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The nuclear symmetry energy, together with the other saturation properties of symmetric
nuclearmatter, plays an important role in low energy nuclear structure of terrestrial systems, as
well as astrophysical objects. In particular, its density dependence, both in sub- and supra-
saturation regions in high density matter in neutron stars, is of utmost significance and has
been a subject of active research for decades, usually within a mean-field framework. We
report results obtained using the latest version of Quark-Meson-CouplingModel (QMC-A)with
just three variable parameters, the baryon-meson coupling constants in free space. It is shown
that these parameters can be determined directly using nuclear matter (NM) properties at
saturation; two parameters of symmetric nuclear matter (SNM), the baryon number density
and the energy per particle, and the symmetry energy coefficient of asymmetric nuclearmatter
(ANM). The effects of uncertainties in the these parameters and propagation of these
uncertainties through the calculation of properties of dense hyperonic matter and cold
neutron stars are demonstrated. This approach leads to new limits on both the NM
parameters and the QMC coupling constants. The results, which exploit the unique
features of the QMC model, are discussed and future prospects are outlined.
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1 INTRODUCTION

The role of the nuclear symmetry energy in nuclear binding was identified in the 1930s (Gamow,
1930; Weizsäcker, 1935; Bethe and Bacher, 1936) in the effort to understand the binding energy of
atomic nuclei, modeled as a spherical drop of incompressible liquid, introducing the well-known
semi-empirical mass formula (SMF).

B A,Z( ) � avolA + asurfA
2/3

+aCZ2A−1/3 + asym N − Z( )2A−1 (1)
E A, Z( )/A ≡ B A, Z( )/A � avol + asurfA

−1/3 + aCZ
2A−4/3

+asym N − Z( )2A−2 (2)

While the volume, surface and Coulomb terms were fully phenomenological, the symmetry effect
required basic quantum mechanics. It arises in systems made of non-interacting distinguishable
Fermi gases which obey the Pauli principle and as such are treated separately. In nuclear matter there
will be a difference between the energy levels occupied by protons and neutrons which will contribute
to the total energy of the nucleus and decrease its binding energy. For terrestrial finite nuclei withA =
N + Z particles the coefficients in Equation 1 are fitted to experimental nuclear masses. As
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demonstrated in Figure 1 the symmetry term plays the least
important role, except for light nuclei (A ≤ 50) and the symmetry
energy decreases with increasing A. However, in highly
asymmetric nuclear matter, such as in cold neutron stars, it is
important.

Equation 1 has been constructed assuming that the nucleus is a
sphere with radius R, containing closely packed spherical nucleons.
The mass number independence of the volume term in the
expression for the energy per particle E(A, Z)/A leads to the
concept of infinite nuclear matter (INM) ((Bethe and Bacher,
1936; Bethe, 1971) and refs. therein), a hypothetical medium
consisting of an infinite number of uniformly distributed protons
and neutrons, with a given proton/neutron ratio, and no Coulomb
field. There are only two quantities characterizing INM, the binding
energy per particle and the particle number density. As discussed in
detail in Ref. (Stone, 2021), in the special case of INM with N = Z,
symmetric nuclear matter (SNM), the binding energy per particle,
E0/A, is given by the coefficient avol in Equation 2 as all the other
terms tend to zero for A→ ∞ and N = Z. To determine the particle
number density, ρ0, of SNM, nuclear and nucleon radii have to be
determined from experiment. The constant values E0/A and ρ0 of
SNM are a consequence of saturation of nuclear forces and have
become fundamental constraints on nuclear models. To study other
bulk nuclear properties, in particular the symmetry energy in nuclei
and nuclear matter, the physics included in the SMF has been
extensively refined by inclusion of shell effects, variable proton and
neutron density distributions throughout the nuclear volume of
arbitrary shape, decreasing smoothly to zero in the surface region,
and the nuclear surface diffuseness and thickness (Myers and
Swiatecki, 1966; Myers and Swiatecki, 1969; Myers and Swiatecki,

1974; Moller et al., 1995; Möller et al., 2012; Möller et al., 2016).
Different strategies for parameterizations of the energy per particle
were used, based on Taylor expansion around the SNM values, in
terms of two variables, the proton-neutron asymmetry, δ=(ρn − ρp)/ρ
(ρ = ρn + ρp), and the deviation of the density ρ from its SNM value
ρ0, ϵ = (ρ0 − ρ)/(3ρ0). Taking Equation 2 to the limit of A→ ∞ and
neglecting the long-range Coulomb force in (Myers and Swiatecki,
1969) we get for the bulk energy per particle,

E ρ, δ, ϵ( )/A � −avol + Jδ2 + 1
2
Kϵ2 − Lϵδ2 +/ (3)

with J being the symmetry energy coefficient asym, L giving the
density dependence of the symmetry energy and K being the
volume nuclear compressibility coefficient at saturation density.
For SNM with equal number of protons and neutrons δ = 0 and
the minimum value of the binding energy per particle E(δ = 0, ϵ
= 0)/A equals E0/A and occurs at ρ = ρ0. In asymmetric nuclear
matter (ANM), at ρ = ρ0 the energy per particle is dependent on
the proton-neutron asymmetry as − avol + Jδ2, always higher
than −E0/A. At densities around the saturation density, the
energy per particle can be expanded to the second order in a
form

E ρ, δ( )/A � E ρ, δ � 0( )/A + S ρ( )δ2 +/ (4)
where E(ρ, δ = 0)/A is the energy per particle of SNM and S(ρ) is
the symmetry energy

S ρ( ) ≡ 1
2

z2E ρ, δ( )/A
zδ2

⎛⎝ ⎞⎠∣∣∣∣∣∣∣∣δ�0 ≈ E ρ, δ � 1( )/A − E ρ, δ � 0( )/A
(5)

which is approximately equal to the difference between the energy
per particle of the pure neutron and symmetric matter.

To study the departure of the symmetry energy from its value
at saturation density, a Taylor expansion is again used

S ρ( ) � J + Lϵ + 1
2
Ksymϵ2 +/ (6)

with

L ≡ 3ρ0
zS

zρ
( )∣∣∣∣∣∣∣∣ρ0 (7)

and Ksym being the curvature of the symmetry energy, sometimes
called the symmetry incompressibility.

