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Various space missions and observations over the past decades have provided
unexampled details about the nature of solar wind, the acceleration mechanism, and
different nonlinear phenomena responsible for energy transfer and turbulence in the
interplanetary space. This review focuses on the role of Alfvénic fluctuations—both
kinetic Alfvén wave (KAW) and dispersive Alfvén wave (DAW)—in driving solar wind
turbulence and magnetic reconnection at 1 AU. The process of filamentation has been
studied through a nonlinear coupling system of KAW/IAW (ion acoustic wave) and relatively
high-frequency pump KAW (HKAW, i.e., frequency less than ion cyclotron frequency) in the
presence of LKAW (low-frequency KAW, i.e., frequency very much less then ion cyclotron
frequency) perturbation by formulating their dynamical equations in the presence of
ponderomotive force and using the numerical results for the same. A simplified model
is presented to have a deeper insight into the evolution pattern using the results of
simulation. The formation of coherent structures and current sheets using a numerical and
semi-analytical approach is elaborated near the magnetic reconnection sites. In addition to
this, the relevance of the generated turbulence is also depicted through the energy
spectrum by examining the spectral index which is noticeable in determining the
energy cascade down to smaller scales.
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INTRODUCTION

Solar wind predominantly permeates the whole heliosphere, providing an indispensable medium to
study collisionless plasma. It develops a strong turbulent character on expansion, and for decades,
intensive efforts have been directed to understand solar wind and its turbulent nature through
various space missions like SOHO (Solar Heliospheric Observatory), Ulysses, Voyager, Helios,
Yohkoh, FREJA, POLAR, FAST, Cluster, and TRACE (Transition Region and Coronal Explorer).
Emanating from the solar corona and expanding outward into space (Parker, 1958), solar wind acts
as a natural laboratory (Bruno and Carbone, 2013) for in situ spacecraft measurements to investigate
solar wind turbulence. To understand the turbulent system and perform multipoint measurements,
the NASA MIDEX mission HelioSwarm is in a Phase-A study (Klein, 2019; Spence, 2019;
Hautaluoma and Fox, 2020). The latest NASA mission, the Parker Solar Probe, is designed to
probe the mechanisms leading to acceleration of solar wind. At the closest approach to the Sun, the
Parker Solar Probe has progressed one step toward reaching the Sun to explore the mysteries of the
evolution of the Sun and provide deeper insights into the flow of energy from the solar corona to the
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accelerating solar wind. The evolution of astrophysical
environments is significantly affected by the turbulent cascade
of energy and, so to identify with the dynamics of energy
dissipation, is therefore of cardinal importance to the
astrophysics communities.

In a turbulent medium like solar wind, the magnetic field lines
constantly break and reconnect at some scales (Franci et al., 2017;
Mallet et al., 2017; Vech et al., 2018), making magnetic
reconnection an inherent part of a turbulent cascade. This
process is associated with the release of large amount of
energy and is responsible for the transfer of energy between
different length scales, thereby leading to the acceleration of
particles in solar wind (Lazarian et al., 2020). This review
presents an outline of the solar wind plasma portraying the
influence of the nonlinear wave–wave interactions (Kraichnan,
1965; Howes & Nielson, 2013; Iroshnikov P.S., 1964; Pezzi et al.,
2017a, 2017b; Roberts et al., 2017; Narita, 2018; Roberts et al.,
2022) and their role in understanding the nature of turbulence
through the transfer of energy from large scales to smaller scales.
The understanding of mechanisms which play a decisive part in
creation of astrophysical environments through the dissipation of
turbulent energy to heat has always been an issue of debate.
Different schools of thought have structured this debate. In the
first, Alfvénic turbulence is considered one of the processes
responsible for the transfer of energy (Coleman, 1968;
Isenberg and Hollweg, 1982; Tu et al., 1984; Hu et al., 2000;
Isenberg, 2004). Being low-frequency magnetohydrodynamic
(MHD) modes and difficult to dissipate, they are able to
permeate the whole solar atmosphere and are ubiquitously
present in the solar wind. An illustrative characteristic of
magnetized turbulence is the propensity to form sheets of
current density that are liable to magnetic reconnection
(Matthaeus & Lamkin, 1986; Biskamp & Welter, 1989;
Dmitruk & Matthaeus, 2006; Retinò et al., 2007; Servidio
et al., 2009; Comisso and Sironi, 2019). These reconnecting
current sheets are typical sites of particle acceleration and
magnetic energy dissipation (Dmitruk et al., 2004).
Concurrently, it has long been known that particles can gain
energy through random scattering by turbulence fluctuations
(Kulsrud & Ferrari, 1971). Therefore, turbulence fluctuations
and magnetic reconnection work in alliance, and for a
comprehensive understanding of the physics in a turbulent
surrounding we need to have a detailed examination of their
interplay.

