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Simultaneous solar wind measurements from the solar wind monitors, WIND and ACE,
differ due to the spatial and temporal structure of the solar wind. Correlation studies that
use these measurements as input may infer an incorrect correlation due to uncertainties
arising from this spatial and temporal structure, especially at extreme and rare solar wind
values. In particular, regression analysis will lead to a regression function whose slope is
biased towards the mean value of the measurement parameter. This article demonstrates
this regression bias by comparing simultaneous ACE andWIND solar windmeasurements.
A non-linear regression analysis between them leads to a perception of underestimation of
extreme values of one measurement on average over the other. Using numerical
experiments, we show that popular regression analysis techniques such as linear
least-squares, orthogonal least-squares, and non-linear regression are not immune to
this bias. Hence while using solar wind parameters as an independent variable in a
correlation or regression analysis, random uncertainty in the independent variable can
create unintended biases in the response of the dependent variable. More generally, the
regression to the mean effect can impact both event-based, statistical studies of
magnetospheric response to solar wind forcing.

Keywords: uncertainty, regression to the mean, solar wind magnetosphere coupling, space weather, regression
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1 INTRODUCTION

The Earth’s magnetosphere-ionosphere system is primarily driven by the solar wind. Hence,
measurements of the solar wind and their interpretation are crucial in our attempt to
understand the near-Earth space environment. At the time of writing this report, two spacecraft,
ACE and WIND, have been measuring solar wind parameters for over 20 years from outside the
magnetospheric bow shock. Many event-based studies, statistical studies, and simulations use these
measurements as input. Many assume that the solar wind measured by these monitors situated at the
L1 Lagrange point ultimately drives the magnetosphere system.

However, comparing measurements of the solar wind time-shifted to the bow shock shows
random differences between the spacecraft (King and Papitashvili, 2005). These differences are
expected because the satellites depending on their orbits, can be separated by significant distances
(~ 10 to 400RE), and solar wind parameters vary over those length scales (e.g., Borovsky, 2018).
There is also a random uncertainty in the solar wind propagation times to the bow shock, leading to a
mismatch in measurements from different satellites (e.g., Case and Wild, 2012). Additionally,
uncertainties stem from the fact that the solar wind parameters at the bow shock are not what drives
the geospace system, it is modified by the shock and the magnetosheath before it interacts with the
magnetosphere (Walsh et al., 2019).
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In this manuscript, we refer to these uncertainties as
measurement uncertainties. They arise from a problem of
definition (Taylor, 1982), as the solar wind parameters that
affect the magnetosphere are not clearly nor easily defined.
We must stress that this type of error is distinct from
instrument error. In fact, the solar wind measurements made
in the vicinity of the spacecraft ACE or WIND could be exact.
Even so, they are not an accurate estimate of the solar wind
parameters impacting the magnetosphere at a given time, nor are
they a perfect estimate of the solar wind measured by each other
time-shifted to the bow shock. Such uncertainties pose challenges
in interpreting the result of any study that explores how the solar
wind affects the Earth’s response.

For instance, at times, in event-based studies, the estimated
solar wind driver from L1 measurements may not be driving the
magnetosphere-ionosphere response being investigated.
However, one may believe that multi-event and large-scale
statistical studies can avoid this difficulty posed by random
errors and provide us with the average response of the planet
to solar wind driving. The reasoning goes that “underestimates
will cancel overestimates” for random errors when estimating
averages. Such studies belong to the class of regression analysis,
where average associations and relationships between solar wind
parameters and geomagnetic parameters are inferred from
observations. In fact, many modern machine learning studies
are non-parametric non-linear regression analysis carried out for
multiple variables using large data sets (Louppe, 2014;
Camporeale, 2019). The core idea of these techniques is to
extract the conditional probability distribution of the response
given values of the driver (or usually the moments of the
conditional distribution). However, in this article, we note that
underestimates will not cancel overestimates when solar wind
parameters with random errors are used as input or independent
variables in regression analysis. When we don’t account for these
random uncertainties, there will be a bias in the inferred
relationship between driver and response, especially for rare or
extreme values. We refer to this bias as regression bias in this
manuscript. It is associated with the statistical phenomenon of
regression dilution bias, regression attenuation, and the
regression towards the mean (e.g., Fuller, 1987; Frost and
Thompson, 2000; Barnett et al., 2005; Carroll et al., 2006). We
must note here that there are also other sources of regression bias,
in particular, data gaps as shown by Lockwood et al. (2019), which
are usually ignored but can have a considerable effect.

Borovsky (2022) discusses regression bias in the context of
functional forms of solar wind driver functions. There are several
different formulations of solar wind driver functions in literature,
each attempting to describe solar wind coupling with the Earth’s
magnetosphere accurately (Lockwood and McWilliams, 2021).
However, Borovsky (2022) notes that when formulating the
functional form of drivers, we must take into account the
uncertainty in measurements and, in particular, the bias that
they create in linear least-square fits on solar wind and
magnetospheric data. If we do not, we risk misinterpreting the
bias caused by uncertainties as a physical effect.

In this report, we show direct evidence for such regression
biases by comparing measurements of the solar wind propagated

to the bow shock made by two spacecraft via a simple non-linear
regression analysis (i.e., calculating the conditional expectation of
one spacecraft measurement given the other). If the solar wind
monitors all measured the same value, the average measurement
of one spacecraft given the measurement of the other (regression
curve) would be a straight line with a 45° slope. However, since
their measurements differ, albeit randomly, we observe a bias in
the slope of the regression curve such that it bends towards the
mean of the independent variable. The bias can be severe at
extreme values.

Before presenting the evidence for this bias from solar wind
measurements in Section 3, we first demonstrate the effect of
uncertainty in creating regression bias in Section 2. Readers who
are familiar with the regression to the mean effect can skip to
Section 3. In Section 4, we discuss the implications of these
results and conclude with a summary in Section 5.

2 REGRESSION TO THE MEAN

Like Borovsky (2022), we first construct a mathematical thought
experiment where we suppose we have a measurement described
by a random variable X, which is related to another measurement
described byW. For simplicity, let us assume that when devoid of
any measurement uncertainty, these two measurements are equal
to each other W = X, i.e., W and X are entirely correlated.

