects are taken into account in a fully 2D setting are

ESTER models. In 1D models such as those from the

Geneva code, STAREVOL, or CESTAM, this is achieved in a

horizontally-averaged rather than local way based on the

assumption of anisotropic turbulence and mixing (Zahn, 1992).

Having briefly described the rotating models at our disposal,

we now turn our attention to the pulsation calculations

themselves.

2.2 Adiabatic analysis

As a first step, it is simpler to calculate stellar pulsations

using the adiabatic approximation, i.e., to neglect energy

FIGURE 2
Differential rotation (A) and meridional circulation (B) as a result of baroclinic effects in a 2 M ESTER model rotating at 0.6Ωk (see also Espinosa
and Rieutord 2013, and Rieutord et al., 2016 for similar plots).

1 We note that viscosity must also be taken into account in order to fully
determine Ω (Espinosa Lara and Rieutord, 2013).
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exchanges (primarily in the form of heat) during the

pulsations. When rotation is present, various effects must

be taken into account. Firstly, the centrifugal deformation

must be taken into account, typically through the use of

surface-fitting spheroidal coordinates in the pulsation

equations. Indeed, using such coordinates are necessary in

order to maintain accuracy when imposing boundary

conditions. Figure 3 illustrates a multi-domain surface-

fitting coordinate system in an ESTER model. Secondly, the

Coriolis acceleration intervenes in the oscillatory motions. In

some cases such as inertial modes, it is the restoring force and

thus the reason for their existence. Putting this together leads

to the following set of equations in an inertial frame:

δρ

ρ0
+ �∇ · �ξ � 0 (4)

D2
0
�ξ

Dt2
− �ξ · �∇ �v0 �∇ · �v0( ) � −

�∇P′
ρ0

+ ρ′ �geff

ρ0
− �∇Ψ′ (5)

δp

P0
� Γ1

δρ

ρ0
(6)

ΔΨ′ � 4πGρ′ (7)

where Eq. 4 corresponds to the continuity equation, Eq. 5 to

Euler’s momentum equation, Eq. 6 to the adiabatic relation, and

Eq. 7 to Poisson’s equation. Quantities preceded by δ correspond

to Lagrangian perturbations, and quantities with a prime to

Eulerian perturbations. The operator D0
Dt � z

zt + �v0 · �∇ denotes

the Lagrangian time derivative, �ξ the Lagrangian displacement,
�geff � �∇P0/ρ0 the effective gravity (i.e., including both gravity and

the centrifugal acceleration), Γ1 the first adiabatic exponent, and
G the gravitational constant. We note that Eq. 5 is obtained by

taking the Lagrangian perturbation of Euler’s momentum

equation (e.g., Lynden-Bell and Ostriker, 1967), and

rearranging some of the terms thanks to the hydrostatic

equilibrium (Eq. 1).

When studying pulsation modes, one assumes a harmonic

time dependence of the form exp(iωt), where ω corresponds to

the pulsation frequency. Furthermore, although the star is no

longer spherically symmetric because of centrifugal deformation,

it is still symmetric around the rotation axis. As a result, pulsation

modes have an azimuthal dependence of the form exp(imϕ),

where m is the azimuthal order. This can be used to rewrite the

left-hand side of Eq. 5:

D2
0
�ξ

Dt2
− �ξ · �∇ �v0 �∇ · �v0( ) � − ω +mΩ( )2 �ξ + 2i ω +mΩ( ) �Ω × �ξ

+ �Ω × �Ω × �ξ( ) + �ξ · �∇ sΩ2 �es( ) (8)

where �Ω � Ω �ez is the rotation vector. The above dependencies

on t and ϕ lead prograde modes (i.e., modes that travel in the

same direction as stellar rotation) to having negative m values

and retrograde modes to having positive m values. This could

be described as the “retrograde convention”. Some authors,

notably in helioseismology, prefer the opposite convention

(i.e., prograde modes have positive m values—we will call the

“prograde convention”) and therefore introduce a time

dependence of the form exp(−iωt) (while maintaining an

azimuthal dependence of the form exp(imϕ)). With such a

convention, the occurrences of (ω +mΩ) would need to be

replaced by (−ω + mΩ) in the above expression.

The right-hand side of Eq. 5 can also be re-expressed in terms

of the Lagrangian perturbations to pressure and density, thus

leading to:

−
�∇P′
ρ0

+ ρ′ �geff

ρ0
− �∇Ψ′ � −P0

ρ0
�∇
δp

P0
( ) +

�∇P0

ρ0

δρ

ρ0
− δp

P0
( )

− �∇Ψ + �∇
�ξ · �∇P0

ρ0
⎛⎝ ⎞⎠

+
�ξ · �∇P0( ) �∇ρ0 − �ξ · �∇ρ0( ) �∇P0

ρ20

(9)

The last term in the alternate formulation is particularly

interesting as it only appears in baroclinic models. In

barotropic models, �∇P0 and �∇ρ0 are parallel thus causing the

term to vanish.

Various boundary conditions must be added to the above

equations to ensure the solutions are regular in the centre, the

Lagrangian pressure perturbations vanish at the surface, and the

perturbations to the gravitational potential vanish at infinity.

This leads to a generalised eigenvalue problem where the

pulsation frequency is the eigenvalue, and the pulsation mode

the eigenfunction. This problemmust then be solved numerically

as described in the next section.

2.2.1 Numerical implementation
Various steps must be carried out before implementing the

above equations numerically. The first step is to express them

FIGURE 3
Multi-domain coordinate system (A) and rotation profile (B) in
the best fitting model for Altair from Bouchaud et al. (2020) (see
also Rieutord et al., 2016 for a similar plot involving a 3 M⊙ rotating
model).
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explicitly in a suitable coordinate system, typically surface-fitting

spheroidal coordinates as described above. For instance, the

continuity equation expressed in the coordinate system used

in Reese et al. (2006) is:

δρ

ρo
+ ζ2

r2rζ

zζ ζ2ξζ( )
ζ2

+ zθ sin θξθ( )
ζ sin θ

+ zϕξ
ϕ

ζ sin θ
⎡⎢⎣ ⎤⎥⎦ � 0 (10)

where (ζ, θ, ϕ) designates the spheroidal coordinate system, r the

distance from the centre, and rζ � zr
zζ. Usually, such a coordinate

system is non-dimensionalised so that ζ = 1 corresponds to the

stellar surface.

The next step is to discretise the equations. This can be

subdivided into two parts. The first is the horizontal

discretisation. Two options exist: using finite-differences or

projecting onto the spherical harmonic basis. Various authors

have used finite differences2 (e.g., Clement, 1998; Espinosa et al.,

2004; Lovekin and Deupree, 2008). However, many authors

nowadays prefer to project the equations onto the spherical

harmonic basis in order to improve the accuracy (this

amounts to applying a spectral method based on spherical

harmonics). This projection takes place in two steps. First the

unknowns are expressed as a sum of spherical harmonics, e.g.:

δρ

ρ
( ) � ∑∞

ℓ′�|m|

δρ

ρo
( )ℓ′

m

ζ( )Ym
ℓ′ θ,ϕ( ) (11)

�ξ � ∑∞
ℓ′�|m|

ξζ
ℓ′
m ζ( ) �Rm

ℓ′ θ, ϕ( ) + ξθ
ℓ′
m ζ( ) �Sm

ℓ′ θ,ϕ( )(
+ξϕℓ′m ζ( ) �Tm

ℓ′ θ, ϕ( )) (12)

where (δρρo)
ℓ′
m
(ζ), ξζ ℓ′m(ζ), ξθℓ′m(ζ), and ξϕ

ℓ′
m
(ζ) are unknown radial

functions,Ym
ℓ′(θ, ϕ) the spherical harmonic of harmonic degree ℓ′

and azimuthal order m, and ( �R
m

ℓ′ ,
�S
m

ℓ′ ,
�T
m

ℓ′ ) vectorial spherical

harmonics3 given by the following expressions:

�R
m

ℓ′ � Ym
ℓ′
�aζ , (13)

�S
m

ℓ′ �
zYm

ℓ′
zθ

�aθ + 1
sin θ

zYm
ℓ′

zϕ
�aϕ, (14)

�T
m

ℓ′ �
1

sin θ
zYm

ℓ′
zϕ

�aθ − zYm
ℓ′

zθ
�aϕ (15)

( �aζ , �aθ, �aϕ) being a vector basis suitable for the spheroidal

coordinate system. As can be seen, the sums in Eqs 11, 12 are

only carried out over the harmonic degree ℓ′ and not over m,

since the different azimuthal orders are decoupled as a result

of the symmetry around the rotation axis (hence the reason

why modes are proportional to exp(imϕ)). Furthermore, in

practice, the sums are truncated at a maximal harmonic

degree, ℓmax. Then the equations are projected onto the

spherical harmonic basis by calculating the dot product

between the equation and the complex conjugate of

successive spherical harmonics (or vectorial spherical

harmonics in the case Euler’s momentum equation), and

integrating the result over 4π steradians. For the continuity

equation, this would yield:

0 � δρ

ρo
( )ℓ

m

+ ∑ℓmax

ℓ′�|m|
Im
ℓℓ′

ζ2

r2rζ
( )zζ ξζ ℓ′m + Im

ℓℓ′
2ζ

r2rζ
( )ξζ ℓ′m[

−Im
ℓℓ′

ℓ′ ℓ′ + 1( )ζ
r2rζ

( )ξθℓ′m] (16)

where the coupling integral operator, Im
ℓℓ′(·), is defined as follows

for a generic function G(ζ, θ):

Im
ℓℓ′ G( ) ζ( ) � ∫∫

4π
G ζ , θ( )Ym

ℓ′ θ, ϕ( ) Ym
ℓ

θ, ϕ( ){ }pdΩ, (17)

in which dΩ is a solid angle element, and where we have made

use of the following spherical harmonic identity:

−ℓ′ ℓ′ + 1( )Ym
ℓ′ �

1
sin θ

z

zθ
sin θ

zYm
ℓ′

zθ
( ) + 1

sin2 θ

z2Ym
ℓ′

zϕ2 , (18)

By varying ℓ from |m| to ℓmax, i.e., by projecting the continuity

equation onto spherical harmonics of successive degrees, and

applying the abovemethodology to the entire system, Eqs 4–7, we

end up with a large system of 1D differential equations which

depends on the pseudo-radial variable ζ, the solution of which

yields the unknown radial functions introduced above. Due to the

symmetry with respect to the equatorial plane, only even or odd

harmonics intervene in this system (apart from the ξϕ
ℓ′
m
functions

which typically have the opposite parity).
The second part is the radial discretisation, i.e., according to

radial variable ζ. Once more, different options exist and are

typically chosen to suit the equilibrium model. A number of

authors use finite differences (e.g., Clement, 1998; Lovekin and

Deupree, 2008; Ouazzani et al., 2012; Reese et al., 2013). We note

that the finite difference scheme used in Ouazzani et al. (2012),

first introduced by Scuflaire et al. (2008), is very stable and

achieves a 4th order accuracy using only two consecutive grid

points at a time, thanks to the use of equilibrium quantities and

their radial derivatives. Reese et al. (2013) used a different 4th

order scheme which is stable to mesh drift, makes use of

superconvergence, and does not require the radial

derivatives of equilibrium quantities (see Reese, 2013, for a

derivation of the scheme). The main advantage of using finite

differences is their high flexibility in the choice of the

underlying grid which can be essentially arbitrary.

Accordingly, grids that are dense near the surface can be

used to resolve acoustic modes in that region as well as

rapid variations in the Γ1 profile. Grids with a higher

density of points in the central regions of the star will be

more suitable for gravity modes.

2 Even in these cases, the solutions are typically projected onto the
spherical basis to facilitate comparison with the non-rotating case.

3 We note that these are slightly different than the usual vectorial
spherical harmonics due to the use of spheroidal basis vectors in
the definition.
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The second option for the radial discretisation is using

spectral methods, i.e., where the solutions are decomposed

over a function basis for which the analytical derivatives are

known. Various authors use spectral methods based on

Chebyshev polynomials (e.g., Rieutord and Valdettaro, 1997;

Lignières et al., 2006). The main advantage of spectral

methods is their high accuracy (provided the calculations have

converged). However, unlike for finite differences, the choice of

grid is imposed by the spectral method. Hence, there is little

freedom to increase the grid density in a specific region of the

star. To overcome this limitation, one may apply a multi-domain

approach. For instance, ESTER models are cut up into a number

of concentric spheroidal domains in which a Chebyshev spectral

method is applied (e.g., Rieutord et al., 2016). Interface

conditions are applied between the domains in order to

ensure the continuity of various quantities such as the

pressure. Likewise, pulsation calculations using these models

also apply a multi-domain spectral approach (Reese et al.,

2021). With such an approach, one can set up a thin domain

near the surface with a high resolution that captures rapid

variations in the model and in the pulsation modes.

Once the problem has been discretised, it takes on the form of

an algebraic generalised eigenvalue problem:

A �v � ωB �v (19)

where A and B are matrices, �v the eigenvector (containing all of

the variables relevant to the pulsation mode), and ω the

associated frequency. Such problems can be solved either

using a QR decomposition4 which searches for all of the

eigensolutions (but typically this would be too costly

numerically for even a moderate resolution), or an iterative

method that searches for a limited number of solutions

around target frequencies. Iterative methods include the

simple power method or more sophisticated approaches such

as the Arnoldi-Chebyshev method which applies a QR

decomposition on a reduced matrix representative of the

original matrix. However, given that these methods find the

eigenvalues with the largest absolute value, a shift-invert strategy

must first be applied in order to transform the above eigenvalue

problem into an equivalent problem where the largest

eigenvalues in the new formulation correspond to those

closest to a given target, σ, in the original problem:

A − σB( )−1B �v � μ �v (20)
The original eigenvalues are then deduced from the eigenvalues μ

via the relation ω � σ + 1
μ.

A number of authors have carried out adiabatic oscillation

calculations using a 2D approach to fully account for the effects of

rapid rotation. Clement studied acoustic and gravity modes in N =

1, 2, and 3 polytropic uniformly rotating models, as well as 15 M⊙

uniformly rotatingmodels, appropriate for βCep pulsators, using a

full 2D finite-differencemethod (Clement, 1981; Clement, 1998) as

well as a method based on the variational principle and involving

approximate eigenfunctions (Clement, 1984; Clement, 1986;

Clement, 1989). Later on, Espinosa et al. (2004) developed a

finite-difference code5 called OMASS2d in which the system of

pulsation equations is reduced to a single equation thanks to a

number of approximations (Cowling approximation, neglect of

Coriolis force, neglect of Brunt-Väisälä frequency). He used this

code to study acoustic pulsation modes in uniform density models

and realistic models. Lovekin and Deupree, (2008) used Clement’s

pulsation code (called NRO for “Nonradial Oscillation code”) to

study pulsation modes in 10 M⊙ uniformly rotating ZAMSmodels

based on the 2D stellar evolution code ROTORC (Deupree, 1990;

Deupree, 1995). They went on to extend this work to 10M⊙

models with a nonuniform cylindrical rotation profile (Lovekin

et al., 2009). Meanwhile, a new 2D approach based on spectral

methods was being developed starting with Lignières et al. (2001).

This led to the development of the TOP (Two-dimensional

Oscillation Program) pulsation code as well as accurate

calculations of acoustic pulsation modes in uniformly rotating

N = 3 polytropic models, first without (Lignières et al., 2006) then

with the Coriolis force (Reese et al., 2006). This allowed Reese et al.