The solar wind is inhabited by Alfvénic fluctuations spanning
from fraction of a second to several hours. Their presence in the
astrophysical plasma is endorsed by various observational
evidences (Belcher and Davis, 1971; Cirtain et al., 2007; He
et al., 2009; Okamoto et al., 2007). The restoring force and
inertia for the Alfvén wave are provided by the magnetic
tension and the ion mass, respectively. Ideal MHD equations
administer the propagation of this non-dispersive Alfvén wave
which is now called the shear Alfvén wave. The Alfvénic wave
disturbance moves with no attenuation with distance along the
background magnetic field, and this remarkable property has
important ramifications for the transport of energy in plasma
fluids. The nonlinear phenomena are of prominent interest to

properly assess the acceleration and transportation of the
particles in the solar wind. Alfven waves may come across
instabilities and may convert into other dispersive modes
which may provide a pathway to carry large amounts of
energy and then dissipate it as heat (Bogdan et al., 2003).

When the Alfven waves attain wavelengths comparable to the
ion gyroradius in the direction perpendicular to the background
magnetic field, they are known as kinetic Alfvén waves (KAWs)
(Podesta, 2013; Narita et al., 2020). KAWs are believed to play an
indispensable role in particle heating and acceleration
mechanisms (Wu, 2003; Wu and Chao, 2004). The transfer of
energy fromMHD scales to kinetic scales is also possible through
the interaction of KAWs with large-scale MHDwaves (Zhao et al,
2011). The in situ measurements in the solar wind back up the
idea of an Alfvén wave turbulent cascade in the perpendicular
direction at the ion or electron scales producing the KAWs
(Howes et al., 2008a, Howes et al., 2008b, Howes et al., 2011;
Alexandrova et al., 2013; Sahraoui et al., 2009; Zhao et al., 2013).
KAWs are also dominating at proton kinetic scales (He et al.,
2009; Roberts et al., 2017) and also shorter scales (Chen et al.,
2010a). In addition, they can also couple with high-frequency
modes (Zhao et al., 2013). The shear and kinetic Alfvén waves
account for various nonlinear effects like parametric processes
such as three-wave decay interactions, modulational instability,
and the background plasma number density being modified by
the ponderomotive force of the Alfvén wave. The nonlinear
interaction of the KAW and shear Alfvén wave has been
intensively studied by many authors and energy transfer
processes so as to interpret the observations to have a deeper
insight into the turbulent cascade of energy (Zhao et al., 2013).
With the finite frequency correction, i.e., when the frequency of
the Alfven wave becomes comparable to but less than the ion
cyclotron frequency, we get circularly polarized dispersive Alfven
waves (DAWs). This dispersion of the wave also occurs when the
wavelength is around the ion inertial length, which many authors
(Meyrand & Galtier, 2012; Ghosh, et al., 1996) consider the Hall
term, and this Hall term contributes significantly to the transfer of
energy over and across the small scales as well as has an important
role in the increased reconnection rate (Shay et al., 2001; Smith
et al., 2004). The interaction of these dispersive Alfvén waves
undergoing filamentation with the pre-existing chain of magnetic
islands may also contribute toward the turbulent cascade of
energy in the solar wind.