There has been a consolidated effort to find experimental and
theoretical constraints for the S, L and K parameters and their
density dependence in Equation 3, without a consensus being
reached. Values obtained from different relevant experiments are
dependent on models used for their analysis, and the data
themselves often suffer from large uncertainties. (see e.g.,
(Tsang et al., 2012; Dutra et al., 2012; Horowitz et al., 2014)).
The value of the symmetry energy coefficient J in Equation 3 at
the saturation density of the symmetric nuclear matter ρ0 is
reasonably well constrained between about 28–34 MeV, but its
slope at saturation, the parameter L, is still unclear. Stone et al.
(Rikovska Stone et al., 2003) investigated the relation between the

FIGURE 1 | Binding energy per particle as calculated in Equation 2. The
magnitude of the volume, surface, Coulomb and symmetry contribution to the
total nuclear binding are displayed vs mass number A. Individual terms in the
top Equation 1 were calculated as a function of A = N + Z of selected
nuclei between 16O and 254Fm. The coefficients avol, asurf, aC and asym are
taken as 15.36, 16.42, 0.691 and 22.53 MeV, respectively. These values were
determined by (Kirson, 2008) from a fit of the basic Equation 1 to the 2003
mass table (Audi et al., 2003). The figure has been taken from Ref. (Stone,
2021) under Creative Commons Attribution License.
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slope of the symmetry energy and the maximum mass of cold
neutron stars using the Equation of State (EoS) based on the
Skyrme model (Rikovska Stone et al., 2003). Bao-An Li et al. (Li
et al., 2014) comprehensively reviewed papers up to 2014,
including open theoretical issues, constraints from terrestrial
laboratory experiments and astrophysical observations but no
tighter limits, especially on the density dependence of the
symmetry energy were obtained. Recent progress reports on
the subject were published by Bao-An Li and collaborators (Li
et al., 2019; Li et al., 2021), including current data and data from
gravitational wave (GW) observations but, again, leaving space
for further improvement in better understanding of the symmetry
energy and its attributes. One of the problems is that some data
lead to contradictory allowed values. For example, L < 45 fromNS
cooling and between 100 and 130 MeV from X-ray tails of giant
flares from SGRs (Li et al., 2021). An exhaustive review of the
symmetry energy and hyperonic stars (Providência et al., 2019)
considered 11 non-linear and 2 density dependent relativistic
mean-field (RMF) models and presented a comprehensive list of
references. In particular, they searched for a correlation between
the cooling processes and hyperonic content in neutron stars.
However, the current (model dependent) limit on the range of
L at ρ0 remains between about 30–100MeV, its density dependence
is not constrained and the incompressibility K ranges between low
values, around 220–240MeV in non-relativistic models, mainly
based on experiments with giant resonances and Skyrme-type
models), and above ~260MeV in relativistic models of high
density matter (Stone et al., 2014; Providência et al., 2019).

In this work we employ the QMC-A version of the QMC
model of high density matter to explore the effect of uncertainties
in the NM parameters and of the propagation of these
uncertainties through the calculation of cold neutron star
properties. The QMC model offers a unique opportunity to
perform such study. In contrast with more traditional models,
QMC depends on only three variable parameters, the nucleon-
meson coupling constants in free space. The properties of NM at
saturation are also determined by three principle quantities with a
fundamental physical significance, the saturation density ρ0, and
energy per particle E0/A and the symmetry energy coefficient J.
These quantities form a basic calibration set for all models
providing other properties of high density matter, such as
S(ρ), L, and K. Noting the QMC and NM parameter space are
of the same dimension, their mapping offers the best chance to
find their relationship and consequences for experiments and
observations. Although in both systems the parameters are
correlated, we show that a comparison with observation offers
a unique chance to establish these constraints. To do that, we use
only observational data with minimal model dependence, leaving
to the reader a comparison with other model calculations (Fortin
et al., 2017; Providência et al., 2019; Fortin et al., 2020).

2 THE QUARK-MESON-COUPLING MODEL

The Quark-Meson-Coupling (QMC) model was developed by
Guichon, Thomas and collaborators (Guichon, 1988; Saito
and Thomas, 1994; Guichon et al., 1996; Guichon and

Thomas, 2004; Saito et al., 2007; Guichon et al., 2018).
This effective relativistic mean-field model assumes that
forces between individual baryons are self-consistently
mediated by exchange of virtual mesons between the
valence quarks in the baryons. The effect of the medium
the baryons are embedded in, such as NS cores and nuclei,
alters the dynamics of the valence quarks in the individual
baryons. As a consequence, the self-consistently calculated
scalar meson-baryon couplings acquire an effective density
dependence. This dependence stems from the response of the
quark structure of the baryons to the meson fields.

In the QMC model, the baryons are represented by non-
overlapping MIT bags (but other models of confinement can
be used without a loss of generality (Bentz and Thomas, 2001).
Coupling the mesons to the quarks throughout the bag volume
would be unnatural in a literal interpretation of the model,
where only quarks and gluons can live inside the cavity.
However, in a more realistic picture, the quarks are
attached to a string (see Figure 2) but otherwise move in
the non-perturbative QCD vacuum. There, they feel vacuum
fluctuations, which are represented by meson fields. This
feature allows the QMC model to be used well above ρ0
without concerns about the bag overlap.

We assume that the total energy of a classical system of baryons
at zero temperature, modeled as non-overlapping bags coupled to
meson fields σ, ω and ρ is expressed as (Guichon et al., 2018)

EQMC � ∑
i�1,...

��������������
P2
i +M2

i σ �Ri( )( )√
+ gi

ωω
�Ri( )

+gρ
�Ii. �B �Ri( ) + Eσ + Eω,ρ,

(8)

where �Ri and �Pi are the position andmomentum of a baryon i and
�I is the isospin matrix. Following the notation of Ref. (Guichon
et al., 2018), �B stands here for the isovector ρ field to avoid a
confusion with the baryon number density ρ (Guichon et al.,
2018). Eσ and Eω,ρ are the static meson fields energies.