(2006) to establish validity domains for third-order perturbative

methods. TOP was subsequently extended to models based on the

SCF method which have cylindrical differential rotation (Reese

et al., 2009) then to models based on the ESTER code with full 2D

rotation profiles (Reese et al., 2021). Ballot et al. (2010) used TOP

to study gravity modes in polytropic models and to establish the

corresponding validity domains. Later on, Ouazzani et al. (2012)

developed the ACOR pulsation code and compared its results with

those from TOP. In Ouazzani et al. (2015), they then went on to

study acoustic and gravity pulsation modes in a 2 M⊙model with a

radial (or shellular) differential rotation, obtained using the

centrifugal deformation code from Roxburgh, (2006).

In addition to these works, there are a number of studies

focusing on oscillations of rapidly rotating neutron stars. These

have made use of polytropic models (e.g., Ipser and Lindblom,

1991; Yoshida and Eriguchi, 1995; Stergioulas et al., 2004) as well

as realistic neutron star models (e.g., Yoshida and Eriguchi, 1999;

Ferrari, 2005). A key difference when calculating pulsations in

polytropic neutron star models is the fact that the polytropic and

adiabatic exponents are kept the same, whereas they typically

differ for classical stars. Some of the important goals in studying

such oscillations include determining the stability of neutron

4 A QR decomposition consists in decomposing a matrix A into a
product QR where Q is an orthogonal matrix and R an upper
triangle matrix. It serves as the basis for an algorithm which
searches for all of the eigenvalues of A.

5 The discretised problem is subsequently projected onto the spherical
harmonic basis.
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stars with respect to gravitational-wave radiation which may help

to limit their rotation rate (e.g., Ipser and Lindblom, 1991;

Yoshida and Eriguchi, 1995), and testing the equation of state

(e.g., Ferrari, 2005). Some authors have also inspected mode

damping due to mass-shedding at near-critical rotation rates,

thus requiring the use of time evolution simulations of pulsating

neutron stars (e.g., Stergioulas et al., 2004). Such simulations

typically yield less accurate pulsation frequencies since these

depend on the time span covered by the simulation, but are

able to take into account in a straightforward way non-linear

effects including amplitude saturation, mode coupling, and

pulsation-induced mass-shedding.

2.2.2 Variational principle
Given the complexity of the pulsation calculations in the

presence of rapid rotation, it is important to check the accuracy of

the calculations. One way of achieving this is by recalculating the

frequencies thanks to a variational formula. Such a formula may

be obtained by calculating the dot product of Euler’s momentum

equation and the complex conjugate of the Lagrangian

displacement field, �ξ*, integrating over the star’s volume, and

rearranging the various terms thanks to integration by parts and

other manipulations (see, e.g., Appendix B of Reese et al., 2021,

for a full derivation). This leads to a second order equation inω of

the form:

−ω2〈 �ξ, �ξ〉 + ω〈 �ξ, C �ξ〉 + 〈 �ξ,L �ξ〉 � 0, (21)

where C is an operator associated with the Coriolis force, L an

operator representing a combination of other fluid dynamic

terms, and where we have introduced the following dot product:

〈 �ξ, �η〉 � ∫∫∫
V

�ξ
p · �ηρ0dV, (22)

�ξ and �η being two displacement fields, and {.}* denoting the

complex conjugate of a quantity. Solving Eq. 21 then leads to

an independent estimate of the pulsation frequency which

furthermore benefits from the variational principle. Indeed, as

was shown in Lynden-Bell and Ostriker, 1967 in a very general

case, the fluid dynamic operators are symmetric with respect

to the above dot product. One of the consequences of this is

that a small variation or error on the displacement field, δ �ξ,

leads to a second order error on the variational frequency thus

obtained:

ωvar � ω +O ‖δ �ξ‖2( ) (23)

As a result, this property has been used to check the accuracy

with which pulsation modes have been calculated or to increase

their accuracy, both in the 1D non-rotating case (e.g.,

Christensen-Dalsgaard, 1982; Christensen-Dalsgaard and

Mullan, 1994), and 2D rapidly rotating case (e.g., Reese et al.,

2006; Reese et al., 2021). Some authors have used this as a means

of calculating pulsation frequencies by assuming an approximate

analytical form for the eigenfunctions (e.g., Clement, 1984;

Clement, 1986; Clement, 1989).

2.3 Non-adiabatic calculations

Although adiabatic pulsation calculations have the advantage

of being simpler yet sufficiently realistic to provide accurate

pulsation frequencies, they also have various disadvantages

compared to non-adiabatic calculations. Indeed, it is only

possible to calculate damping or growth rates and to predict

which modes are unstable with non-adiabatic calculations.

Furthermore, accurate perturbations of the effective

temperature, which are essential for correctly calculating mode

visibilities and associated amplitude ratios, may only be obtained

in a non-adiabatic context.

In order to carry out non-adiabatic calculations, one must

replace the adiabatic relation by a perturbed version of the energy

equation:

i ω +mΩ( )ρ0T0δS � ϵ0ρ0
δϵ
ϵ0

+ δρ

ρ0
( ) − �∇ · δ �F + �ξ · �∇ �∇ · �F0( )

− �∇ · �ξ · �∇( ) �F0[ ]
(24)

where T corresponds to temperature, S to entropy, ϵ to energy

generated via nuclear reactions, and �F the energy flux. The

energy flux may be decomposed into a radiative, �F
R
, and

convective flux, �F
C
. The perturbed radiative energy flux may

be obtained by perturbing the radiative transfer equation:

δ �F
R � 4

δT

T0
− δκ

κ0
− δρ

ρ0
[ ] �F

R

0

−4acT
3
0

3κ0ρ0
T0

�∇
δT

T0
( ) + �ξ · �∇ �∇T0( ) − �∇ �ξ · �∇T0( )[ ]

where κ is the opacity and a � 4σ
cl
the radiation constant, σ being

the Stefan-Boltzmann constant and cl the speed of light. The

perturbed convective flux is usually neglected in what is generally

known as the frozen convection approximation. To these

equations must be added perturbed equations of state and of

opacity.

There are relatively few works on non-adiabatic pulsation

calculations in rapidly rotating stars using a fully 2D approach.

Lee and Baraffe, (1995) devised a first approach involving a

perturbative modelling of the centrifugal distortion and a two-

term expansion of the pulsation modes over the spherical

harmonic basis. This has been followed by various works

using a larger number of spherical harmonics when

calculating the pulsation modes (e.g., Lee, 2001). In a

particularly interesting study, Lee, (2008) compares this

approach with an approach based on the traditional

approximation (Section 2.5) and finds that in full 2D

calculations low frequency retrograde modes tend be
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damped, in contrast with what is obtained using the traditional

approximation. More recently, Savonije, (2007) studied the

non-adiabatic tidal response of a 20 M⊙ stellar model using a

2D finite difference scheme. The effects of the Coriolis force

were included whereas those of the centrifugal force were

neglected. Finally, Reese et al. (2017a) devised a non-

adiabatic version of the TOP code, applicable to 2D models

from the ESTER code. This approach has the advantage of using

models in which the energy equation is satisfied in a 2D context.

It also takes into account the baroclinic structure of the model

and differential rotation.

2.3.1 Work integral
As was done above in the adiabatic case, one can once more

calculate the dot product of Euler’s momentum equation with �ξ*,

integrate over the volume, and rearrange the various terms. This

leads to an equation that is analogous to Eq. 21, except that the

terms involved are now complex. This equation can be separated

into a real and imaginary part. The real part once more provides

an independent formula for the frequency. However, it does not

benefit from the variational principle since the non-adiabatic

terms in the fluid operators are not symmetric with respect to the

dot product defined in Eq. 22. The imaginary part provides an

integral expression for the damping/excitation rate and

corresponds to what is commonly known as the work integral:

τ � W

2 Aω + C( ) (25)

where τ is the excitation rate, and where

A � ∫∫∫
V
ρ0ξ

2dV, (26)

C � ∫∫∫
V
ρ0 mΩξ2 − i �Ω · �ξ × �ξ

p( )[ ]dV, (27)

W � −∫∫∫
V
I

δPδρp

ρ0
{ }dV (28)

where I(·) corresponds to the imaginary part of a given

complex quantity. As can be seen from the above

expression, excitation or damping occurs when there is a

phase shift between the Lagrangian pressure and density

perturbations, as can be expected from the thermodynamic

identity δW = −PdV.

