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In this Brief Report it is pointed out that there are three dusk-dawn aberrations of the solar-
wind plasma and magnetic structure approaching Earth and the magnitudes of these
aberrations are estimated for various solar-wind types monitored from L1. Solar-wind
monitors closer to the Earth than L1 would have superior performances.
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The solar-wind plasma and its magnetic structure that hit an L1 monitor on the Sun-Earth line will
on average pass duskward of the Earth’s magnetosphere. This is depicted in Figure 1 with L1 at the
top of the sketch and with the shape of the magnetosphere drawn in blue using the Lin et al. (2010)
magnetopause model (eq. (3) of Lin et al. (2010) with ro = 10.8 RE, m = 0.1, and β = −1.1).

The solar-wind velocity vector at 1 AU varies with time by about ±5° in both the dawn-dusk and
north-south directions (cf. Borovsky 2012; Borovsky, 2018).With L1 being 235 RE upstream from the
Earth (cf. Figure 1), the ±5° time variation of the flow vector corresponds to a ±20.5 RE time variation
in the location at Earth of a flow streamline passing through an L1 monitor. The timescales of these
velocity-vector changes can be slow (e.g., the days-long variations about stream interfaces discussed
below) or fast [e.g., the 98 km/s change in the solar-wind velocity vector over 3 s shown in Fig. 6b of
Borovsky (2020a)].

In addition to this variation in the streamline location at Earth, there is a systematic triple
aberration (shift) in the dawn-dusk direction. The plasma flow of the solar wind experiences the first
two aberrations and the magnetic structure of the solar wind experiences all three aberrations. The
origins of the triple aberration are as follows.

(1) The motion of the Earth around the Sun. The 29.8 km/s dawnward motion of the Earth in its orbit
(black arrow in Figure 1) means that for a perfectly radial solar-wind flow with a speed vsw hitting L1
at the Sun-Earth line will have a streamline that passes the Earth on the dusk side by a distance of
(235 RE) (29.8/vsw) (e.g., Fairfield, 1993). For vsw = 350 km/s this distance is 20 RE and for vsw =
650 km/s this distance is 10.8 RE (cf.Table 1). In Borovsky (2018) the variability of this first aberration
owing to the variability of the solar-wind flow vector is examined in comparison with the typical
structure sizes of the solar wind magnetic field (10’s of RE to 100 RE): cf. Fig. 5 of Borovsky (2018).

(2) The non-radial average flow vector of the solar wind. Using multiple spacecraft at 1 AU, Nemecek
et al., (2020a) found a systematic nonradial component to the proton-solar-wind flow that tends to be
in the direction of the solar rotation [see also Pizzo et al., (1983) and Finlay et al., (2019)]. As noted in
Table 1, this systematic flow is ~10 km/s dawnward for slow solar wind and is ~5 km/s duskward for
mid-range solar-wind speed. Note that there are also very large ~40 km/s dawn-dusk flows at Earth
associated with stream interfaces (Gosling et al., 1978): for slow-to-fast (leading-edge) stream
interfaces the solar-wind flow is strongly dawnward on the day before the interface passes the
Earth and the flow is strongly duskward on the day after the passage of the interface [cf. Fig. 4b of
Borovsky and Denton (2010)] and for fast-to-slow (trailing-edge) stream interfaces the solar-wind
flow is systematically duskward for about 3 days prior to the interface passage and the flow is
systematically dawnward for about 3 days after the interface passage [cf. Fig. 14b of Borovsky and
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Denton (2016)]. As noted inTable 1, the Nemecek et al., (2020a)
10 km/s dawnward velocity in a 350 km/s wind yields an offset of
6.7 RE for the streamline at Earth.