Nonlinear processes being dominant in the transfer of energy
from long wavelength magnetic fluctuations to shorter
wavelengths, the study of the frequency spectrum is of utmost
importance to unravel the nature of turbulent plasma. The energy
spectrum depicting the turbulence scaling comprises the energy
injection scales followed by the energy-containing scale, known as
the forcing range or injective range, marking the energy source.
Next, the “inertial range,” also called the intermediate range,
marks the energy transfer process to smaller scales. This range is
often described as the “dissipation range,” “dispersion range,” or
the “scattering range.” In this range, the fluctuations are
converted to thermal energy, thereby causing the heating of
particles. For magnetic fluctuations at very large scales (i.e. f ≤
10–4 Hz), the power spectra go as k −1. This range is the energy
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reservoir feeding the turbulent cascade and so called the 1/f range
(Matthaeus and Goldstein 1986; Chandran 2018; Matteini et al.,
2018). Various measurements account for the Kolmogorov k−5/3

spectrum in the inertial range (10−3 Hz ≤ f ≤ 10−1Hz) followed by
steepening at ion kinetic scales. A spectral break appears around
kρs >1 (where ρs is the ion gyroradius), and the spectral index lies
between -2 and -5 (Bale et al., 2005; Shaikh and Shukla, 2009;
Sahraoui et al., 2009). Between the ion scales and the electron
scales, a small scale turbulent cascade is established (Alexandrova
2009). As the turbulent cascade crosses the ion scales and before
reaching the electron scales (i.e. 3 ≤ f ≤ 30 Hz), the magnetic
spectra follow ~ k−2.8 (Alexandrova et al., 2009; Chen et al., 2010a;
Sahraoui et al., 2010). The spectral index is conspicuous of the
energy transfer phenomena. Many pioneering works have been
carried out to understand the dynamics and the different
nonlinear processes responsible for this steepening (Leamon
et al., 2000; Sahraoui et al. 2010; Rudakov et al., 2011).

The prime candidates contributing to the spectral properties
and the steepening of the spectra are the various nonlinear
processes like transverse collapse or filamentation due to
KAW, its interaction with other wave modes, and/or the
formation of coherent (magnetic) structures resulting from the
current sheets. In the literature, the analysis of the field
fluctuations from the proton to the electron scales shows the
presence of current sheets or possible coherent structures of sub-
proton scales which are possible sites of magnetic reconnection
and energy dissipation (Perri et al., 2012). The current sheets may
be formed self-consistently from the Alfven wave-driven
turbulence as discussed by Tanbarge & Howes, (2013). These
coherent structures play an important role in driving the
nonlinear transfer of energy to the smaller scales as they make
some additional self-consistent energy injection available (Ma
et al., 1995; Sturrock et al., 1999) and thus support the
continuation of the turbulence over the smaller scales (Cerri &
Califano, 2017). Therefore, it is required to further examine if this
turbulent energy transfer across and below the ion scales takes
place as a result of instabilities or some other mechanism such as
magnetic reconnection that causes the formation of coherent/
localized structures or if it is both. A plethora of studies show that
instabilities such as those driven by the temperature anisotropy
(Gary and Lee, 1994; Verscharen et al., 2014), stream-shear-
driven instabilities (Roberts et al., 1992), and parametric
instabilities (Longtin and Sonnerup, 1986; Brodin and Stenflo,
1988; Viñas and Goldstein, 1991; Stenflo and Shukla, 2007;
Primavera et al., 2019) such as filamentation, all may possibly
lead to the dissipation of solar wind turbulence. At the same time,
observations also show that reconnection can typically cause
turbulence in the solar wind (Vörös et al., 2014). The spectral
scaling of these fluctuations driven by the reconnection flow
(obtained using the WIND spacecraft data) bears resemblance
with the observations in the inertial and dispersive regime of the
solar wind. Thus, these two processes, that is, turbulence and
magnetic reconnection, work in alliance, and an associative study
is required to be carried out.

Here, we revisit the nonlinear effects caused by dispersive
Alfvén waves and KAWs to comprehend the dynamics of solar
wind turbulence. Part A discusses the nonlinear effects and the

turbulence due to the KAW presenting the effect of initial
conditions on the spectra and the detailed explanation
governing the evolution pattern through a simplified model. In
part B, we study the nonlinear evolution of dispersive Alfvén
waves in the vicinity of pre-existing chains of magnetic islands.
The wave becomes dispersive due to the wave frequency which is
finite but less than the ion cyclotron frequency.