The work integral is useful for pinpointing what parts

contribute to mode excitation or damping. In particular, by

looking at what temperatures excitation occurs, it is possible

to narrow down which chemical elements are responsible for

the underlying κ-mechanism. Figure 4 shows various work

integrals for a multiplet of modes in a 9 M⊙ ESTER model

rotating at 0.3 ΩK. As can be seen in this plot, only the most

retrograde mode (m = 3) is damped and the other modes are

excited. As the rotation rate increases in the model, all of the

modes in this multiplet are progressively damped starting with

the retrograde modes first. Inasmuch as this multiplet is

representative of pulsation modes in β Cep stars, one can

expect to see more prograde modes excited than retrograde

modes, as seems to be confirmed by observations (e.g., Balona,

2000).

2.4 Perturbative analysis and its limits

An alternate approach for calculating the effects of rotation

on stellar pulsations is to apply a perturbative approach. In this

approach, the rotation rate, or more specifically the ratio of the

rotation rate to the Keplerian break-up velocity ϵ = Ω/ΩK where

ΩK �
       
GM/R3

eq

√
and Req is the equatorial radius, is treated as a

small parameter and the pulsation modes and frequencies are

expanded into a series expression in terms of this parameter.

The advantage of this approach is that the successive terms at

each order are solutions to 1D problems thus reducing the

numerical cost. Furthermore, it establishes a clear link

between the solutions in the non-rotating case, which are

thus the zeroth order solutions, and the solutions in the

rotating case, thereby naturally extending the mode

labelling, i.e., quantum numbers, from the former to the

latter. As described in Mirouh (this volume—see also

Mirouh et al., 2019), mode labelling is far from trivial

when considering pulsations modes calculated using a 2D

approach.

Historically, perturbative methods have been applied to first,

second, and third order. Frequencies thus take on the following

expression:

FIGURE 4
Work integrals for a set ofmodes from the samemultiplet, in a
9 M⊙ ESTER model rotating at 0.3 ΩK. Integration has already been
carried out along the horizontal directions, only leaving the radial
direction as shown in this plot. The left of the plot
corresponds to the centre of the star, whereas the right
corresponds to its surface. Only the most retrogrademode (m = 3)
is damped, i.e., its work integral is negative at the surface (taken
from Reese et al., 2017a).
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ω � ω0 −m 1 − C( )Ω + D1 +m2D2( )Ω2 +m T1 +m2T2( )Ω3

+O Ω4( )
(29)

where the various coefficients C, D1, D2, T1 and T2 come from the

different ordermethods, andω0 corresponds to the pulsation frequency

in the non-rotating case. In general, due to the symmetry of the

pulsation equations with respect to the ϕ = 0 meridional plane, the

coefficients of even powers ofΩ are even functions ofm, and those of

odd powers are odd functions (Reese et al., 2006).

Ledoux (1951) came up with a first order integral expression of

the effects of rotation which takes into account bothmode advection

by rotation and the effects of the Coriolis force. The latter is typically

represented by a mode-dependent coefficient, C, known as the

Ledoux constant. This expression, initially derived for a uniform

rotation profile, was subsequently generalised to profiles that

depend on the radial coordinate alone (e.g., Gough, 1981;

Christensen-Dalsgaard et al., 1990), and on the radial coordinate

and colatitude (e.g., Schou et al., 1994). It has been used to probe

rotation profiles of slowly rotating stars starting with the Sun (e.g.,

Schou et al., 1998; Thompson et al., 2003; Hatta et al., 2019).

To go to higher rotation rates, second order methods have been

derived (e.g., Saio, 1981; Gough and Thompson, 1990; Goode and

Thompson, 1992). Compared to first order methods, this approach

has the added difficulty of including first order effects of the

centrifugal deformation of the model (which scales as (Ω/ΩK)2)
as well as first order perturbed eigenfunctions (as opposed to just the

perturbed frequency, see e.g., Saio, 1981). Such an approach leads to

departures from uniform rotational splittings, even for uniform

rotation profiles. Another phenomenon which intervenes is the

effects of avoided crossings, also known as near-degeneracies. As

shown in Suárez et al. (2010), such effects start to play an important

role on the pulsation frequencies.

Only few authors have ventured to third order methods (Soufi

et al., 1998; Karami, 2008). To achieve such high orders, these

methods include the first order rotation effects into the zeroth order

solution, and third order effects into the second order solution. This

avoids having to calculate eigenfunction perturbations for successive

powers of ϵ. Furthermore, it was necessary to introduce a second

small parameter, namely μ � 2Ω
ω the ratio of the Coriolis to the

pulsation frequency. This parameter is indicative of the impact of

Coriolis force on pulsations and is particularly relevant to low

frequencymodes such as gravity and inertial modes. In contrast, the

former parameter, ϵ = Ω/ΩK, is characteristic of the amount of

centrifugal deformation of the star and is thus relevant to acoustic

modes. Figure 5 (adapted from Goupil and Talon, 2002) shows the

μ-ϵ domains associated with various classes of pulsating stars. As

can be seen, large values6 of ϵ and μ are reached by these classes of

FIGURE 5
(A, B) Domains covered by various classes of pulsating stars in a μ-ε diagram. Panel (A) also shows the region corresponding to the sub-inertial
regime (see Section 3.1). Panel (B) is a zoom of panel (A) and shows validity domains of perturbative methods of various orders using error bars of 0.1
μHz for acoustic pulsation modes superimposed on the domains of the different classes of pulsating stars. The various curves correspond to
individual pulsation modes for a range of rotation rates: the green, cyan, and red sections correspond to the portions where first, second, and
third order perturbativemethods are valid. The black sections showwhere full 2D calculations are needed. (adapted fromGoupil and Talon, 2002 and
Reese, 2006).

6 We note that Soufi et al., 1998; Karami, 2008 actually used the small
parameter Ω/ω. However, we prefer keeping the extra 2 factor in the
numerator as it leads to a more straightforward physical interpretation
and corresponds to the spin parameter commonly usedwhen applying
the traditional approximation.
We note that ϵ = 0.4 leads to equatorial radius 8% larger than the polar
radius in a Roche model, that ϵ = 1 roughly corresponds to the critical
break-up rotation rate beyond which the star decretes matter at the
equator, and that modes with μ ≥ 0.5 are in the sub-inertial regime thus
leading to forbidden regions (Section 3).
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stars, thus raising the question as to the validity of perturbative

methods for these stars.

In order to answer this question, Reese et al. (2006) carried

out full 2D calculations of acoustic pulsation modes in rapidly

rotating polytropic models. They then fitted polynomial

functions to the frequencies thus obtained in order to

mimic perturbative calculations. This enabled them to

come up with validity domains for perturbative methods of

various orders. A similar analysis was carried out by Burke

et al. (2011) using realistic models from the ASTEC code

(Christensen-Dalsgaard, 2008) and including a perturbative

description of their centrifugal deformation. Ballot et al.

(2010) subsequently applied a similar method to gravity

modes in polytropic models, thus extending the validity

domains to low frequencies. Figure 6 shows such validity

domains for a polytropic model of a typical A-type star.

The error bars used to define these domains are 0.1 μHz

(which corresponds to 116 days of observation, as based on

the Rayleigh criterion).