Initially, we assume the random variable X is described by a
normal probability distribution function (with mean 0 and
standard deviation 3). As expected, Figure 1A shows that a
scatter plot of W vs. X lies along a straight line. This line is
referred to as the line of equality through the manuscript.

However, when the relationship between the two variables is
unknown, it is common to rely on regression analysis to infer
their relationship. Regression analysis is a broad category of
techniques used to find an association between two or more
variables. Linear regression is the most familiar type of regression
analysis, especially the method of ordinary linear least-squares
that minimizes the sum of squared differences between the data
points and a unique line on the plot. Suppose the relationship
between W and X is linear. In that case, the best predictor of W
given X is a line βX + c where the slope β and the intercept c are
chosen to minimize the mean squared error between the vertical
distance of the data and line from the x-axis. If we do not assume
the relationship between W and X to be linear, then the function
that minimizes the mean squared error between the vertical
distance of itself and the data is Ŵ � E(W|X) (Carroll et al.,
2006). When W and X are jointly normally distributed, E(W|X)
becomes linear in X and coincides with the ordinary linear-least
squares estimate. Hence, this manuscript uses the more general
non-linear regression technique of estimating the conditional
expectation to uncover the functional relationship between W
and X.

An approximate and common method of calculating the
conditional expectation E(W|X) is to bin the data along the
“independent” variable X and average the values of the
“dependent” variable W within each bin. In this article, we use
this method to estimate the conditional expectation, which we
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also refer to as the regression function or regression curve. This
method of plotting the conditional expectation is used regularly
in space physics. It is, in some instances, quite similar to the
running average used by Borovsky (2021b), taken along the
vertical axis for data sorted according to the magnitude of the
parameter on the horizontal axis. Unlike the method of fitting
functions, which gives equal weight to all data points, thereby

restricting the fit to be dominated by the range of parameters with
most points, calculating the conditional expectation through
binning gives equal weight to every bin, and hence the non-
linear function derived from it applies to the full range.

True values of W and X are always unavailable since we
inevitably have some uncertainty ϵ in the measurements of
these random variables. The source of this uncertainty can be

FIGURE 1 | Regression bias in non-linear regression analysis between normally distributed random variables, with uncorrelated Gaussian noise. (A) Scatter plot of
W vs. X, where X is a normally distributed random variable and W = X. (B) Uncorrelated Gaussian noise ϵ is added toW. Magenta line shows the conditional expectation
E(W + ϵ|X). The dashed black line is the line of equality. (C) Uncorrelated Gaussian noise added only to X, with the magenta line E(W|X + ϵ) showing regression bias. (D)
Uncorrelated Gaussian noise is added to bothW and X, with regression bias in E(W + ϵ|X + ϵ) is visible in the cyan line. This overlaps with themagenta line that shows
E(W|X + ϵ) for comparison. (E) Probability distribution function X showing the normal distribution with zero mean and standard deviation 3. (F) The fractional error ϵ/X that
is varying inversely with X, as σ(ϵ) = constant.
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instrumental error, our assumptions about what X or W actually
measures, and uncertainty in the temporal association of the two
parameters.

In Figure 1B, we add uncertainty ϵ in the dependent variable
W. ϵ is also normally distributed with mean 0 and standard
deviation 2. We used the Marsaglia and Tsang (1984) method to
generate the random numbers. The data points now have a
vertical spread about the line of equality as expected. And the
non-linear regression function E(W|X) is also along the line of
equality, giving us back the true relationship betweenW and X as
the noise in W is averaged away.

In Figure 1C, we keep W free of uncertainty while including
the same uncertainty ϵ in the independent variable X. Now, the
regression function E(W|X) has a slope biased to a lower value.
The conditional expectation coincides with the linear least-
squares fit, and it happens because W and X + ϵ are jointly
normally distributed. This bias is referred to as regression dilution
bias for linear regression. This article uses the term regression bias
and it includes biases caused even in non-linear regression, unlike
“regression dilution bias” which is commonly used to describe
biases observed for linear least-squares regression. The regression
bias is a result of the “regression to the mean” effect. We explain
these two important phrases found in statistics literature as
follows.

1. Regression Dilution Bias: If the relationship between W and
X is linear W = βX + c, and we only have access to the error-
prone measurement Xp = X + ϵ, thenW = β(Xp − ϵ) + c. Hence,
the minimum mean squared estimate of the slope for the best
linear prediction is

β̂ � cov Xp,W( )
var Xp( )

It follows that,

β̂ � cov X + ϵ, βX + c( )
var X + ϵ( ) � β

σ2X
σ2
X + σ2ϵ

� βλ

. Where λ is known as the attenuation factor, and 0 < λ < 1
because σ2X and σ2ϵ are non-negative. This quantifies how the
slope of the linear least-squares regression function reduces when
there is uncertainty in the independent variable. Note that here it
is assumed that X is uncorrelated with ϵ and c. If we can calculate
λ then the regression bias can be corrected by dividing the biased
slope with it. However, for non-linear regression the same
technique will not work. Several commonly used methods to
correct regression bias are discussed in Carroll et al. (2006).

2. Regression to the mean: A more fundamental explanation of
the regression bias is the fact that measured extreme values are
more likely to be values that are closer to the mean but are
mistaken to be extreme due to uncertainty or measurement
error (Barnett et al., 2005). In Figure 2, we show the
probability density function of X—the true value we are
attempting to measure. When a specific value of X occurs,
our attempt to measure it with some uncertainty ϵ is shown
with the conditional probability density function pdf(X*|X = 2)

and pdf(X*|X = 4). These conditional probability density
functions (in blue and red) show the probability that the
true values X = 2 or X = 4, when measured, will appear as any
other value X* on the real-line due to measurement error ϵ.
When we measure X* = 3, the true value could be either X = 3
or any other value on the real line. However, the points where
the conditional probability density functions intersect the
vertical line X* = 3 show that it is more probable for X* =
3 to be actually X = 2 than X = 3 or X = 4. In fact, it is less
probable that the true value of the measurement X* = 3 is X = 4
than X = 3 or X = 2. This is because it is much more likely for
the mean value of a stochastic process to occur than an
extreme value. The exact manner in which these biases
happen depends on the nature of the measurement errors,
the regression model, and the nature of the random variable or
stochastic process.