The dynamical mass of a bag, representing a baryon i (short
for b(i)) immersed in a constant scalar field is obtained by solving
the bag equations to be

Mi σ( ) � Mi − wσi gσN σ + d

2
wσi˜ gσN σ( )2, (9)

The quark-meson couplings are related to the nucleon
couplings to σ, ω and ρ mesons in free space as

gσN � 3gq
σ∫

Bag
d �r �qq �r( ) gωN � 3gq

ω gρN � gq
ρ (10)

where q is the valence quark wave function for a free bag.
It is convenient to use effective coupling constants Gσ, Gω,

and Gρ

Gσ � g2
σN

m2
σ

Gω � g2
ωN

m2
ω

Gρ �
g2
ρN

m2
ρ

, (11)

using the free σ, ω and ρ meson masses.
The coefficient d in the third term in Equation 9, is known as

the “scalar polarizability”. This term is a natural consequence of
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the quark structure of the nucleon and is sufficient to lead to
nuclear saturation. The scalar polarizability is related to the radius
of the bag RB as (Guichon et al., 2018)

d � 0.0044 + 0.211RB − 0.0357R2
B. (12)

The weights wσi andwσi˜ control the flavor dependence of the
effective mass and in a naive first approximation they are equal
to 1 + s(i)/3 (s being strangeness), since the σmeson is taken to
couple only to the non-strange light quarks. This simple
relation is however broken by the difference in bag radii of
the hyperons as well as the hyperfine color interaction and the
exact values are also dependent on the bag radii and the
experimental masses of the nucleon, Δ, and Λ, Σ and Ξ
hyperons. In the present work, we take RB = 1 fm (for the
nucleon in free space) and the weights summarized in Table 2
in Guichon et al. (2018) (see also the Appendix in the Ref.
(Rikovska Stone et al., 2007).

The meson fields in Equation 8 are time independent and are
solved through the equations of motion

δEQMC

δσ �r( ) � δEQMC

δω �r( ) � δEQMC

δBα
�r( ) � 0. (13)

and substituted into Equation 8. The model is then quantized by
replacement

�Pi → − i �∇i. (14)
The heavy σ, ω and ρmesons, which account for the exchange

of correlated pions with the corresponding t-channel quantum
numbers, are represented by their mean fields. Parity
conservation means that there can be no pion mean field, so
that single pion exchange enters only through the exchange or
Fock terms. Thus, single pion exchange must be added separately,
however this does not involve any additional parameters.

The full Hamiltonian reads (for details see (Guichon et al.,
2018))

HQMC � Hσ +Hω +Hρ +Hso +Hπ, (15)
where individual terms describe contributions of different
mesons and Hso is the spin-orbit term. For practical use, we
use expansion of the mean field σ assuming that the field operator
σ can be written as

σ � 〈σ〉 + δσ (16)
where the C-number 〈σ〉 ≡ �σ denotes the ground state
expectation value and the fluctuation δσ is considered as a
small quantity. Using this expansion, the σ part of the
Hamiltonian becomes 〈Hσ〉 and the full Hamiltonian reads
(Guichon et al., 2018)

FIGURE 2 | (A): Cartoon of the mechanism of interaction in the QMC model. Shown is the distribution of valence quarks and gluon tubes as predicted by lattice
QCD (see http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Nobel/index.html). The figure was adapted from Ref. (Guichon et al., 2018). (B):
Traditional image of interaction between baryons without considering their internal structure.
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〈HQMC〉 � 〈Hσ〉 + 〈Hω〉 + 〈Hρ〉 + 〈Hso〉 + 〈Hπ〉. (17)
This Hamiltonian significantly simplifies in infinite nuclear

matter, a medium with uniform density ρ without surface and
spin-orbit effects. All gradient terms vanish and 〈HQMC〉 reduces
to 〈HNM〉. The ground state of the system is specified by a set of
Fermi levels and the σ exchange part of the expression for the total
energy density is calculated in the Hartree-Fock approximation
(Rikovska Stone et al., 2007). The spin-orbit term vanishes in
nuclear matter as being dependent on derivatives of density and
the ω and ρ exchange can be calculated exactly as they are purely
2-body. Finally we add the long-range pion exchange and write

ε � 〈Hσ〉
V

+ 〈Vω〉
V

+ 〈Vρ〉
V

+ 〈Vπ〉
V

(18)

where 〈Vω〉, 〈Vρ〉 and 〈Vπ〉 denote the infinite nuclear matter
form of 〈Hω〉, 〈Hρ〉 and 〈Hπ〉. For more detail see (Guichon
et al., 2018). The energy per particle

E ρ, δ( )/A � ε

ρ
ρ, δ( ). (19)

is used to calculate the asymmetry coefficient J, the symmetry
energy S, slope L and the volume incompressibility K, both at the
saturation point of the SNM and their density dependence, in the
usual way (Guichon et al., 2018). The isovector scalar meson has
also been considered in relation to the properties of neutron
stars(Motta et al., 2019; Motta et al., 2020; Motta et al., 2021) but
here focus on the dominant components of the NN force.

There are some other parameters in the QMC model which are
not varied in this work. The bag radius RB is fixed to be 1 fm, while
the σmeson mass,mσ, which is not well determined as a parameter
of the NN force, is fixed to be 700MeV. We also set the σ self-
interaction parameter, λ3, which appears to be needed in finite
nuclei(Martinez et al., 2019), to zero. The bag radius and the σ
meson mass effect were examined in our previous work in Section
2.5 in Ref. (Rikovska Stone et al., 2007). and in Sections 2.1.1 and
4.1.2 in Ref. (Guichon et al., 2018). The bag radius is tightly
constrained by lattice QCD calculations of the proton radius
and should be close to 1 fm. The QMC model of nuclear matter
is rather insensitive tomσ once the Gσ is fixed. In the version of the
model for finite nuclei, the sensitivity tomσmainly comes from the
fact that it controls the shape of nuclear surface, irrelevant in
nuclear matter. The role of the parameter λ3 has been explored in
detail only in finite nuclei (Martinez et al., 2019; Martinez et al.,
2020). In the current nuclear matter studies, it is constrained to a
close-to-zero value by the rich experimental data on the single
particle potential of the Λ hyperon. This is the value we use here
and further research is be carried out in future work.

The ω and ρ meson masses and the isoscalar and isovector
nucleon magnetic moments, which appear in the spin-orbit
interaction in finite nuclei (Guichon et al., 1996; Guichon
et al., 2018) are taken at their physical values. Once fixed, the
adjustable parameters form a set which is so constrained that any
variation would disturb the internal integrity of the model. If a
serious discrepancy between the model prediction and some new
observational and experimental data would occur, physics

missing in the model would have to be sought. We stress that,
as explained above, the number of variable parameters in the
QMC model is not a matter of choice, but is a consequence of
physics of the model.

The concept of the QMC model has several fundamental
consequences. As shown in Ref. (Guichon, 1988). the model
offers a natural explanation for the saturation of the nuclear
force. Even more importantly, the model automatically includes
many-body forces and there is no need to change the number of
parameters when the baryonic composition of the matter changes,
i.e., when hyperons appear in dense matter. In other words, matter
consisting only of nucleons and matter containing the full baryon
octet (nucleons and hyperons) is described by the same set of three
parameters. All the hyperon-nucleon and hyperon-hyperon
couplings are fixed by the quark structure calculated within the
model. We emphasize that exchange terms are always included in
Hartree-Fock calculations and single-particle potentials are
calculated within the model, in contrast with most relativistic
mean field models of high density nuclear matter.