It is interesting to note that at high frequencies, the validity

domains of perturbative methods shrink. This is because the

wavelength of acoustic pulsation modes is smaller at these

frequencies, and thus these modes are more sensitive to the

centrifugal deformation. In first order perturbative methods, the

centrifugal deformation is neglected entirely, thus leading to a

relative error on the pulsation frequency, δω/ω, that scales as the

flattening of the star, (Req − Rpol)/Req ≃ 1
2Ω/ΩK, where Req and

Rpol are the equatorial and polar radii, respectively. If we use an

error bar of δω = 0.1 μHz, this leads to the blue curve shown in

Figure 6.

Likewise, at low frequencies, the validity domains of

perturbative methods become smaller. This is due to the

increasing influence of the Coriolis force on the pulsations, as

can be seen by the ratio between the pulsation and rotation

periods. Also shown in this plot is the curve ω = 2Ω, which marks

the separation between sub- and super-inertial modes. As can be

seen, it correlates nicely with the validity domains for gravito-

inertial modes.

2.5 Traditional approximation

Another approximate approach to calculating stellar

pulsations in the presence of rapid rotation is to apply

what is known as the traditional approximation. In this

approach, the horizontal component of the rotation vector,

−Ω sin θ �eθ , is neglected. If furthermore, the centrifugal

distortion is neglected, and the Cowling7 and adiabatic

approximations are made, then the pulsation equations

become separable in r and θ. Specifically, the horizontal

parts of the pulsation modes are no longer described by

spherical harmonics but by Hough functions, which are the

solutions to the eigenvalue problem known as Laplace’s tidal

equation. The associated eigenvalues correspond to the

horizontal wavenumber.

The traditional approximation was first introduced in the

context of stellar pulsations by Berthomieu et al. (1978), thus

enabling them to obtain asymptotic expressions for the

frequencies of gravity modes in rotating stars. Since then,

other authors have also applied the traditional approximation

(e.g., Lee and Saio, 1987; Savonije et al., 1995; Bildsten et al., 1996;

Townsend, 1997; Bouabid et al., 2013). Townsend, (2003b)

carried out an extensive asymptotic analysis of the behaviour

of Hough functions and provided a classification of gravito-

inertial modes. Ballot et al. (2012) showed that the period

spacings of gravito-inertial modes predicted by the traditional

approximation are a close match to those from full 2D

calculations, apart from some cases where the centrifugal

deformation causes a slight mismatch.

Savonije et al. (1995) showed how to generalise the

traditional approximation to non-adiabatic calculations. This

approach was subsequently used by Townsend, (2003a) when

calculating the disk-integrated visibilities of pulsation modes

and by Townsend, (2005) and Bouabid et al. (2013) when

studying the instability domains of slowly pulsating B stars

and γ Doradus stars. Lee, (2008) compared non-adiabatic

FIGURE 6
Validity domains for perturbative methods of various orders.
Green, cyan, and red curves correspond to the domain where first,
second, and third order methods reproduce full 2D calculations to
within an error bar of δω = 0.1 μHz. The purple line labelled
ω = 2Ω delimits sub-inertial gravito-inertial modes (below) from
the super-inertial modes (above). The blue line shows the
expected frequency threshold that comes from neglecting
centrifugal deformation (see text for details). (Material from: Ballot
et al., 2013).

7 In the Cowling approximation, the perturbations to the gravitational
potential are neglected (Cowling, 1941).
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calculations based on the traditional approximation with those

based on full 2D calculations. He showed that retrograde

g-modes are unstable when applying the traditional

approximation, but stable when applying a 2D approach.

Mode coupling and centrifugal deformation play a role in

stabilising these modes.

3 Impact of rapid rotation on stellar
pulsations

Having described how to calculate pulsation modes in the

presence of rapid rotation, we now briefly look at some of its

effects on stellar pulsations. For a more complete review of

these effects, in particular on mode frequencies, geometry,

and classification, we refer to the review by Mirouh (this

volume).

3.1 General effects

One of the first impacts of rotation on pulsation frequencies

is to lift the degeneracy between modes with the same radial

order, n, and harmonic degree, ℓ, but different azimuthal orders,

m. Hence, a frequency multiplet composed of 2ℓ + 1 frequencies

appears where there was only a single frequency. This is a simple

consequence of first order perturbative effects (Eq. 29). For

rotation profiles that do not depend on θ, the frequencies in a

multiplet are evenly spaced (to first order). Such a spacing is

known as the rotational splitting. As the rotation rate increases,

the multiplets become uneven as was already pointed out in

Section 2.4. They also start to overlap thus leading to a complex

spectrum. Progressively, a new frequency organisation emerges.

At this point, it is useful to distinguish between acoustic

modes, which typically have high frequencies, and gravity modes

at low frequencies. At rapid rotation rates, acoustic modes

subdivide into several classes of pulsation modes each with its

own frequency organisation and characteristic mode geometry,

as was shown by Lignières and Georgeot, 2008 and Lignières and

Georgeot, 2009 using ray dynamics. These include acoustic island

modes, chaotic modes, and whispering gallery modes. Probably,

the most important of these different classes when it comes to

interpreting observed pulsations are acoustic island modes, as

described below.

In the rotating case, gravity modes subdivide between modes

in the super-inertial regime (ω > 2Ω) and those in the sub-inertial

regime (ω < 2Ω). Those in the super-inertial regime keep a mode

geometry which is similar to that of their non-rotating

counterparts. A notable exception are the “rosette” modes

discovered by Ballot et al. (2012). These have a non-separable

geometric structure and cannot be described correctly using the

traditional approximation (see Figure 7). Modes in the sub-

inertial regime are affected by forbidden regions which appear

around the poles. Indeed, above and below the critical latitudes8

±Θc, where Θc = arcsin[ω/(2Ω)], gravito-inertial waves are

evanescent and are thus confined to the equatorial region

(e.g., Dintrans and Rieutord, 2000; Townsend, 2003b). If

centrifugal deformation is taken into account, this boundary

takes on a more complex shape (Ballot et al., 2010). Furthermore,

the period spacings of gravity modes go from being uniform in

FIGURE 7
Meridional cross-section of a rosette mode in an SCF model
rotating at 70 % of the critical rotation rate (Credit: Resse (2013),
reproduced with permission © ESO).

FIGURE 8
Meridional cross-section of an acoustic island pulsation
mode in a 2 M⊙ ESTER model rotating at 0.7 ΩK. The underlying
periodic orbit is indicated by the solid black line. The quantum
numbers ~n and ~ℓ correspond to the number of nodes in the
directions that are indicated on the plot.

8 We use the notation Θ to distinguish the latitude (the angle from the
equator) from the colatitude θ (the angle from the north pole).
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the non-rotating case to following well-defined functions which

depend on the pulsation period, harmonic degree, ℓ, and

azimuthal order, m. This result was first predicted thanks to

the traditional approximation before being confirmed by 2D

pulsation calculations (Ballot et al., 2012; Ouazzani et al., 2017).

Finally, we note the emergence of inertial modes at low

frequencies, for which the Coriolis acceleration acts as the

restoring force. These can be subdivided into modes with a

singular structure in the ideal inviscid limit as they focus around

wave attractors (e.g., Rieutord and Valdettaro, 1997; Dintrans et al.,

1999; Baruteau and Rieutord, 2013; Mirouh et al., 2016), thus

potentially playing an important role in tidal dissipation (e.g.,

Ogilvie, 2009; Rieutord and Valdettaro, 2010), and modes with a

more regular structure such as r-modes (e.g., Papaloizou and Pringle,

1978; Saio, 1982; Rieutord, 2001; Lee, 2006). Recently, Ouazzani et al.

(2020) studied mixed modes which take on an inertial characteristic

in the convective core and a gravito-inertial behaviour above. These

lead to kinks in the period separation relation described above and

have been observed in some stars (Saio et al., 2021).