The regression bias, quantified by the attenuation factor in the
linear least-squares regression, is unaffected by uncertainty in the
dependent variableW. This was seen in Figure 1B as E(W + ϵ|X)
is unbiased. As a result, in Figure 1D, when we add uncertainty in
both the dependent variable W and the independent variable X,
the bias in the regression function E(W + ϵ|X + ϵ) remains the
same as that observed in Figure 1C. An interesting consequence
of this is that the reverse regression function E(X + ϵ|W + ϵ) will
also have the same bias as E(W + ϵ|X + ϵ). If we interpret these
regression functions without accounting for the regression bias,
they appear to result in contradictory inferences. E(W + ϵ|X + ϵ)
will imply that, on average, for extreme values, W* is an
underestimate of X*, while E(X + ϵ|W + ϵ) implies the
opposite, that on average X* is an underestimate of W*. This
contradiction is an indicator of the existence of regression bias
and that the nature of uncertainty in both variables is similar.

Figure 1E shows that the probability distribution function ofX
is a Gaussian, and Figure 1F shows how the percentage of
uncorrelated Gaussian noise ϵ with respect to X varies with X.
In this case, the noise fraction varies inversely with X (σ(ϵ|X = x)/
X∝ 1/X), since σ(ϵ|X = x) = constant. This depiction of the nature
of measurement uncertainty will be useful as we demonstrate how
the regression bias is affected by the uncertainty that is correlated
with X below.

When X is not normally distributed but instead is log-
normally distributed (Figures 3A,B,E), then the non-linear
regression bias is no longer linear (Figures 3C,D). The log-
normally distributed random number is generated by the
transformation of a normally distributed random number
generated by the Marsaglia and Tsang (1984) method. Here
we have ensured that the error ϵ is still a zero-mean Gaussian
with a standard deviation of 2, and it is uncorrelated with X orW
(Figure 3F). The non-linearity is substantial, close to the mean
value shown by the green dot, and the slope bends away from the
line of equality towards the mean.

When X is log-normally distributed (Figures 4A,B,E), and
the error ϵ is correlated with X (Figure 4F) then the non-linear
regression bias is even more non-linear, especially at extreme
values (Figures 4C,D). The layout of Figure 4 is the same as
Figure 1. The uncertainty ϵ is made to be proportional to |X|2;
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hence the noise fraction shown in Figure 4F increases linearly
with X. This leads to a substantial non-linear bias in the non-
linear regression function at values far away from the mean. The
slope is biased away from the line of equality towards the mean
value shown by the green dot. If we did not realize this as
regression bias, then it is possible to misinterpret that E(W|X*)
saturates with increasing X* and misattribute it to a physical
cause or systematic instrument bias.

By definition, the log-normal distribution X can be transformed
to another random variable Z = log Xwhich is normally distributed.
Hence, if we know that the independent and dependent variables are
jointly log-normally distributed, we can, in principle, take its
logarithm and carry out a linear least-squares regression. For
example one can estimate the coefficients of the linear regression
function log W = β log X + c and then transform them back to the
W vs. X coordinate system. The procedure was carried out by King
and Papitashvili (2005) for solar wind density and temperature as
they are log-normally distributed to estimate systematic biases
between ACE and WIND measurements. However, as shown in
Figures 5A–D, this log-linear least-squares fit (blue-line) also tracks
the non-linear regression function (magenta line) reasonably well for
all combination of uncertainties in W and X. This implies that the
log-linear least-squares fit is susceptible to regression bias created by
the log-normality of the independent variable and uncertainty in its
measurements. Hence using the log-linear least-squares approach
may result in misattributing regression bias to systematic biases
between the space monitors.

A relatively popular method considered to be capable of
avoiding regression bias is the orthogonal regression function.
The orange line in Figures 5A–D is the orthogonal linear

regression fit for the corresponding data set. And it retrieves
the true relationship between X and W in the case where the
same error ϵ is present in both variables. This is because
orthogonal linear regression minimizes the sum of the
squared orthogonal distances between all (W, X) points
and a unique line, and it has an unbiased slope only when
the uncertainty in both variables is equal. A more general
orthogonal regression method (total least squares regression)
includes the information on the ratio of uncertainties in both
W and X and can correct the regression bias much more
effectively. In general, to correct the regression bias, we need
to possess a quantitative knowledge of the uncertainty in X
and W—not just the probability distribution of ϵ but also the
conditional probability distribution pdf(ϵ|X) (e.g., Morley
et al., 2018).

Uncertainties are commonly characterized by referring to the
standard deviation or variance of Xp − 〈Xp〉 = ϵ. However, the
severity of the regression bias cannot be judged solely on a
parameter like the standard deviation or variance of the noise
ϵ. It is affected by the nature of the correlation of ϵ with X and
even other variables that may, in turn, affect X. Figure 6 provides
a demonstration of this argument. The top and bottom panels
show regression bias in the non-linear regression of W vs. X + ϵ,
whereW and X have the same log-normal distributions. The only
difference between the top and bottom panels is the uncertainty
in the independent variable X, which is a function of ϵ1(X) ∝ X2

for the top while ϵ2(X) = constant for the bottom panel. Therefore
the noise fraction ϵ1/X ∝ X and ϵ2/X ∝ 1/X as seen in Figures
6B,E respectively. The rightmost column (Figures 6C,F) shows
plots of the marginal distribution of the noise ϵ1 and ϵ2 i.e., pdf(ϵ1)

FIGURE 2 | Demonstrating regression to the mean of the true value of an erroneous measurement. The black line is the underlying probability distribution of a
random variable X. An erroneous measurement of X is X* = X + ϵ, where ϵ is uncorrelated Gaussian noise. One such measurement, X* = 3, is represented using the black
dashed line. The likelihood that the true value X is also 3 is represented by the black filled circle on pdf(X). The blue dashed line is the conditional probability density
function pdf(X*|X = 2), and it intersects line X* = 3 at the blue-filled circle, which represents the likelihood that the true value X is 2. Similarly, the red dashed line is the
pdfX*|X � 4, which intersects line X* = 3 at the red-filled circle, which represents the likelihood that the true value X is 4 given the measurement X* = 3. From the relative
positions of the circles, we can conclude that it is more likely for the true value to be closer to the mean value of X than X = 3 or 4 or higher.
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and pdf(ϵ2). Here the common metric used to quantify unbiased
noise, the standard deviation, has the value of 0.5 for ϵ1 and 1 for
ϵ2. Since σ(ϵ1) < σ(ϵ2) one may assume that there is less noise in X
for the top panel than the bottom, and hence less regression bias.
This is true close to the mean; however, further away from the
mean, the regression bias is more severe for panel 1 (Figure 6A)
than panel 2 (Figure 6D) as ϵ1 is correlated with X while ϵ2 is not.