Having outlined the QMC model, we turn to consider its
application to neutron stars (NSs). Although the nucleonic
content in the lower density outer is reasonably well modelled,
the inner crust (Fortin et al., 2016; Newton et al., 2022) and the
properties and composition of the core are still a subject of
intensive research.

In this work, the DD2 model with light and heavy clusters
(Pais and Typel, 2017) was used for inhomogeneous matter at
sub-saturation densities. The DD2 calculation gives a fully
thermodynamically consistent result, with the crust including
phase transitions between different forms of nuclear and particle
species, and the transition from inhomogeneous to homogeneous
matter at higher densities. The transition was treated individually
in each case, searching for the baryon number density region
where there is a simultaneous smooth connection between the
energy density, pressure and particle number density and their
derivatives, and interpolating over this region if necessary (for
more details see (Stone et al., 2021).

In the core, following the Pauli principle, hyperons appear
naturally at T = 0 in nucleonic matter, when their chemical
potentials, which increase with the density of the degenerate
matter, become large enough. Strangeness non-conserving weak
processes become possible, and create a hyperon population in the
core of the star [(Glendenning, 1985; Balberg et al., 1999;
Glendenning, 2012)]. The variation in the threshold densities is
related to the differences in hyperon couplings and the consequent
hyperon binding energies, defining their chemical potentials, in
different models (see e.g., (Fortin et al., 2020)). These quantities
require additional variables in traditional models but, as already
discussed, are fixed by the quark structure within the QMC model
and cannot be varied without violating the internal consistency of
themodel. It is the consequence of themore fundamental nature of
the QMC model that, besides already mentioned natural
explanation for the saturation of the nuclear force, and
automatic inclusion of many-body forces (Guichon and
Thomas, 2004), there is no need to change the number of
parameters when the baryonic composition of the matter changes.
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Some variants of the QMC model of dense matter in compact
objects, using simplified expressions for the bag representing the
nucleon, the effective mass of the nucleon and the treatment of
meson fields have been reported in Refs. (Guichon et al., 2018;
Lourenço et al., 2021; Motta and Thomas, 2022). and references
therein. The authors of these QMC versions allow some flexibility
in their parameters not permitted in the fully self-consistent
Saclay-Adelaide formulation (the latest version is labeled as
QMC-A), which is used throughout this work.

The first application of the QMC model to NSs (Rikovska Stone
et al., 2007) was reported in 2007 and predicted the existence of a cold
NS, with Λ and Ξ0 hyperons in their cores and a maximum mass of
1.97M⊙, 3 years before such a star was observed by (Demorest et al.,
2010). Very recently the QMC-A model was extended to finite
temperature (Stone et al., 2021) and yielded EoS tables suitable for
use inmodeling proto-neutron stars (PNSs), core-collapse supernovae
(CCSN), and, potentially, remnants of binary neutron star mergers
(BNSM) (https://compose.obspm.fr/eos/205, https://compose.obspm.
fr/eos/206). The full derivation of the finite temperature formalism for
the QMC model will appear in a separate publication. We note that
calculation of quantities in this work include the full Fock (exchange)
term in the solution of the Hartree-Fock equations. This is in contrast
with most of the models used until now.

Application of a non-relativistic energy density functional
derived within the QMC model to finite nuclei has yielded
predictions of ground state properties of finite nuclei in
excellent agreement with experimental data across the entire
periodic table, including superheavy nuclei far beyond the
parameter fitting range (Stone, 2016; Martinez et al., 2019;
Stone et al., 2019; Martinez et al., 2020). Interestingly, the
non-relativistic reduction of the QMC model shows clearly
that the spin-orbit coupling appears naturally and has the
correct magnitude. Crucial tests of the predicted change in the
structure of a bound nucleon, which is intrinsic to the QMC
model (Thomas, 2021), are being pursued actively. Such changes
include a large reduction in the axial charge, which is potentially
very important in the search for double beta-decay; a dramatic
reduction in the Coulomb sum rule(Cloët et al., 2016) and of
course the EMC effect (Thomas et al., 1989; Cloët et al., 2005;
Cloët et al., 2006; Wang et al., 2022).

3 COMPUTATIONAL METHOD

The QMC-A model of nuclear matter has in principle six
parameters as detailed in Section 2. In the version of the
model used in this work, we have chosen to fix RB to 1 fm,
Mσ to 700 MeV and λ3 to zero, leaving variable only the three
coupling constants, which are however correlated. As already
mentioned in the introduction, these couplings are adjusted in the
model based on accepted saturation properties of the SNM, ρ0,
the energy per particle E0/A and the symmetry energy coefficient J
of ANM at ρ0. These quantities form a three-dimensional NM
parameter space. They are also correlated and not exactly known.
Their range is a subject of active research, e.g., (Horowitz et al.,
2014). However, the fact that there are three major nuclear matter
quantities which determine principal coupling constants of the

QMC-A model offers a interesting opportunity to study their
relation and sensitivity to their variation. QMC-A offers this
simple mapping of the variable parameter spaces of the same
dimension with a direct relation between them. There has been
another attempt to relate gross properties of cold neutron stars
with higher order coefficients in the expansion of the EoS of
isospin asymmetric nuclear matter calculated in a relativistic
mean field model with the DD-ME2 parameterization (Li and
Sedrakian, 2019). This mapping is however rather involved due to
more complicated framework of the multiparameter models used.

Because of this unique feature, it is possible to explore in detail the
consequences of varying each of theNMparameters to establish ranges
giving rise to best agreement coupling constants in a manner which
includes correlations. These in turn give bettermodel predictions of the
related quantities. In this work we have developed a mesh (cuboid) of
points with ‘coordinates’ ρ0 = 0.14, 0.15, 0.16 and 0.17 fm−3,
E0/A = -15, -16, -17 and -18MeV and J between 27–36MeV with
a step of 1MeV.These coordinateswere chosen to cover awide enough
area around the frequently used ρ0 = 0.16 fm−3, E0/A = -16MeV and J
around 30MeV [but higher values were recently suggested, up to
36MeV, in Ref. (Reed et al., 2021)]. At each mesh point a number of
quantities at saturation density were calculated: the slope of the
symmetry energy L, the volume incompressibility K, the coupling
constants Gσ, Gω, Gρ, and the single-particle potentials UY for Y =Λ, Σ
andΞ hyperons. In addition, we have computed the gravitationalmass,
radius and central density of a maximum mass cold neutron star and
the radius, central density and tidal deformability of a 1.4M⊙ neutron
star, threshold densities for appearance of hyperons and for the onset of
direct nucleonic URCA process (DUrca).