A. TURBULENCE DUE TO THE KINETIC
ALFVÉN WAVE

Many simulations backed up with observations have led to a
deeper understanding of turbulence at 1 AU (Howes and
Quataert, 2010; Sahraoui et al., 2010; Narita et al., 2020)
unwinding the energy transfer processes. This section
predominantly focuses on the role of KAWs in understanding
the dissipation of energy through different nonlinear processes.
One of the processes leading to energy transfer is filamentation or
transverse collapse which has been widely investigated. The
sensitivity of the nonlinear coupling of KAWs/IAWs resulting
in the transverse collapse on different initial conditions is
addressed. Considering the wave propagation in the x–z plane
and background field B0ẑ and using a two-fluid model, the
following system of equations is derived in the dimensionless
form (Gaur and Sharma, 2015):

i
zBy

zt
+ i

zBy

zz
+ 2ic1

zBy

zx
+ z2By

zx2 + c2
z2By

zz2
+ nBy � 0,

z2n

zt2
− z2

zt2
z2n

zx2 − β
z2n

zz2
� − z2

zt2
z2

zx2

∣∣∣∣By

∣∣∣∣2 − β
z2

zz2
∣∣∣∣By

∣∣∣∣2.
(1)

The localized structures of KAWs with the magnetic field By in
the transverse direction are studied at 1 AU under different initial
conditions by performing numerical simulation of this set of
equations. Here, c1 � k0xρs, c2 � k20xρ

2
s /4, and β � c2s /V

2
A. The

equation is normalized using the parameters xn � ρs, zn � 2/k0z,
tn � (2ω/V2

Ak
2
0z), nn � n0, and

Bn � [{1 − η(1 + δ)}V2
Ak

2
0z/16πn0Tω

2]−1 /2. Here, η � ω2

ω2
ci

and
δ � mek20x

mik20z
, and Te + Ti � T, k0x is the perpendicular wave vector

component and k0z is the parallel wave vector component to ẑB0,
whereω refers to the KAW frequency, cs is the acoustic speed,VA is
the Alfvén speed, and ρs is the ion acoustic gyroradius. Three
different perturbations imposed on a uniform plane KAW are
periodic perturbation (IC-1), Gaussian perturbation (IC-2), and
the third random perturbation (IC-3):

IC − 1 By(x, z, 0) � By0(1 + ε cos(αxx))(1
+ ε cos(αzz)) and n(x, z, 0)

� ∣∣∣∣By(x, z, 0)
∣∣∣∣2

IC − 2 By(x, z, 0) � By0(1 + ε exp(−x2

r201
))(1 + ε exp(−z2

r202
))

IC − 3 By(x, z, 0) � By0(1 + ε exp(2πiθ(x)))(1
+ ε exp(2πiθ(z)))
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Here, the initial amplitude of the main KAW is By0 � 1, ε �
0.1 is the magnitude of the perturbation, r01 (normalized by xn) is
the transverse scale size of the perturbation, r02 (normalized by
zn) is the longitudinal scale size of the perturbation, and θ(x) and
θ(z) are the random variables uniformly distributed on [0,1]
(Sharma et al., 1996). The random value for theta is attributed at
each grid point in the x–z plane. A seed value was initially
provided, and random variables were generated and uniformly
distributed on [0,1] in the x–z plane.

Figures 1A–3A,C present the simulation results indicating the
splitting of pump KAW at different instances of time with
periodic, Gaussian, and random perturbation forms,
respectively, in real space alongside contour plots in the
Fourier space, i.e., Figures 1B–3B,D. The figures demonstrate
that there is no regularity in the filament formation with the
formation of the most intense structures at the early time and an
increase in complexity at later times. The contour plot shows the
dependence of |Byk|2 on Fourier modes. As is noticeable in these
figures, the filamentary structures obtained have different
intensities and patterns. Also, there is a varied scale size of the
structures under the three initial conditions (≈ 0.3ρs with
periodic, ≈ 1.6ρs with Gaussian, and ≈ 0.5ρs with random
perturbation). For β > me

mi
, the transverse size of Alfvén vortex

tubes is of the order of ρs (Chmyrev et al., 1988).
Figure 4 illustrates the effect of formation of localized

structures on the wave number spectrum. In the power spectra
obtained by plotting |Bk|2 against k, kx � 0, the scaling law

approaches k−5/3 for k< 1 followed by a spectral break at around
k ≈ 1. The scaling index for k> 1 shows dependence on the initial
conditions being k−2.6 for periodic, k−2.2 for Gaussian, and k−2.6
for the random forms of perturbation.