3 COMPARING SOLAR WIND MONITORS

The previous section demonstrates that uncertainty in the
independent variable can lead to a bias in the regression
function. Such biases are unavoidable whether we use non-linear
regression, linear least-squares regression, or orthogonal linear
regression. However, we can correct the bias with a quantitative

FIGURE 3 | Similar layout as Figure 1, but with log-normal distribution and uncorrelated noise. (A) Scatter plot of W vs. X, where X is a log-normally distributed
random variable andW = X. (B)Uncorrelated Gaussian noise ϵ is added toW. Magenta line shows the conditional expectation E(W + ϵ|X). The dashed black line is the line
of equality. (C)Uncorrelated Gaussian noise added only to X, with the magenta line E(W|X + ϵ) showing regression bias. (D)Uncorrelated Gaussian noise is added to both
W and X, with regression bias in E(W + ϵ|X + ϵ) is visible in the cyan line. This overlaps with the magenta line that shows E(W|X + ϵ) for comparison. (E) Probability
distribution function X showing the log-normal distribution. (F) The fractional error σ(ϵ)/X that is varying inversely with X, as σ(ϵ) = constant.
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knowledge of the uncertainties, its direct or indirect correlation with
the independent variable, and the probability distribution underlying
the independent variable. In this section, we show regression biases
in comparisons between solar wind monitors and suggest that at
least part of these results are from random uncertainty in solar wind
measurements rather than systematic instrument biases.

The solar wind monitors we use are the ACE and WIND
satellites. They mostly measure solar wind plasma and
magnetic fields upstream of the Earth’s magnetospheric bow
shock. We use 1-min spacecraft-specific data compiled by the
OMNI database, which are time-shifted using a propagation
model to the bow shock. Following is a look at non-linear

FIGURE 4 | Similar layout as Figure 1, but with log-normal distribution and correlated noise such that σ(ϵ)∝ X2. (A) Scatter plot ofW vs. X, where X is a log-normally
distributed random variable andW = X. (B)Correlated Gaussian noise ϵ is added toW. Magenta line shows the conditional expectation E(W + ϵ|X). The dashed black line
is the line of equality. (C)Correlated Gaussian noise added only to X, with the magenta line E(W|X + ϵ) showing regression bias. (D)Correlated Gaussian noise is added to
both W and X, with regression bias in E(W + ϵ|X + ϵ) is visible in the cyan line. This overlaps with the magenta line that shows E(W|X + ϵ) for comparison. (E)
Probability distribution function X showing the log-normal distribution. (F) The fractional error is proportional to X.
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regression between ACE andWINDmeasurements of multiple
solar wind parameters. They should lie along the line of
equality if both spacecraft measure the same solar wind
plasma and magnetic field on average without uncertainty.
However, that is not the case. Substantial regression biases
towards the mean of the parameter can be observed for
extreme values, especially when the monitors are far apart.

3.1 Solar Wind Velocity Vy and Vz
Figures 7A,B show scatter plots of time-shifted solar wind velocity
components along the Z-GSE direction measured simultaneously by
ACE andWIND spacecraft over 20 years. The black dashed line is the
line of equality with a 45° slope, along which we would expect an
unbiasedACE andWINDmeasurement to lie. However, a non-linear
regression of ACE Vz GSE measurements given WIND Vz GSE and
vice versa, shown by themagenta line, has a slope reduced towards the
mean. The regression curve in Figures 7A, B seem to suggest a
contradiction. The former suggests that ACE underestimates Vz GSE
on average compared to WIND for extreme values. However, the

latter suggests that WIND underestimates Vz GSE on average
compared to ACE. We can explain the contradiction if we
suppose that the biases of these regression curves come from
similar uncertainty in both ACE and WIND measurements, as
discussed concerning Figure 1D in the previous section. And
since systematic measurement bias cannot lead to contradictory
regression curves, the regression bias in Figure 7 cannot possibly
arise from systematic biases in the ACE and WIND measurements.
However, we cannot rule out the existence of systematicmeasurement
bias without a more careful analysis of quantifying random
uncertainties. Figures 7C,D shows similar regression bias in ACE
and WIND measurements of Vy GSE. At large values of ACE Vy ~
200 km/s, on averageWINDmeasures a 〈VWIND

y |VACE
y 〉 ~ 150 km/s

which is an underestimate of around ~ 25%.

3.2 Solar Wind IMF Bz
The primary cause of this non-trivial regression bias is the
uncertainty stemming from the spatial and temporal
separation of the measurements. As a result, both spacecraft

FIGURE 5 |Comparing the effect of regression to the mean on non-linear regression, linear least-squares regression, and orthogonal regression function. Similar to
Figure 4, X is log-normally distributed withW = X, and ϵ is Gaussian uncertainty that is correlated with X such that σ(ϵ)∝ X2. (A) Shows different regression fits on data
with uncertainty added only to X. (B) Shows the same with added uncertainty and the same characteristics on both X andW. (C) Shows the same but with slightly less
uncertainty added toW compared to X. (D) Shows the same plot with uncorrelated Gaussian uncertainty ϵ2 added toW, while correlated Gaussian uncertainty ϵ as
in B is added to X.
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do not see the same solar wind magnetic field or plasma most of
the time. A useful measure of whether a downstream spacecraft
measures the same plasma element previously seen by an
upstream spacecraft is the impact parameter (IP). For WIND
and ACE, the impact parameter (IP) is the “minimum distance
experienced between WIND moving at 30 km/s in Y and plasma
element moving at 390 km/s in X” (King and Papitashvili, 2005;
Papitashvili, 2005).