4 RESULTS AND DISCUSSION

4.1 Nuclear Matter Parameters
We start with the examination of the correlation between ρ0, J, L
andK. As shown in Figure 3, top left panel, there is a clear, almost

FIGURE 3 | Correlation between L and J for ρ0 = 0.14 fm−3 and E0/A =
-15, -16, -17, -18 MeV.
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perfect, linear correlation between the symmetry energy
coefficient J and its slope L for ρ0 = 0.14 fm−3 for four values
the energy per particle E0/A. The correlation curves calculated for
each E0/A are parallel, shifted by about 3 MeV downwords
towards lower L. As given in detail in Supplementary Table
S1, the total uncertainty in the NM parameters, represented by
the cuboid, limits the predicted range of L to between 40 and
70 MeV. This range is within other predictions of the L − J
correlation see e.g., (Drischler et al., 2020; Reed et al., 2021) but
does not offer any constraints on the symmetry energy coefficient.

A more interesting correlation is found between the volume
incompressibility K and the energy per particle E0/A. As
illustrated in Figure 4, the incompressibility is almost
independent of J, but is different by as much as 40 MeV for
a difference in E0/A of 3 MeV. We show only lower and upper
values of ρ0 in the figure, the results for the other two values,
being between these limits. The overall uncertainty in the NM
parameters allows for values of K between 275 and 320 MeV.
The general consensus is that high values of K, above about
300 MeV, are unlikely [but see (Stone et al., 2014)]. If this is
the case, the highest value of E0/A (-18 MeV), will be
disfavored, thus offering the first constraint on the NM
parameters.

4.2 The Quark-Meson Coupling Constants
As discussed in Section 2, the coupling constants Gσ, Gω and Gρ

are the only variable parameters of the QMCmodel of cold dense
matter and are adjusted to reproduce the chosen NM parameters
ρ0, E0/A and J. We illustrate in Figure 5 the effects of the choice of
NM parameters on the coupling values. Increasing the saturation
density ρ0 decreases all three couplings by about 20%. The effect
of E0/A is maximal inGσ (about 10%) but reduces to around 2% in
Gρ (bottom panel in Figure 5). Gσ is almost independent of J
which has the maximum affect on Gρ, increasing it by more that a
factor of 1.5 between J = 27 and 36 MeV. Gω, the coupling
constant of the isoscalar ω meson would be expected to have

no or very small sensitivity to J, similarly to Gσ. We speculate that
the about 6% rise between J = 27 and 36 MeV is due to the
contribution of the isovector ρmeson through the Fock term. The
total ranges of Gσ, Gω and Gρ throughout the cuboid space are
(9.1–12.2), (5.3–7.6) and (2.1–5.7), respectively (see
Supplementary Table S2 for details). Since the coupling
constants are parameters of the model, these calculations do
not offer constraints within these ranges. The constraints
established below on the NM parameters are further discussed
in the conclusions.

4.3 Hyperonic Single-Particle Potentials
The single-particle potentials of hyperons in high density
nucleonic matter determine their appearance in neutron stars.
These potentials are dependent on the nucleon-hyperon and
hyperon-hyperon interactions, which are treated as variable
parameters in traditional RMF models and have to be fitted to
experiment and observation. Specifically, the appearance of Σ
hyperons which has been an issue for many years (Providência
et al., 2019). Both positive and negative UΣ values have been
considered in these models (Providência et al., 2019). By constrast
in the QMC model, the interactions and potentials are not a
subject of choice, but emerge naturally from the formalism
(Tsushima et al., 1998). In particular, as explained earlier, they

FIGURE 4 | Correlation between the volume incompressibility K and the
energy per particle E0/A. as a function of the symmetry energy coefficient J.
The results are shown for two values ρ0, 0.14 fm−3 (solid curves and full
symbols) and 0.17 fm−3 (dashed curves and empty symbols).

FIGURE 5 | Gσ, Gω and Gρ as a function of the symmetry energy
coefficient J for ρ0 = 0.14 fm−3 (full symbols and solid lines) and ρ0 = 0.17 fm−3

(empty symbols and dashed lines) and E0/A = -15, -16, -17 and -18 MeV
depicted by black, red, green and blue symbols, respectively. Symbols
have not been added to the bottom panel because the lines are closer then
their width.
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are calculated under the assumption that the mesons couple only
to non-strange light quarks, following the Zweig rule, using the
self-consistenly calculated quark wave functions.

In this model, Σ hyperons do not appear in the cores of cold
neutron stars at baryon number densities below ρ = 1.2 fm-3. This
effect was recognized already in our early work (Rikovska Stone
et al., 2007; Guichon et al., 2018)) and understood as a
consequence of the fact that the hyperfine interaction that
splits the Λ and Σ masses in free space is significantly
enhanced in-medium [(Guichon et al., 2008)], leading to what
is effectively a repulsive three-body force for the Σ hyperons
(Tsushima et al., 2010). The absence of Σ hyperons in cold matter
is supported by the fact that despite great efforts, no bound Σ−
hypernuclei at medium or high mass have been found (Harada
and Hirabayashi, 2006; Harada and Hirabayashi, 2015). We
therefore adopt the experimental finding (Harada and
Hirabayashi, 2006; Harada and Hirabayashi, 2015) that there
is no bound Σ hypernucleus in nature. It follows that the Σ−
nucleon potential has to be repulsive, that is UΣ is positive, at least
in the medium and heavy nuclear region. This provides a very
strong constraint on the NM parameters range as shown in
Figure 6. Note that the non-existence of a Σ hypernucleus
does not necessarily mean that the hyperonic potential should
be repulsive. It could be also attractive, but too shallow to allow a
bound state. However, there are many experimental studies of Σ
hyperon production to show a repulsive potential, see for example

(Saha, 2004). If a strong experimental evidence is found in the
contrary, our analysis would have to be revised.