3.2 Acoustic island modes

Among the different types of acoustic modes, island modes are

particularly important. Indeed, these are the rotating counterparts to

low degree modes and are thus typically the most visible of the

acoustic modes. Accordingly, they are likely candidates to explain

some of the pulsations observed in rapidly rotating stars. As shown

in Figure 8, thesemodes focus around periodic ray orbits that start at

mid-latitudes and go around the equator.

Various authors have studied their pulsation spectra starting

with Lignières et al. (2006). In Reese et al. (2009), the following

empirical formula was obtained (after taking into account into

account the fact that the frequencies depend on m/
 
~n

√
rather

than m):

ω~n, ~ℓ, m � ~nΔ~n +D ~m
~ℓ( )          

m2

~n
+ μ ~ℓ( )2√

−mΩ + ~α ~ℓ( ). (30)

where ~n, and ~ℓ are quantum numbers specific to island modes

(Figure 8). Reese et al. (2008) and Mirouh et al. (2019) showed

that the pseudo-large separation9, Δ~n, that intervenes in this

formula roughly scales with the mean density of the star

(Figure 9). This theoretical prediction was subsequently

confirmed thanks to δ Scuti stars in binary systems (García

Hernández et al., 2015). Lignières and Georgeot, (2008) and

Lignières and Georgeot, (2009) showed that the large

separation (or twice the pseudo-large separation) is the

inverse of the time it takes for an acoustic wave to travel

along the underlying ray orbit from one end to the other

(Figure 8).

4 Mode observables

Before reviewing some of the recent works on interpreting

pulsations of rapidly rotating stars, it is important to describe

various mode observables, namely mode visibilities, amplitude

ratios, phase differences, and line profile variations. Indeed, one

of the long-standing obstacles to detailed seismic investigations

of rapidly rotating stars is mode identification, i.e., finding the

correspondence between observed pulsations and theoretical

modes, as is particularly well illustrated, for instance, in

Figure 5 of Deupree (2011). Finding observational constraints,

such as those based on the above observables, become

particularly crucial in narrowing down plausible mode

identifications.

4.1 Mode visibilities

Mode visibilities correspond to disk-integrated luminosity

variations for some given normalisation of the mode amplitude.

If multiplied by the intrinsic mode amplitudes, these provide the

observed pulsation amplitudes. However, predicting the intrinsic

mode amplitudes is a formidable and unsolved problem as the

pulsations of such stars are typically excited by the κ mechanism

and are thus subject to non-linear saturation effects as well as

mode coupling, all of this, in a centrifugally deformed stellar

structure. Some of these effects have been explored in various

theoretical works (e.g., Dziembowski, 1982; Dziembowski and

Krolikowska, 1985; Dziembowski et al., 1988; Gastine and

Dintrans, 2008) but a full comprehensive theory is currently

out of reach. Hence, mode visibilities only give an idea of what

FIGURE 9
Large frequency separation, Δn, as a function of rotation rate
in rotating polytropic models. As can be seen, Δn scales with
volume rather than the cube of the equatorial or polar radii (Credit:
Reese et al. (2008), reproduced with permission © ESO).

9 The pseudo-large separation, Δ~n , corresponds to half the large
separation, Δn, from the non-rotating case due to the relationship
between the pseudo-radial order, ~n, and the radial order,n, of pulsation
modes in non-rotating stars.
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modes are most visible and the least affected by disk cancellation

effects, but should by no means be used in a quantitative

comparison with observed mode amplitudes.

In order to calculate mode visibilities, we first need to express

the disk-integrated energy radiated by a star in some given

direction:

E � 1
d2
∫∫

Vis. Surf.
I μ, geff , Teff( ) �eobs. · dS#→ (31)

where d is the distance to the observer, I the specific radiation

intensity, μ � �eobs. · �nwhere �eobs. is the unit vector in the direction

of the observer and �n the outward normal to the surface, geff the

effective gravity (including the centrifugal acceleration), Teff the

effective temperature, and “Vis. Surf.” the part of the stellar

surface that is visible to the observer. We note that the shape of

the boundary between the visible and hidden side of the star is

not trivial when the star is deformed by the centrifugal force. It

can only be determined by calculating whether the orientation of

each surface element is towards or away from the observer. This

expression then needs to be perturbed to account for the

variations caused by a pulsation.

ΔE t( ) � 1

d2 R ∫∫
Vis. Surf.

δI μ, geff , Teff , t( ) �eobs. · dS#→{
+∫∫

Vis. Surf.
I μ, geff , Teff( ) �eobs. · δ dS

#→( )} (32)

where we have neglected the perturbation to the visible surface

since it turns out to be of second order compared to the other

terms. The variations of the specific radiation intensity can be

expanded as follows:

δI � I
z ln I
z lnTeff

δTeff

Teff
+ z ln I
z lngeff

δgeff

geff
( ) + zI

zμ
δμ (33)

These expressions show that pulsations cause light variations in

multiple ways. They cause local variations of effective temperature

and gravity which in turn affect I. They also cause geometric

variations of the surface which affect the size and orientation of

surface elements, as well as I via limb darkening effects.

The various terms related to pulsation modes are

calculated as follows. The Lagrangian variations of effective

temperature, δTeff/Teff, are deduced from full non-adiabatic

calculations. If the pulsation modes have been calculated using

the adiabatic approximation, δTeff/Teff may be approximated

by the local temperature variations, δT/T (a rather drastic

approximation according to Dupret et al., 2003), which in turn

are deduced from the Lagrangian pressure perturbations.

Some authors (e.g., Watson, 1988; Garrido et al., 1990;

Heynderickx et al., 1994) include an ad-hoc parameter to

account for non-adiabatic effects. The Lagrangian variations

in effective gravity are fairly complex to derive as they include

the variations in the gravitational field caused by

perturbations to the distribution of matter as well as

variations related to the fact that the surface is displaced in

this field, and finally the acceleration of the surface itself. This

leads to the following expression (Reese et al., 2013):

δ �geff � − �∇Ψ − �ξ · �∇ �∇Ψ0( ) + ω +mΩ( )2 �ξ
−2i ω +mΩ( ) �Ω × �ξ − �Ω × �Ω × �ξ( ). (34)

Finally, the geometric terms may be deduced from the

Lagrangian displacement. The perturbations to the surface

elements is given by:

δ dS
#→( ) � zθ �ξ × zϕ �r + zθ �r × zϕ �ξ( )dθdϕ (35)

and those of μ by:

δμ � �eobs. · δdS
#→

‖dS#→‖
− �n · δdS

#→
‖dS#→‖

⎛⎝ ⎞⎠ �n
⎧⎨⎩ ⎫⎬⎭ (36)

Figure 10 illustrates the different terms that intervene in mode

visibility calculations for a particular pulsation mode.

4.2 Amplitude ratios and phase differences

Besides calculating mode visibilities, one can also calculate

amplitude ratios and phase differences using essentially the same

set of equations as above. The main difference is that the intensity I

should be multiplied by the instrument’s and filter’s transmission

curves, prior to calculating the integrals. Repeating this procedure

for different filters provides pulsation amplitudes and phases in

different photometric bands. One can then calculate the amplitude

ratios and phase differences between these bands. Unlike mode

visibilities, these do not depend on the intrinsic mode amplitudes

since these factor out. Furthermore, in the non-rotating stars,

amplitude ratios and phase differences do not depend on the

azimuthal order, m, or the inclination of the star. Hence,

amplitude ratios and phase differences only depend on the

geometric properties of the modes, and as such, may be used to

constrain mode identification, and more particularly the harmonic

degree, ℓ, in non-rotating stars.

Historically, Dziembowski, (1977) is among the first to have

obtained an expression for pulsation-induced light variations in non-

rotating stars. Subsequent expressions were derived by including

further effects such as perturbations to limb darkening and the

surface normal, culminating in the work by Heynderickx et al.