Figures 8A,C plots ACE vs. WIND measurements of Bz GSM
and vice-versa for all data points in the year 2002. In 2002, WIND
was not yet parked onto its L1 orbit, and as a result, the IP
between ACE and WIND is significant for most measurements.
Figures 8B,D plot the regression between ACE and WIND Bz
and vice versa for IP less than 60 RE, implying that they both likely
see similar solar wind plasma. An IP of less than 60RE is
considered to be the minimum separation for which WIND
and ACE will see similar plasma and magnetic fields (King
and Papitashvili, 2005). In this case, the regression bias is
substantially reduced, as the regression curves almost align
with the line of equality. This indicates that regression biases
can exacerbate while using ACE and WIND data when they are
far away from each other (IP> 60RE). Between 1998 and 2021, the
percentage of available time-shifted 1-minute ACE and WIND
measurements where IP is less than 60RE is about ~30%. Hence
for ~70% of the time, the two spacecraft don’t measure the same
plasma or field.

3.3 Solar Wind Proton Number Density N
Figure 9 shows the solar wind proton number density
comparison between ACE and WIND measured during two
time periods: column 1–1998 to 2001 pre solar maximum and
column 2–2002 to 2005 post solar maximum. The dotted black
line is the line of equality, while the magenta line is the non-linear
regression function, and the blue line is the same but only
includes measurements with ACE-WIND IP less than 60 RE.
The first panel shows the regression function of ACE given
WIND measurements, while the second panel plots the
reverse: WIND given ACE measurements. We see that there is
a regression bias with a decreasing slope with increasing density
for Figures 9A–D. The bias is more severe further away from
the mean of the density measurements. From the density of the
scatter plots, we can see that there are fewer proton number
density measurements overall in the years 2002–2005 as
compared to 1998 to 2001. Indicating that the underlying
probability distribution of the proton number density can
indeed change with the solar cycle, and regression bias can be
time-dependent. Reducing the IP does not seem to change the
regression function much, except for Figure 9D, where it has a
substantial effect onmaking the regression function align with the
line of equality. This could suggest that even the random
uncertainty in measuring the solar wind parameters may
change depending on the periods of the measurements, as the
spacecraft’s relative location also vary with time.

FIGURE 6 | The severity of the regression bias at extremes is not determined only by the standard deviation of the uncertainty ϵ. It is also necessary to know how the
noise is correlated with the independent variable. (A)Magenta line is the E(W|X + ϵ1) where ϵ1 is correlated Gaussian noise. (B) Fractional error or noise ϵ1/X increasing
linearly with X, since σ(ϵ1)∝ X2. (C) Themarginal probability distribution of ϵ1, with the standard deviation of ϵ1 = 0.5. (D) Same as (A) but with uncorrelated Gaussian noise
ϵ2 added to X. (E) Fractional error or noise ϵ2/X decreasing as 1/X, since σ(ϵ2) = constant. (F) Themarginal probability distribution of ϵ2, with the standard deviation of
ϵ2 = 1.
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For the regression functions shown here, the non-linear
decrease in the slope with increasing density is due to the log-
normal distribution of density, similar to the numerical
experiment described in Figure 4. According to King and
Papitashvili (2005) ACE proton number densities are
systematically larger than WIND number densities by up to
18% for higher solar wind speeds. They carried out a log-
linear least squares regression, only for WIND vs. ACE and
not the reverse. The systematic bias they estimate for higher
solar wind speeds suggests ACE overestimates the densities.
Curiously this bias is in the same direction we’d expect if the
systematic bias was regression bias instead. However, our analysis
in this article does not quantitatively delineate the two biases, as it
requires careful correction of the regression bias.

3.4 Solar Wind IMF Clock Angle θcl
The IMF clock angle is an essential solar wind parameter
determining the extent of solar wind energy coupling to the
magnetosphere. The rate of the day-side reconnection, in part, is
influenced by the relative orientation of the solar wind magnetic

field direction (modified by the magnetosheath). For example, in
simple magnetic reconnection models, two oppositely directed
magnetic fields brought together by moving plasma drive
reconnection. Hence, a southward IMF can generally trigger
day-side reconnection at the sub-solar point, while a
northward IMF does not. As a result, many proposed solar
wind driver functions, which estimate the energy coupling
between the solar wind and the magnetosphere, are some
functions of the IMF clock angle (Newell et al., 2007;
Borovsky, 2008; Lockwood and McWilliams, 2021).

The IMF clock angle is defined as the angle between the IMF
vector projected on the GSM Y-Z plane and the geomagnetic
north: θcl = atan2(BY, BZ) where −180° < θcl < 180°. In this
manuscript, we have constructed θcl to range from 0° to 360° with
0° pointing towards BZ north. In Figure 10A, we compare 1 min-
resolution measurement of the ratio BY/BZ of ACE vs. WIND and
plot the conditional expectation of the ACE BY/BZ given WIND
BY/BZ (magenta line). The blue line is the same non-linear
regression function but with measurements where ACE and
WIND have an impact parameter less than 60 RE. Figure 10C

FIGURE 7 | Regression bias in solar wind velocity Vz and Vy in GSE coordinates. (A) Shows a scatter plot of 1-min resolution propagation delay-corrected ACE Vz
vs. WIND Vz. The dashed black line is the line of equality, and the magenta line is the conditional expectation E(VACE

z |VWIND
z ) or the regression function. (B) Shows the

same but reverse. The scatter plot is of WIND Vz vs. ACE Vz. However, the magenta line is the reverse regression function E(VWIND
z |VACE

z ). (C) Is the same as (A) but for
the y-component of the solar wind velocity. (D) Is the same as (B) but for the y-component of velocity as well.
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plots the reverse regression of WIND vs. ACE. Both plots show
regression bias towards the mean for extreme values (for |By/Bz|~
> 2). Large values of the BY/BZ ratio are mostly a result of small BZ
values. The latter corresponds to ~ 90° or ~ 270° clock angle. The
uncertainty increases with the magnitude of the ratio, and as a
result, a clear non-linear bias (almost a “saturation”) in the
regression curve is visible. This example demonstrates that
irrespective of the physical significance of the solar wind
parameters, some functions of the parameters can have
significantly more uncertainty, especially when ratios of
measurements are involved.

Figures 10B,D show the ACE vs. WIND regression curve of
the IMF clock angle and its reverse, respectively. Though the
measurements span 0°–360°, the plot only shows the clock angles
0°–90° to highlight the bias in the regression curve, which has a
slope that increases from the line of equality and then decreases.
The regression bias reduces when the impact parameter is limited
to less than 60 RE in both plots. The conditional expectation is

calculated using directional statistics, as an arithmetic mean is
inappropriate for angles. Here the mean is calculated by first
converting the IMF clock angle into a complex number through
Euler’s formula to consider how angles wrap around 360°. Then
the arithmetic mean is calculated of the resulting complex
numbers. This value is then converted back to an angle to
obtain the conditional expectation.