The constraint on UΛ has been relatively well established from
experiments with hypernuclei (Gal et al., 2016). We note that
what is actually measured in experiments with hypernuclei are
binding energies of the hyperon in the s and p shells of a single Λ
hypernucleus in a range of the mass number A. The value of the
single Λ baryonic potential in the symmetric baryonic matter at
saturation is obtained by extrapolation to infinite A (as a function
of A−2/3) in a model dependent way (Fortin et al., 2017). The
generally accepted value of UΛ is around -30 MeV. We adopted
the range of values from -25 to -35 MeV in our analysis.

Up to now, two single events involving Ξ hypernuclei, 12
Ξ−Be

[(Kchaustov, 2000)] and 15
Ξ−C (Nakazawa et al., 2015), have been

reported [(Yoshida et al., 2019)]. (Yoshimoto, 2021). reported the
first observation of a nuclear s-state of a Ξ hypernucleus
hypernucleus 15

Ξ C but the single particle UΞ potential has not
yet been derived from these observations with any certainty.

Examination of Figure 6 shows a dramatic narrowing down of
acceptable parameter ranges. Requiring simultaneous satisfaction
of the constraints on UΣ (being positive) and UΛ (being within the
blue dashed rectangle) and taking into account the spread due to
the uncertainty in E0/A, we find that all cases calculated with ρ0 =
0.17 fm−3 can be eliminated and cases with ρ0 = 0.16, 0.15 and
0.14 fm−3 are allowed only for J = 36, 33–34 and 31–32 MeV
respectively (for details see Supplementary Table S3).

FIGURE 6 | Single-particle potentials UΛ (grey), UΣ (red) and UΞ (green) as a function of J for ρ0 = 0.14, 0.15, 0.16 and 0.17 fm−3. The filled width of the rectangles
depicting the potentials represents the uncertainty due to the spread of E0/A between -15.0 and -18 MeV. The dashed blue rectangle around UΛ illustrates the region of
experimental values reported in the literature. The horizontal black dashed line guides the eye to zero, dividing positive and negative values of UΣ. No established
experimental constraint on UΞ is available.
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Additional data on UΞ would be extremely valuable as they
should provide selection of rather narrow ranges for ρ0, E0/A and
J, fully based on experimental data and the QMC-A model.

4.4 The Equation of State of Cold Hyperonic
Matter
Moving on to the density dependence of the symmetry energy, tested
in modeling cold neutron stars, we first calculate the EoS of cold
dense matter containing the full baryon octet, that is the dependence
of E/A on baryon number density ρ0. To maximize demonstration of
the effects we wish to discuss, a combination of the minimum and
maximumvalues of J= 27 and 36MeVand of ρ0 = 0.14 and 0.17 fm

−3

were chosen (see Figure 7). The calculation was performed for the
saturation energy per particle E0/A = -15 to -18MeV in all cases
which resulted in the spread depicted by the grey and green shaded
areas in the figure. In the left panels, we observe a significant decrease
in E/A, softening of the EoS, with increasing saturation density from
0.14 to 0.17 fm−3, however the calculation shows that the EoS is
virtually independent of J.

There are three effects to observe in the right panels of
Figure 7 showing the density dependence of the symmetry
energy S(ρ). First, it increases with ρ in all cases. Second, the
rate of the increase is strongly dependent on J. The change of J
from 27 MeV (top-right panel) to 36 MeV (bottom-right panel)
causes an increase in S(ρ) by almost a factor of 2 at about 6 times

ρ0 (note the change in y-scale in the two panels). Third, similarly
to the EoS, the increase in S(ρ) with density is less for higher ρ0.
Should there be a well founded experimental constraint on these
effects, this would provide a valuable constraint on the value of J.

4.5 Hyperonic Stars
Correct modelling of high-mass neutron stars has been of prime
interest to the community since the first announcement of
observation of a heavy pulsar J1614-2230 by (Demorest et al.,
2010) with a gravitational mass 1.97±0.04M⊙. We take its current
mass, obtained after 11 years of refined observation (Arzoumanian
et al., 2018), 1.908±0.016M⊙, as a lower limit on a maximum
gravitational mass neutron star to be compared with calculations.
The current upper limit is the pulsar J0740 + 6620 with 2.08±0.07M⊙
(Fonseca et al., 2021). The radius of a NS with the know mass is a
more difficult observable to obtain. We adopt the very recent result
(Miller et al., 2021) for the equatorial circumferential radius of PSR
J0740 + 6620 to be 13.72.61.5 km with 68% credibility, and the Bayesian
inference by the same group for the full radius range of the PSR J0740
+ 6620 to be 12.35 ± 0.75 km.

We compare QMC-A predictions of the maximum mass of a
NS containing the full hyperon octet in the core (the hyperonic
star) with the above data in the left panels of Figure 8. The
calculation has been made for 27 ≤ J ≤ 36 MeV, four values of ρ0
between 0.14–0.17 fm−3 and -15 ≤ E0/A ≤ -18 MeV. It can been
seen that maximummass excludes ρ0 = 0.16 fm−3 and higher. The

FIGURE 7 | Energy per particle (E/A) (left panels) and the density dependence of the symmetry energy S(ρ) (right panels) vs baryon number density ρ. A combination
of minimum and maximum values of J = 27 and 36 MeV and of ρ0 = 0.14 and 0.17 fm−3 were selected to demonstrate the effects. The grey and green shadowed areas
represent the uncertainties due to the spread of E0/A in the range of -15 to -18 MeV. Note that the y-scale of the top-right panel is a half of that in the bottom-right panel.
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radii of the stars are shown in the right panels of Figure 8,
corroborating the outcome obtained from the masses. We find
that both maximum masses and radii of hyperonic stars show
only a weak dependence on J. The observational constraints
would have to be much tighter to make a conclusion about

the role of the symmetry energy in mass and radii of
hyperonic stars.