(1994). At this point, non-adiabatic effects were only

approximated via an ad-hoc parameter and the effects of rotation

were not included. Later on, fully non-adiabatic calculations were

included thus improving mode identification in non-rotating or

slowly rotating stars (Dupret et al., 2002; Dupret et al., 2003).

Then, Daszyńska-Daszkiewicz et al. (2002); Daszynska-

Daszkiewicz et al. (2007) and Townsend (2003a) included

the effects of rotation when calculating mode visibilities.

They showed that in contrast to the non-rotating case,
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amplitude ratios and phase differences depend both on the

azimuthal order and the inclination. This complicates mode

identification as there are more cases to investigate, but may

also help to place tighter constraints on mode identification.

However, the effects of rotation on the pulsation modes in

the above works where approximated using either a

perturbative approach or the traditional approximation.

In contrast, Lignières et al. (2006); Lignières and

Georgeot, (2009) fully included the effects of rotation in

the pulsation calculations thanks to a 2D numerical

approach but approximated the mode visibility

calculations by only including the terms related to the

temperature variations. They showed that chaotic

acoustic modes have visibilities which are higher than

that of their non-rotating counterparts, i.e., modes with

intermediate ℓ − |m| values. Accordingly, they may be visible

alongside acoustic island modes thus complicating the

interpretation of pulsation spectra. Finally, Reese et al.

(2013) calculated mode visibilities including all of the

terms for full 2D mode calculations. However, these

calculations were done with the adiabatic approximation.

Later on, Reese et al. (2017b) approximated non-adiabatic

effects by deriving the effective temperature variations from

the radial displacement using an ad-hoc function calibrated

on 1D non-adiabatic pulsation calculations by the MAD

code (Dupret, 2001). They also tested a mode identification

strategy which consists in grouping together modes with

similar amplitude ratios. This allowed them to group island

modes with similar quantum numbers together but required

having a large number of observed pulsation modes.

4.3 Line profile variations

Another observable associated with pulsationmodes is line profile

variations (LPVs). LPVs typically take on the form of bumps that

move over time within a spectroscopic line profile and are mainly

caused by the Doppler shifts induced by the oscillatory motions from

the pulsations. Accordingly, they can also be used to constrain mode

geometry and hence identification. A more detailed description of

LPVs in the case of rapid rotation is provided in the review byMirouh

(this volume).

5 Interpreting pulsation spectra of
rapid rotators

The various attempts that have been made to interpret

pulsation spectra in rapidly rotating stars fit into two broad

categories: ensemble seismology and seismology “a la carte”. The

first category applies to whole groups of stars whereas the second

concerns detailed seismic investigations of individual targets. In

what follows, we will especially focus on the second type of

approach by providing a non-exhaustive list of examples. As

pointed out above, one of the main obstacles to carrying out a

detailed seismic interpretation is the lack of a reliable mode

identification. Hence, all of the examples below include some sort

of strategy for identifying modes, either based on frequency

patterns or on amplitude ratios and phase differences. Finally,

apart from μ Eridani, the examples below focus on acoustic

modes. An extensive literature also exists on interpreting gravity

modes in rapidly rotating stars such as γ Dor and SPB stars (e.g.,

Van Reeth et al., 2016; Ouazzani et al., 2019). Mirouh (this

volume) provides a detailed review of these works.

5.1 Frequency patterns in δ Scuti stars

Recently, Bedding et al. (2020) worked on the seismic

interpretation of 60 young δ Scuti stars, most of which were

observed by TESS (Ricker et al., 2015). Assmuing the dominant

observed modes are axisymmetric, they matched ℓ = 0 and 1

FIGURE 10
Plots showing the different terms that intervene in mode visibility calculations. The surface deformation is greatly exaggerated to make it easier
to see.
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frequencies from non-rotating models to the observed pulsation

spectra with the help of echelle diagrams. Figure 11 shows echelle

diagrams for two of the more rapidly rotating stras in the sample

along with the expected positions of the ℓ = 0 and 1 ridges or

theoretical frequencies fromnon-rotatingmodels. They justified this

approach by noting that these modes, once normalised by the large

separation, remain relatively invariant, even in models rotating at

roughly 50% of the critical rotation rate, as shown by full 2D

calculations using models based on the SCF method. Although the

methodology may differ, this work follows a number of previous

efforts using both seismology “a la carte” and ensemble seismology

(e.g., García Hernández et al., 2009; Paparó et al., 2016; Michel et al.,

2017; Bowman and Kurtz, 2018) to identify frequency patterns and

large separations in δ Scuti stars.

5.2 μ Eridani

μ Eridani is an SPB star of spectral type B5 IV. With a projected

equatorial velocity v sin i = 130 km s−1, it is rotating at least at 30% of

the critical rotation velocity. This star was observed using the

Strömgren uvy filters in 2012–2013 thus leading to a number of

modes detected in all three photometric bands. Daszyńska-

Daszkiewicz et al. (2015) therefore devised and applied a

multicolour mode identification technique which consisted in

carrying out a χ2 minimisation of the differences between

observed amplitude ratios and phase differences, and the

corresponding theoretical predictions. This required the use of

non-adiabatic pulsation calculations in the presence of rapid

rotation, which they carried out using the traditional

approximation (thus neglecting the centrifugal deformation). They

only included excited modes in their comparisons. Although several

possible sets of mode identifications were found, their results point to

an equatorial velocity v between 135 and 140 km s−1 and hence an

inclination not too far from equator-on (i≳ 70°). They also concluded

that modes with ℓ ≤ 2 were not sufficient to carry out the

identification and went up to ℓ = 6.

5.3 β Pictoris

The star β Pictoris has attracted considerable interest since

the direct imaging of an exoplanet orbiting around it thanks to

adaptive optics (Lagrange et al., 2009; Lagrange et al., 2010).

Furthermore, it is a bright star of spectral type A6 V, located at

19.76 pc from us (as based on Gaia DR2 parallax, Gaia

Collaboration et al., 2018). It has a disk orbiting around it

and rotates with a projected equatorial velocity of v sin i =

124 ± 3 km s−1, thus making it a moderately fast rotator

(Koen et al., 2003). Various instruments observed β Pictoris in

2017–2018 in an attempt to detect the transit of the planet’s Hill

sphere in front of the star. In addition, β Pic was observed by the

BRITE-Constellation (Weiss et al., 2014). This resulted in

multiple light curves in separate photometric bands that could

be used for the purposes of asteroseismology.

Zwintz et al. (2019) carried out a seismic analysis of this star

using rapidly rotating models based on the SCF method. Given

that it was observed in multiple photometric bands, it was an

ideal target to carry out mode identification based on amplitude

ratios. Furthermore, the constraints provided by the orbital

FIGURE 11
Echelle diagrams for HD 42005 (A) and HD 28548 (B), with projected equatorial velocities of 130 ± 30 km s−1 and 200 ± 50 km s−1, respectively.
The stripes in the left correspond to what may be ℓ = 0 and 1 sequences. The symbols in the right panel are frequencies from non-rotating models
that roughly match the observations (Material from: Bedding et al., Nature 581, 7807, 147-151 (2020), Springer Nature Limited).
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dynamics of the exoplanet as well as interferometric observations

lead to fairly accurate estimates of the mass and radius, thus

narrowing down the set of possible solutions. An MCMC search

was carried out to find best matching solutions and

corresponding stellar parameters. Figure 12 compares the

frequencies and amplitude ratios from two of the solutions

with the observational constraints. As can be seen, it turned

out to be difficult to find models that simultaneously reproduce

the observed amplitude ratios and frequencies. In particular,

some of the amplitude ratios were reproduced by none of the

theoretical modes, regardless of inclination and rotation rate. The

causes behind these discrepancies may be shortcomings in the

models thus leading to inaccuracies in the frequencies,

approximations in the mode visibility calculations such as an

ad-hoc modelling of non-adiabatic effects, and/or the fact that

not all of the light curves were obtained at the same epoch, which

could lead to erroneous amplitude ratios if the mode amplitudes

vary over time. As was shown in Bowman et al. (2016), amplitude

modulation is common in δ Scuti stars. Nonetheless, among the

best solutions obtained by the MCMC procedure were near

FIGURE 12
Amplitude ratios (A) and corresponding pulsation spectra (B) coming from best-fitting solutions for β Pictoris. The dark and light blue lines in
both panels correspond to the observed amplitude ratios and frequencies. The green and red lines and symbols correspond to two solutions
obtained with different error bars on the frequencies (Credit: Zwintz et al. (2019), reproduced with permission © ESO).
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equator-on solutions with an inclination around 89° and a

rotation rate of 27% of the Keplerian break-up velocity. This

would agree with the inclination of the planet’s orbit as well as

that of the disk.