To explore the nature of the bias in detail, Figure 11 plots the
regression bias in polar coordinates. Figure 11A shows the
probability density function of the IMF clock angle as measured
by ACE from 1998 to 2022 along the radial axis. The polar angle
coordinates represent θACEcl for all panels of 11. The pdf is bi-modal
and peaks around ~ 90° and ~ 270° and has two local minima
around ~ 00 and ~ 180°. Figure 11B plots the regression bias - the
deviation of the regression function E(θWIND

cl |θACEcl ) from the line of
equality shown in Figure 10D (magenta line). The blue line is the
same calculation but limited to measurements where theWIND and
ACE spacecraft are within an IP less than 60 RE. When the distances

FIGURE 8 | Regression bias in solar wind magnetic field Z-GSM component. The bias reduces when filtering the data used by reducing the impact parameter (IP)
between ACE and WIND. (A) Shows a scatter plot of simultaneous 1-min resolution propagation delay-corrected ACE Bz vs. WIND Bz. The measurements used were
from the year 2002. The dashed black line is the line of equality, and themagenta line is the conditional expectation E(BACE

z |BWIND
z ) or the regression function showing the

regression bias. (B) The same plot as (A) showing considerably less regression bias by restricting themeasurements to time instances when IP <60RE (C)Same as
(A) but reversing the regression function to plot E(BWIND

z |BACE
z ). (D) Same plot as (C) showing less regression bias by restricting the measurements to time instances

when IP between ACE and WIND is less than 60RE.
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between the monitors are lower, the regression bias is lower for all
ACE IMF clock angles.

The regression bias is at a highest of ~ + 7° around θACEcl ~ 30°,
which means the regression bias pushes the average value of
E(θWIND

cl |θACEcl ) towards the more likely ~ 90° clock angle. The
bias, in fact, disappears close to the pdf maxima at ~ 90°. The green
line marks the angles of zero bias. The bias then goes negative for
clock angles greater than ~ 90° and less than ~ 180°. The negative
bias drags the regression curve values E(θWIND

cl |θACEcl ) back towards
the pdf maxima at ~ 90°. The behavior of the bias is similar to the
solar wind parameters we considered previously. Except here, it is the
“regression towards the local maxima in the probability distribution”
instead of “regression to the mean.” Previous probability
distributions discussed in this manuscript only had a single local
maximum (indicating the most probable value), which was also near
the mean.

Close to the local pdf minimum ~ 180° corresponding to
southward IMF, the regression bias goes to zero again and
then transitions to a more positive bias pushing the regression
curve towards the second pdf maximum at ~ 270°. The same

pattern repeats as the bias goes to zero and then negative,
dragging the curve back to the second pdf maximum at ~ 270°
and then to zero once more at the local pdf minimum near
θACEcl ~ 0°. The reason for the positive bias is that more likely
and higher IMF clock angles push the curve forward. In
comparison, the negative bias happens as more likely, but
lower IMF clock angles drag the curve backward. Zero bias
occurs in the transitions when the regression curve is at a
value close to the local pdf maximum. It also happens close to
a local pdf minimum, where the more likely higher IMF values
on one of its sides and more likely lower IMF values on the
opposite side cancel each other’s effects on the
regression curve.

Figure 11D plots the bias in the IMF clock angle regression
curve of ACE vs. WIND (magenta line) and its reverse (blue line).
The same cycle of positive and negative bias as Figure 11B is seen
for both the regression curves. However the positive bias is lesser
and negative bias is greater for E(θACEcl |θWIND

cl ) as compared to
E(θWIND

cl |θACEcl ). One important aspect to note regarding IMF
clock angle comparisons between ACE and WIND is the

FIGURE 9 | Regression bias in solar wind proton density. It reduces when filtering the data to IP<60RE and is different for different solar cycle periods. (A) Shows
the regression function E(NACE|NWIND) in magenta, and the same restricted to only data with IP < 60RE in blue. The data spans 1998 to 2001. (B) Shows the same plots
but for the years 2002–2005. (C) Shows the reverse regression of (A): E(NWIND|NACE), and reveals similar bias towards the mean value. (D) Shows the reverse regression
of (B). However, when we filter the data to only IP< 60RE , it results in a regression function closer to the line of equality.
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variability in the clock angle observed by one satellite with respect
to the other.

Figure 11C shows the standard deviation of WIND
measurements of the IMF clock angle given ACE
measurements of the same (shown in the magenta curve). The
maximum uncertainty in the IMF clock angle measurements
occurs when ACE measures northward and southward IMF Bz
(θACEcl ~ 0° and θACEcl ~ 180°) respectively. The magnitude of this
uncertainty is high at about ~ 45°, and still high at its minimum,
as ~ 35°. The blue line is the same curve but restricted to only
measurements when WIND and ACE have an impact parameter
less than 60°. This reduces the uncertainty, consistent with the
reduction in the regression bias as seen in Figures 11B,D.
However, the uncertainty in the IMF clock angle observed by
WIND for a given measurement by ACE still does not go below
~ 30°. Functions of the clock angle will result in different joint
probability distribution functions, and as a result will exhibit a

different regression bias. An example for the function sin2(θcl/2)
is shown in Supplementary Figure S1.

3.5 Solar Wind Driver Function Esw
Esw � VswBGSM

South is the interplanetary electric field and a simple
solar wind driver or coupling function used frequently in
literature (McPherron et al., 2013; Lockwood and McWilliams,
2021). Unlike McPherron et al. (2013), we do not use a half-wave
rectified function where Bs(Bz > = 0) = 0 and Bs(Bz < 0) = −Bz,
instead we define BGMS

South � −BGMS
Z . Esw is, therefore, the product of

solar wind velocity and negative IMF Bz in GSM coordinates.
Figure 12 compares ACE Esw estimates with WIND Esw and vice
versa during 2002. Although the regression is carried out through
the entire range of Esw, the figure shows only Esw > 0 as it is the
dawn-dusk component of the solar wind electric field. In 2002,
the WIND spacecraft was far from L1 and had not yet arrived at
the L1 orbit. The non-linear regression curves in both show a bias

FIGURE 10 | Regression bias in Solar Wind IMF Clock Angle. (A) Regression function E(ACE By

Bz
|WIND By

Bz
) is shown with the magenta line. Blue line plots the same

with only measurements where ACE andWIND have an impact parameter less than 60RE. (B) Shows the regression function E(θACEcl |θWIND
cl ) using the magenta line. Blue

line plots the same regression function for measurements with an IP less than 60RE. (C) Shows the reverse regression of (A). (D) Shows the reverse regression of (B).