(3) The magnetic structure of the heliosphere moves out from the
Sun along the Parker spiral faster than the proton flow. In the
Alfvenic fast wind and in the Alfvenic slow wind, the magnetic
structure of the heliosphere moves outward from the Sun at a
speed of about 0.7 vA along the Parker-spiral direction relative to
the proton flow (Borovsky, 2020b; Nemecek et al., 2020b).
[Alfvénic wind has strong temporal correlations between the
flow vector v(t) and the magnetic-field vector B(t).] A nominal
45° Parker-spiral orientation is sketched as the green arrow in
Figure 1. For vsw in the range 500–650 km/s, the mean Alfven
speed in the OMNI2 data set (King and Papitashvili, 2005) is vA
= 73 km/s. Accounting for the angle of the Parker spiral from the
Sun-Earth line (39° for 500 km/s and 32° for 650 km/s) the
aberration of the magnetic structure is estimated to be 31.7 km/s
duskward for 500 km/s Alfvenic solar wind and 27.1 km/s for
650 km/s Alfvenic solar wind (cf. Table 1). These aberrations
yield “streamline” duskward displacements of 14.9 RE and 9.8 RE.
Note that the alpha particles of the solar wind are approximately
at rest in the reference framemoving with themagnetic structure
(Nemecek et al., 2020b), so the alpha-particle flow has the same
aberration as the magnetic structure. Also note that at 1 AU the
instantaneous magnetic-field direction varies by about ±45° with
respect to the calculated Parker-spiral direction [cf. Table 1 of
Borovsky (2010)], but the magnetic structure moves in the
mean-field direction which is the calculated Parker-spiral
direction.

These aberrations are on the order of the 10s-of-RE magnetic
structure sizes in the background Parker-spiral solar wind at
1 AU (Borovsky, 2008; 2018).

Assuming a radial proton flow, the magnitude of the first
aberration is straightforward to calculate with the formula

(29.8/vsw): if the flow is not radial the correction to the first
aberration is very small. The second aberration (caused by the
non-radial flow) is very variable with time: with a ±5° variation
in the flow vector this is a ~ ±20-RE variation at Earth. The
variability of the third aberration has yet to be explored: the
Parker-spiral direction varies according to the known formula
(405/vsw) however the statistics of the magnetic-structure
velocity vector with respect to the Parker-spiral direction
have not been studied.

The aberration problem from L1 gets better or worse
depending on the location of the solar-wind monitor about
the L1 point. And during the systematic large deflections of
the solar wind in the days around the passages of stream
interfaces, the aberration problem gets worse.

There have been a number of recent criticisms of using L1
monitoring for solar-wind/magnetosphere coupling studies
(Sandahl et al., 1996; Ashour-Abdalla et al., 2008; Borovsky, 2018,
2020a; Walsh et al., 2019; Burkholder et al., 2020) and several
estimates of the solar-wind errors between L1 and Earth (Crooker
et al., 1982; Ridley, 2000; Weimer et al., 2002; Mailyan et al., 2008;
Case and Wild, 2012). These criticisms and error calculations were
based on the temporal flow deviations of the solar wind, the
magnetic-structure scalesizes in the solar wind, and cross
correlations between L1 measurements and near-Earth
measurements.

In studying the driving of the Earth by the solar wind,
recent work indicates that errors in the solar-wind values
make it difficult to uncover or confirm the physics of the
driving. In particular in data-analysis studies the “best fit”
formulas obtained by optimizing correlations change depend
on the amount of noise in the solar wind measurements
(Borovsky, 2022; Sivadas et al., 2022).

To make needed progress in understanding solar-wind/
magnetosphere interaction, a call is made for solar-wind
monitors much closer to the Earth than L1. A study to
optimize the monitor mission is needed. One suggestion
would be multiple spacecraft in IMP-type circular orbits
(r ~ 30 RE) wherein one of the spacecraft would always be
in the upstream solar wind.

FIGURE 1 | A sketch of a net duskward aberration (red arrow) from a
monitor at L1 (green).

TABLE 1 | Estimates of the dusk-dawn aberrations of the proton plasma and the
magnetic structure for typical solar wind types.

Solar wind Aberration Aberration Aberration Total

1 2 3 Aberration

350 km/s non-Alfvenic Duskward dawnward 0 km/s duskward
29.8 km/s 10 km/s 0 RE 13.3 RE

20.0 RE 6.7 RE

500 km/s non-Alfvenic Duskward duskward 0 km/s duskward
29.8 km/s 5 km/s 0 RE 16.4 RE

14.0 RE 2.4 RE

500 km/s Alfvenic Duskward Duskward duskward duskward
29.8 km/s 5 km/s 31.7 km/s 31.3 RE

14.0 RE 2.4 RE 14.9 RE

650 km/s Alfvenic Duskward ? duskward duskward
29.8 km/s 27.1 km/s 20.6 RE

10.8 RE 9.8 RE
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