5.4 Altair

Altair, also known as αAquilae, is one of the three stars in the

summer triangle. It has been a prime target for interferometry

due to its proximity (5.13 pc from the Sun) and its rapid rotation.

Indeed, both its centrifugal deformation and gravity darkening

may be observed (van Belle et al., 2001; Ohishi et al., 2004;

Domiciano de Souza et al., 2005; Peterson et al., 2006; Monnier

et al., 2007). Various spectroscopic studies have found v sin i

values ranging from 190 km s−1 (Carpenter et al., 1984) to

250 km s−1 (Stoeckley, 1968). Furthermore, as shown in Buzasi

et al. (2005), it is a δ Scuti pulsator, with low-frequency acoustic

modes, and possibly some gravito-inertial modes.

Suárez et al. (2005) therefore carried out a seismic study of

Altair. They used models produced by the 1D stellar evolution code

CESAM (Morel, 1997; Morel and Lebreton, 2008) and calculated

pulsation modes using the Filou pulsation code, which applies a

second order perturbative method to model the effects of rotation

(Tran Minh and Léon, 1995; Suárez et al., 2002). Their study

favoured models in a 1.70–1.76M⊙ mass range with an age

between 225 and 775 Myrs. However, given the rapid rotation

rate, it proved to be necessary to use full 2D calculations to interpret

the pulsations in this star (Reese et al., 2006).

Accordingly, Bouchaud et al. (2020) carried out an extensive

study using interferometric, spectroscopic, and seismic data.

Given the diversity of observational constraints, a multi-step

optimisation procedure was carried out. Using an MCMC

approach, models were first selected based on interferometric

and spectroscopic constraints before being fine-tuned using the

seismic constraints. The four higher frequency modes (starting

from 20.785 c/d) were assumed to be l = 0 and 1, m = 0 modes

(i.e., ~ℓ � 0 islandmodes), thus leading to alternating high and low

mode visibilities in qualitative agreement with the observed

amplitudes. Interestingly, this is the same type of mode

identification as that used in Bedding et al. (2020). By

adjusting the model to reproduce the frequencies, it was

possible to obtain a model which roughly reproduces all of

the constraints. Figure 13 shows a comparison between the

observed and theoretical pulsation spectra for Altair along

with the meridional cross-section of one of the modes selected

to match the observed pulsations. The mass of this model is

1.863 M⊙, its rotation rate 0.744 ΩK thus leading to v sin i =

243 km s−1, and its central hydrogen content Xc = 0.71 (to be

compared with a surface composition ofXs = 0.739). This leads to

a rough estimate of 100 Myrs for the star’s age when compared

with 1D stellar evolution models from CESAM. Such an age is

lower than the estimate by Suárez et al. (2005) and considerably

lower than some of the estimates based on isochrone fitting

which exceed 1 Gyr (e.g., Lachaume et al., 1999; Domiciano de

Souza et al., 2005). It may thus provide a natural explanation for

why the rotation rate is still high.

6 Conclusion

In this review, we have described 2D modelling of pulsations

in rapidly rotating stars. Compared to the 1D spherically

symmetric case, calculating pulsation modes in rapidly

FIGURE 13
(A) Observed and theoretical pulsation spectra for Altair. The observed frequencies are shown by the vertical light grey lines that span the plot
and are indicated by the labels f1 to f7. The thickness of the lines correspond to the observed amplitudes. The darker grey lines correspond to
theoretical pulsationmodes. Their height corresponds tomode visibilities. The red lines with the labels “a” to “f” correspond to islandmodes ormixed
gravito-island modes selected to match the observed pulsations. (B) Meridional cross-section of mode “d”. The colours indicate Lagrangian
pressure perturbations on a pseudo-logarithmic scale (Credit: Bouchaud et al. (2020), reproduced with permission © ESO).
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rotating stars is a formidable problem. As a result, various

approximate methods, namely perturbative approaches of

various orders and methods based on the traditional

approximation, have been devised. These have lead to a

number of results and insights in the effects of rotation on

stellar pulsations, such as rotational multiplets or a modified

period spacing pattern for gravity modes. Then, with the advent

of more powerful computers, efficient full 2D numerical

approaches were implemented. This has lead to a wealth of

theoretical results, thus considerably extending our

understanding of pulsations in rapidly rotating stars as well as

their structure, and has helped to show some of the limitations of

previous methods. As is briefly addressed here, new mode

geometries and pulsation frequency patterns emerge at rapid

rotation, thus leading to pulsation spectra that are considerably

more complicated than that of non-rotating stars.

Given the increased complexity of pulsation spectra in

such stars, it is much more difficult to correctly match

observed pulsations with those that are calculated in

stellar models. Accordingly, it is necessary to extend mode

identification techniques to these stars, namely those based

on multicolour photometry and line profile variations.

However, as described in this review, this first requires

generalising all of the relevant formulae to a centrifugally

distorted stellar geometry thus increasing their complexity.

This then allows us to theoretically predict amplitude ratios

and phase differences between different photometric bands,

which unlike in the non-rotating case, depend both on the

azimuthal order of the mode and the inclination of the star.

Comparing such predictions with observations can then be

used to constrain the geometry of the observed pulsation

modes and hence their identification.

Armed with these new theoretical developments, several

authors have looked into interpreting the pulsation spectra of

various rapidly rotating stars. They have been able to make

headway into identifying the observed pulsations and have

started to characterise these stars, including the rotation rate,

inclination, mass, and age. Some of these results have brought out

some of the limitations in our understanding of the physical

phenomena that take place in these stars, and are in sharp

contrast with previous results based on 1D numerical

approaches, thus highlighting the importance of using full 2D

approaches. Much effort is still needed to generalise the use of

such methods to large numbers of stars and to interpret the

wealth of pulsation data currently available, particularly those

coming from recent space missions.

In the future, 3D pulsation calculations may become

important for certain types of stars that are not symmetric

around the rotation axis due to supplementary physical

phenomena. For instance, rapidly oscillating Ap (roAp)

stars have a strong magnetic field which is inclined with

respect to the rotation axis, and close binaries undergo tidal

deformation that can only be described in a 3D context.

Pulsation calculations in such stars would probably use a

similar approach as the one described here except that

summations over multiple azimuthal orders rather than a single

m value would intervene in the pulsation modes and equations,

and the ϕ component of coupling integrals (Eq. 17) would not

separate out. Accordingly, this would require heavy computational

resources, particularly to store the discretised system in memory

and to speed up calculations through parallelisation. However, it

may provide further insights into the pulsation physics and

underlying stellar structure as did 2D calculations for rotating

stars, and provide answers to long-standing questions such as the

orientation of the pulsationmodes with respect to the rotation and

magnetic axes in roAp stars (e.g., Kurtz, 1990; Bigot and

Dziembowski, 2002). From an observational point of view, one

might expect highly complicated pulsation spectra with frequency

multiplets being further subdivided, thus leading to (2ℓ + 1)2 rather

than (2ℓ + 1) components per multiplet (e.g., Gough and

Thompson, 1990).
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