Frontiers in Astronomy and Space Sciences | www.frontiersin.org July 2022 | Volume 9 | Article 92497613

Sivadas and Sibeck Regression Bias

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


with a lower slope from 0 to 15 mV/m. At higher values of the
driver, the number of data points is fewer, and hence there is
substantial uncertainty in the regression curves. However, we
observe a non-linear decrease in the average WIND Esw
measurements in Figure 12B from 15 mV/m and higher
values of the ACE Esw measurements (magenta line). The
regression function has considerably less bias when restricted
to measurements where the impact parameter is less than 60RE,
suggesting that the bias is entirely a result of the spatial separation
between the monitors.

For example, consider the data points highlighted using larger
dots in Figure 12B. Here ACE measures Esw values between 15
and 20mV/m andWINDmeasures some of it to be much lower -
between ~ 0 to ~ 5mV/m. Most of these data points occur on a
particular day, 23 May 2002, between 12:14 UT and 16:41 UT, as

shocks frommultiple CoronalMass Ejections (CMEs) left the Sun
on 22 May 2002. However, the impact parameter betweenWIND
and ACE was ~265 RE, with WIND being far away from ACE
(~ 280RE) towards the dusk-side of the YZ plane, clearly
measuring different solar wind plasma and field. And since the
probability of occurrence of low Esw is much higher than the rarer
CME-induced high value of Esw, WIND is more likely to see a
smaller Esw (due to their high probability of occurrence) than
ACE which is measuring a high value (with a low probability of
occurrence). The bias caused by this event is removed easily by
filtering for measurements with impact parameters less than
60 RE. Similar regression bias is observed with other solar
wind driver functions as well. An example of the bias in the
merging electric field Em = VswBT sin2θcl/2 is shown in the
Supplementary Figure S2. Here Vsw is the solar wind speed

FIGURE 11 | Polar plots of regression bias in solar wind IMF clock angle. (A) Circular probability density function of IMF clock angle, defined as
θcl � tan−1(BGSM

y ,BGSM
z ). The angle coordinate is the ACE clock angle, and radial direction gives the pdf value. 0° is North and 180° is South. The green lines represent

angles where the regression function E(θWIND
cl |θACEcl ) has no bias. The lines run close to the local maxima and minima of the circular pdf. (B) The magenta line shows the

regression bias b̂ � E(θWIND
cl |θACEcl ) − θACEcl varying with the ACE clock angle. The blue line shows the same but only using measurements where the impact

parameter is less than 60RE, implying ACE and WIND are likely measuring similar plasma. (C) The magenta line shows the standard deviation of WIND clock angle
measurements given a measured ACE clock angle: σ(θWIND

cl |θACEcl ). The blue line shows the same but only using measurements with impact parameter less than 60RE.
(D) Compares the regression bias b̂ � E(θWIND

cl |θACEcl ) − θACEcl with the bias in the reverse regression b̂ � E(θACEcl |θWIND
cl ) − θWIND

cl .
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in km/s, and BT �
�������
B2
y + B2

z

√
is the transverse magnitude of the

interplanetary magnetic field in nT and GSM coordinates.

4 DISCUSSION

Results in section 3 show that regression bias exists for important
solar wind parameters like IMF Bz, clock angle θcl and solar wind
proton number density N. Many other parameters also exhibit
such regression biases, especially for extreme values of their
measurements. Hence if we do not carefully account for
random uncertainties in the solar wind parameters, any effort
to identify instrument biases by comparing data sets may
misinterpret regression bias as systematic instrument bias.

Uncertainties in complex parameters such as solar wind
driver functions, which are a combination of solar wind
parameters, may be correlated with the parameter’s value.
Consider the example of the merging electric field: Em = VBT
sin2θcl/2. An uncertainty Δθ in θcl, will result in an erroneous
merging electric field Ep

m � VBT sin2(θcl + Δθ)/2. For small θcl
and Δθ, Ep

m ~ VBT(θcl + Δθ)2/4 and Em � VBTθ
2
cl/4. This

implies

Ep
m − Em ~

VBTθ
2
cl

4
Δθ
θcl

2 + Δθ
θcl

[ ] � Em · f Δθ
θcl

( )
Therefore, the uncertainty in the merging electric field: Ep

m −
Em is correlated with Em for a given fractional uncertainty of a
small IMF clock angle. Section 2 showed that uncertainties
correlated with the parameters’ magnitude could lead to non-
linear regression biases in the regression functions. Such
uncertainties that vary with the parameter’s magnitude are
called heteroscedastic/heteroskedastic errors. In regression
analysis, especially linear regression, this manifests as
variations in the residuals of the regression function or fit.
Hence, it is helpful to enlist simple statistical tests to evaluate
whether a heteroscedastic error exists in the measurements. A
straightforward demonstration of testing for heteroscedasticity
in linear regression by plotting residual errors with increasing
fitted parameter value is shown in Section 6 of (Lockwood et al.,
2006).

Many solar wind driver functions are empirically
constructed formulas and are not necessarily derived from
physical principles. Hence true solar wind driver functions
may be biased or different in a random sense or both. It is easy
to imagine that the estimate of the solar wind drivers using
upstream solar wind monitors differs randomly from the
platonic “true” driver function that affects the Earth’s
response. Suppose the driver function is in the form of the
merging electric field. In that case, random uncertainty in one
of the parameters can lead to correlated uncertainties in the
merging electric field. However, if, instead, they are in the
form of a sum of parameters like Vsw + 56Bz (Borovsky, 2014),
then the uncertainties will not be correlated with the
magnitude of the driver. Hence, one may expect less
regression bias. This could be the reason why the above
unphysical solar wind driver formula has better
correlations with geomagnetic activity than all other
standard solar-wind functions (Newell et al., 2007;
Borovsky, 2008; Borovsky, 2021a). Hence, the uncertainty
in the solar wind driver functions and the regression bias it
causes may be contributing to the math-versus-physics
dilemma discussed by Borovsky (2021a). Once we account
for the uncertainties, the physics-based formula may be more
correlated than the other unphysical math-based ones.