Inspection of Figures 4, 7 and 8 suggests that smaller volume
incompressibility K leads to larger NS radius. Recent metamodeling
of the sensitivity of the nucleonic EoS and properties of coldNS to an

FIGURE 8 | Shown are the maximummass in units of M⊙ (left panels) and radius (right panels) of a cold neutron star as a function of the symmetry energy coefficient
J for four values of the saturation density 0.14–0.17 fm−3 and the saturation energy per particle -15 ≤ E0/A ≤ -18 MeV. The spread of masses (radii) due to the uncertainty
in the saturation energy is shown by the grey (green) shaded areas. The blue (black) dashed boxes in the left panels show the latest observational constraints on the
gravitational mass of PSR J0740 + 6620 (Fonseca et al., 2021) [PSR J1614-2230 (Arzoumanian et al., 2018)]. The open black dashed boxes in the right panels
depict the radius of the PSR J0740 + 6620 reported by (Miller et al., 2021) reaching upper limit of 16.3 km which is outside the dimensions of the figure. The magenta
dashed box shows results of statistical analysis by (Miller et al., 2021). For more discussion see text.
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extended set of empirical parameters of high density nuclear matter
(Margueron et al., 2018) led to an opposite result, i.e., higher K
implies higher radius. We do not have a definitive answer to this
tension at present, except that there are significant differences
between the QMC model of hyperonic matter and the models of
nucleonic matter employed in (Margueron et al., 2018). Also, our

analysis is limited only to quantities up to second order in the Taylor
expansions outlined in Section 1 because we need only three NM
quantities to be compared with the three variable parameters of the
QMC model. Higher order terms in the expansions could be
calculated but are not included in the fit. If they would make a
difference, it would be an interesting feature to explore. With the

FIGURE 9 | Left panels:Radius of a 1.4 M⊙ star as a function of the symmetry energy coefficient J at four values of the saturation density 0.14–0.17 fm−3 and the
saturation energy per particle -15 ≤ E0/A ≤ -18 MeV. The spread due to the uncertainty in E0/A is shown by grey shaded areas. The dashed blue box shows the constraint
on the radius reported by (Miller et al., 2021). Right panels: Tidal deformation Λ1.4, computed with the same NM parameters. The effect of the spread in E0/A is shown
in green.
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advent of binary neutron star mergers, radii and tidal deformability
of neutron stars with gravitational mass 1.4M⊙ became a subject of
interest. There observables are extracted from observations in a
model dependent way. Themost frequently used analysis is based on
statistical methods. The approach used for determination of the
radius of PSR J0740 + 6620 (Miller et al., 2021) also yielded the
radius of a 1.4M⊙ star to be 12.45 ± 0.65 km with the 68%
credibility. We compare this result with the QMC-A predictions
in the left panels of Figure 9 which seems to exclude ρ0 = 0.14 fm−3

but allow higher values. However, we note that the constraints on
radii of a 1.4 M⊙ star (which is not hyperonic but nucleon-only)
are a developing field. We demonstrate the situation in
Figure 10 illustrating one of the most recent attempts to
construct Bayesian inference using a combination of GW
data and electromagnetic signals from NICER observation to
constrain the radii of 1.4 M⊙ stars. The results are broadly
compatible with those of (Miller et al., 2021) although
exhibiting a wider spread towards lower radii.

For completeness, we show the QMC-A model predictions for
the tidal deformability Λ1.4 as defined in (Yagi and Yunes, 2017)
(right panels on Figure 9). This quantity shows high sensitivity to
ρ0 and should be a valuable tool to constrain the NM parameters.
Unfortunately, there are still only model-dependent data on its
value which cover the full range between about 200–800 and
detailed conclusions cannot presently be drawn (see
Supplementary Tables S4 and S5 for details).

4.6 Hyperonic Thresholds
Threshold densities for appearance of hyperons provide an
important physics based constraint. It is unlikely that Ξ

hyperons can be created by weak processes directly from
nucleon decay (ΔS = 2) rather than by ΔS = 1 decays from Λ
hyperons, already existing in the matter. That is, the Λ hyperon
threshold density should not be higher than that of the Ξ− and Ξ0.
The threshold for appearance of Ξ− hyperons is determined by
the delicate balance between their chemical potential and the sum
of chemical potentials of the neutron and electron. The onset of
the Λ hyperons depends only on the balance between their
chemical potential and that of the neutron. The threshold for
Ξ0 is always above that for Λ as only the mass difference (and the
interactions) play a role. Our findings are summarized in Table 1.
The data eliminate ρ0 = 0.14 fm−3 and place narrow limits on the
other parameters for ρ0 = 0.15 fm−3.

4.7 Cooling Mechanism
In nucleon-only NS the most efficient cooling mechanism of is
neutrino emission via electron DUrca (Lattimer et al., 1991)

n → p + e− + ]e and p + e− → n + ]e. (20)
These processes can occur only if momentum is conserved

which leads to the requirement that the proton fraction must
above the minimum value (Klähn et al., 2006),

Ymin
p � 1

1 + 1 + x1/3
e( )3. (21)

where xe = ρe/(ρe + ρμ) with ρe and ρμ are electron and muon
densities. In the presence of hyperons, other channels are opened
for neutrino emission (Prakash et al., 1992). As discussed in
(Raduta et al., 2017; Providência et al., 2019; Raduta et al., 2019;
Anzuini et al., 2021) the occurrence of hyperons will affect the
neutron, proton and electron fractions. The momentum
conservation requirement in these processes leads to a
modified condition for the minimum proton fraction for
nucleonic DUrca

ρp
ρp + ρn

� 1

1 + 1 + xY1/3
e( )3 (22)

where xY
e � ρe/(ρe + ρμ + ρΣ− − ρΣ+ + ρΞ− ).

The density dependence of the proton fraction in the core of
a maximum mass hyperonic star is calculated in the QMC-A
model. Shown in Figure 11 is an example of a scenario yielded
by a selected set of NM parameters ρ0 = 0.16 fm−3, J = 31 MeV
and -15 ≤ E0/A ≤ -18 MeV. We observe a dramatic increase in
the proton fraction (by almost a factor of three at ρ close to
1 fm−3) at densities above the hyperon threshold, as compared
to the nucleon-only matter at lower densities. At the central
density of the NS, the proton fraction (green) is well above the
minimum fraction required for the onset of the nucleonic
DUrca proces (grey), i.e., the star will be cooling. Summary
of all the results, satisfying the conditions for the nucleonic
DUrca process, is given the last three columns of in Table 1.
They appear to put even more stringent constraints in the NM
parameter sets than the hyperonic thresholds densities, not only
eliminating ρ0 = 0.14 fm−3 but also J = 27 MeV in all cases. Sets
with J = 28 and 29 MeV are progressively excluded with
increasing ρ0.

FIGURE 10 | Radius of a NS with a fixed gravitational mass 1.4 M⊙ as
extracted from data on GW170817 (GW) alone, combined GW170817 and
GW190425 (GWs) events, and GW data in combination with electromagnetic
data from NICER, quiescent low mass x-ray binaries (QLMXB), and
photo-spheric radius expansion x-ray burst source (PRE) observations. The
figure has been adopted from Ref. (Stone, 2021) (under the Creative
Commons Attribution License) where the references to individual models and
other details can be found. The dashed blue box again shows the constraint
on the radius reported by (Miller et al., 2021).
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5 SUMMARY AND OUTLOOK

The QMC model has been developed over a number of years
and achieved an impressive description of a wide range of
experimental phenomena in the fields of low energy nuclear

physics and stellar properties. In its simplest form the model
has only three adjustable parameters, the nucleon-meson
coupling constants in free space Gσ, Gω and Gρ which, once
fixed, are held constant in calculation of all quantities
accessible to the model. Similarly, theoretical decriptions of
NM have evolved with basic dependence upon three properties
ρ0, E0/A and J whose values are used as calibration points for
many nuclear models.

This work was undertaken in a wide-ranging attempt to
explore correlations between the elements of these trios and to
examine whether narrower limits on their acceptable ranges
could be established on the basis of current theory and
experimental data.

Using these coupling constants the properties L, J, K and ρ of
NM were calculated. In addition, properties of hyperonic matter
and hyperonic stars, including hyperonic single-particle
potentials and onset densities, the EoS, maximum gravitation
mass of NS, central density and radius, as well as radius and tidal
deformation of a 1.4 M⊙ star and cooling conditions were
examined. These properties and their allowed values based on
experimental analysis, proved essential in leading the
conclusions below.

The main results lead to the following observations:

• The requirement that UΣ be positive restricts ρ0 to the range
0.14–0.16 fm−3 and J ≥ 31 MeV.

• The same restriction on ρ0 is found in Mmax
g .

• R1.4 allows ρ0 between 0.14–0.17 fm−3.

TABLE 1 |Hyperon threshold densities in the maximummass NS as a function of the NM parameters ρ0, E0/A and J (first three columns). The slope of the symmetry energy L
at ρ0 is given in the fourth column for completeness. The last three columns give the NS central density of the star and the calculated Yp(cal) and minimal proton fractions
YDUrca(min), as defined in Equation 22, for the same NM parameters. Only sets of the NM parameters which satisfy both, the constraint ρth(Λ) is less than ρth(Ξ−) and ρth(Ξ0)
and the conditions for the hyperon threshold for DUrca to proceed, YDUrca(min) ≤ Yp(cal), are satified are shown. E0/A, J and L are in MeV and all densities are in units [fm−3].

ρ0 E0/A J L ρth(Λ) ρth(Ξ−) ρth(Ξ0) ρcentral(NSmax) Yp(cal) YDUrca(min)

0.15 −15 28 44 0.57 0.58 0.73 0.90 0.30 0.28

0.16 −15 28 44 0.59 0.60 0.80 0.95 0.29 0.28
−15 30 50 0.58 0.59 0.77 0.94 0.31 0.28
−15 31 54 0.58 0.59 0.75 0.93 0.32 0.27
−16 28 42 0.59 0.60 0.78 0.95 0.30 0.29
−16 29 45 0.58 0.59 0.77 0.94 0.30 0.29
−16 31 51 0.58 0.59 0.74 0.92 0.31 0.28
−17 28 42 0.59 0.60 0.77 0.94 0.30 0.30
−17 29 45 0.58 0.59 0.75 0.94 0.30 0.29
−17 31 51 0.58 0.59 0.73 0.91 0.31 0.27
−18 31 50 0.57 0.58 0.72 0.90 0.31 0.27

0.17 −15 28 44 0.61 0.63 0.87 0.95 0.27 0.27
−15 29 47 0.61 0.63 0.87 0.95 0.27 0.27
−15 30 50 0.60 0.61 0.83 0.95 0.29 0.26
−15 31 53 0.59 0.60 0.82 0.95 0.30 0.26
−16 29 46 0.61 0.62 0.84 0.95 0.28 0.27
−16 30 49 0.60 0.61 0.82 0.95 0.29 0.27
−16 31 52 0.59 0.60 0.80 0.95 0.30 0.27
−17 30 48 0.59 0.61 0.81 0.95 0.30 0.27
−17 31 51 0.59 0.60 0.79 0.95 0.31 0.27
−17 32 54 0.59 0.60 0.78 0.95 0.32 0.27
−18 29 44 0.60 0.61 0.82 0.95 0.29 0.28
−18 30 47 0.59 0.60 0.81 0.95 0.30 0.28

FIGURE 11 | Density dependence of the minimal proton fraction (grey),
required for the onset of the nucleonic DUrca cooling process (see Equation
22) and the computed proton fraction in the NS core (green) for a selected set
of NM parameters. The shadowed areas show the spread due to
uncertainty -15 ≤ E0/A ≤ -18 MeV. The black dashed rectangle shows the
threshold density for onset of the Λ and Ξ hyperons. The blue one indicates
the central density of the NS. For details see Table 1 and the text.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org June 2022 | Volume 9 | Article 90300713

Stone et al. Nuclear Symmetry Energy and Hyperonic Stars

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


• The hyperonic threshold densities, satisfying the condition
that Λ hyperon appears at lower baryon number density
than that heavier hyperons, are predicted for ρ0 between
0.15 and 0.17 fm−3 with J between 27 and 31 MeV.

• The conditions for the onset of DUrca process are satisfied
for ρ0 between 0.15 and 0.17 fm−3 with J between 28 and
32 MeV.

• The condition for K being less than 300 MeV restricts E0/A
to between -15 and -16 MeV.

In conclusion, only two sets, ρ0 = 0.16 fm−3, E0/A = -15 or
-16 MeV and J = 31 MeV, were found to comply with all
constraints. Considering the mesh size used, these results
considerably narrow the ranges of the QMC-A coupling
constants to 9.5 ≤ Gσ ≤ 10.0 fm2, 5.8 ≤ Gω ≤ 6.1 fm2 and
3.35 ≤ Gρ ≤ 3.45 fm2. We find a weak dependence on J in
most scenarios, in particular in NS. The variation in E0/A has
less that 15% influence on most calculated quantities. These
results based on existing evidence and with no fine tuning of
the QMC-A model are remarkably close to the general consensus
on the NM parameters, supporting the model and broadening its
predictive power. The results further emphasize correlations
between the NM parameters and the dangers of choosing one
without considering the consequences for the other two.

Future progress in this research would be much advanced by
new, precise data on Σ and Ξ hypernuclei, yielding the hyperonic
single-particle potential. Improved limits on the maximum
gravitational mass and radius of cold NS and the radius of low
mass stars is also called for. Further development of the QMC
model, for example including the effect of overlapping quark bags
at high density, is underway potentially leading to further
narrowing down of the parameter space of NM.
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