Random uncertainties in the solar wind drivers are not
just limited to spatial and temporal uncertainty in the solar
wind measurements and instrumental errors (Lockwood,
2022). (Though these are likely the primary source of
uncertainties in ACE and WIND measurements used in
this manuscript.) Another important source of error is

FIGURE 12 | Regression bias in solar wind driver function Esw =
VswBsouth, where Bsouth � −BGSM

Z . (A) The magenta line plots the regression
function E(EACE

sw |EWIND
sw ) using measurements in 2002. The blue line is the

same but limited to measurements where the IP < 60RE between ACE
and WIND. (B) Plots the reverse regression function E(EWIND

sw |EACE
sw ) in

magenta, and the same curve with IP<60RE between the spacecrafts. Note
that the regression bias at extreme values here is a result of the fact that the IP
between WIND and ACE were as large ~ 265RE . The data points with ACE
VswBsouth between 15 and 20 mV/m are highlighted with larger dots.
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the effect of bow shock and magnetosheath on the solar
wind IMF at the day-side. For example, Coleman (2005)
shows a ~ 30° uncertainty in the IMF clock angle between
spacecraft in the magnetosheath and L1, with a substantial
increase in this uncertainty along the flanks of the
magnetosheath and with increasing dynamic pressure. As
a result, the day-side reconnection rate and its extent may
vary substantially for a given L1 monitor estimate of the
solar wind driver.

Borovsky (2022) proposes that the functional form of the
solar wind drivers ought to be constructed taking into
account the uncertainties and the regression bias it creates.
We believe this is crucial, as otherwise, regression bias in
regression analysis of the driver functions and earth’s
response may be misinterpreted as caused by physical
processes rather than uncertainty. Machine-learning-based
models that use non-parametric non-linear regression
analysis may also be susceptible to such biases. With the
recent proliferation of many such models in space physics, we
believe these biases are important to consider. A plausible
example of regression bias, either partially or wholly
misunderstood as caused by physical processes, could be
the saturation of the polar cap potential and other
geomagnetic indices (Borovsky, 2021b).

The “regression towards the mean effect” may not only be
relevant to statistical regression analysis. It affects individual
studies of extreme solar wind driving and the Earth’s response
to it. The reason for this is that the regression bias affects the
entire conditional probability distribution of the
measurements being compared. Hence, when we infer the
Earth’s response to an extreme solar wind driving, it is
likely that the actual value of the solar wind driver is lower
and closer to its mean value. Hence, we may be
underestimating the effect of the solar wind driving of
geomagnetic activity even for a single event or case study.

A more precise way to describe the “regression towards the
mean effect” is perhaps apparent in Figure 11. Here the
distribution is bi-modal and has two regions of high
probability in the parameter space (~ 90° and ~ 270°). In such
scenarios, it becomes clear that when there is a measurement
uncertainty, the parameter’s actual value is biased towards the
most likely value in the parameter space. Therefore, there can be
regions within the parameter space where the biases in opposite
directions cancel out—leading to zero bias in some areas, making
regression bias more complex than just a simple regression to
the mean.

The natural question from our analysis is what we can do to
correct or mitigate regression bias. Two primary directions
here are 1) to quantify the uncertainty and calibrate the data to
compensate for the bias, or 2) to improve the quality of the
data by reducing uncertainty. For the case of ordinary linear
least-squares regression, orthogonal regression that considers
uncertainty in both dependent and independent variables can
correct the bias. However, for non-linear regression, these
methods may be insufficient. Therefore a careful analysis of
correlated uncertainties and stochastic properties of the
measured parameters are necessary to construct error

models that estimate the regression bias. After this, one
can apply the technique of regression calibration to the
uncertain measurements and calculate the likely true values
to correct for the bias in the inferred relationship. Many more
techniques exist and are discussed extensively in Carroll et al.
(2006).

The main challenge to constructing error models to carry
out regression calibration is quantifying the uncertainties in
the measurement parameters. In most cases, the uncertainties
involved are not just instrumental errors but uncertainties
that stem from the implicit assumptions made in interpreting
measurements. For example, in the case of the solar wind
driver functions—random uncertainties stem from our
assumptions of: 1) solar wind propagation models, 2) solar
wind structure, 3) solar wind interaction with bow-shock and
magnetosheath plasma, 4) valid solar wind and
magnetosphere state parameters. More assumptions may
exist, but the first step towards quantifying random
uncertainty in solar wind parameters (including driver
functions) is to identify the assumptions and then estimate
their contribution to the uncertainty through physics or
mathematical models.

5 SUMMARY

We used simple numerical experiments to demonstrate the
statistical phenomenon of regression towards the mean,
which leads to biases in the correlation between
measurement parameters. We showed evidence for such
biases while comparing simultaneous 1-min resolved
propagation delay-corrected ACE and WIND
measurements of several solar wind parameters upstream
of the magnetosphere bow-shock. The regression biases
were significant for extreme values of the measurement
parameters. For example when WIND measures VGSE

y of
200 km/s, ACE measures only 150 km/s on average, a
~ 25% reduction. A similar reduction of ~ 20% or more is
observed in average WIND measurements of IMF BGSM

z ,
proton number density N and IMF Clock angle when ACE
measures a BGSM

z � 20 nT, N = 70 cm−3 and θcl =
30°respectively. This regression bias reduces when selecting
measurements where ACE and WIND are nearby and in
similar solar wind plasma.

These results suggest that regression biases may exist in
statistical and event-based solar-wind/magnetosphere
coupling studies, where the magnetosphere’s response to
solar wind driving is inferred from measurements. The bias
may become significant for rare and extreme driving conditions
and if the uncertainties in the driver functions correlate with the
solar wind strengths. We can reliably correct the regression bias
only by knowing the stochastic properties of the parameters
used in the study and their uncertainties. Not accounting for the
effect of these uncertainties may lead to misinterpreting the bias
(which can sometimes be non-linear) as systematic
measurement bias or physical processes. One such possible
misinterpretation could be the saturation of geomagnetic
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indices observed with increasing solar wind driving (Borovsky,
2021b).
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