A Simplified Model: A Deeper Insight Into
the Evolution Pattern of Kinetic Alfvén Wave
Implementing the conditions zxBy >>k0xBy and zzBy <<k0zBy

on the aforementioned system of equations in the un-
normalized form (Sharma et al., 2011a), the dynamics of
the evolution are studied in an extended paraxial regime
semi-analytically. As elaborately discussed by Sharma et al.
(2014), the equation for dimensionless beam width parameter
f0 is obtained as (using normalization distance ξ � Rd,
where Rd � k0zr20):

z2f0

zξ2
� 1
a2f3

0
(1 − 2a20 − 2a0 + 6a1) − R2

dγB
2
00

ar20f
2
0

(1 + a0)

− R2
df0α2

2!
∑64
m�1

nmm
2. (a)

In the RHS of the aforementioned equation, the finite
transverse size of the KAW accounted by the first term causes
diffraction, and the nonlinearity is marked by the last three terms.
The equation represents the interplay of diffraction, and

FIGURE 1 |With IC-1. (A) Normalized intensity profile of the KAWmagnetic field (|B2
y |/B2

n ) at normalized t = 6 (t normalized by tn � (2ω/V2
Ak

2
0z)) in a normalized x–z

plane (x normalized with xn � ρs, and z normalized by zn � 2/k0z ). (B)Contours of normalized |Byk |2 against Fourier modes of KAW at t = 6. (C)Normalized intensity profile
of the KAW magnetic field (|B2

y |/B2
n) at normalized t = 13. (D) Contours of normalized |Byk |2 against Fourier modes of KAW at t = 13. “Reproduced from [(Gaur and

Sharma, 2014), Astrophys Space Sci (2014) 350, https://doi.org/10.1007/s10509-013-17701], with the permission of Springer Publishing.”
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FIGURE 2 |With IC-2. (A) Normalized intensity profile of the KAW magnetic field (|B2
y |/B2

n) at normalized t = 6 (t normalized by tn � 2ω/V2
Ak

2
0z ) in a normalized x–z

plane (x normalized with xn � ρs and z normalized by zn � 2/k0z ). (B) Contours of normalized |Byk |2 against Fourier modes of KAW at t = 6. (C)Normalized magnetic field
intensity profile of KAW at t = 13. (D) Contours of normalized |Byk |2 against Fourier modes of KAW at t = 13. “Reproduced from [(Gaur and Sharma, 2014), Astrophys
Space Sci (2014) 350, https://doi.org/10.1007/s10509-013-17701], with the permission of Springer Publishing.”

FIGURE 3 |With IC-3. (A) Normalized intensity profile of the KAW magnetic field (|B2
y |/B2

n) at normalized t = 6 (t normalized by tn � 2ω/V2
Ak

2
0z ) in a normalized x–z

plane (x normalized with xn � ρs and z normalized by zn � 2/k0z ). (B) Contours of normalized |Byk |2 against Fourier modes of KAW at t = 6. (C)Normalized magnetic field
intensity profile of KAW at t = 13. (D) Contours of normalized |Byk |2 against Fourier modes of KAW at t = 13. “Reproduced from [Gaur et al. (2014), Astrophys Space Sci
(2014) 350, https://doi.org/10.1007/s10509-013-17701], with the permission of Springer Publishing.”
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nonlinear terms indicate the divergence less travel of the wave
when these terms balance each other. The equation for S02 is
obtained as:

zS02
zξ

� − ρ2s
2r20f

6
0
(11a0a1 − 2a30 − 2a20 + 4a1) + γB2

00

4f5
0

+ a1γB2
00

2f5
0

− a0γB2
00

2f5
0

+ r40α
4n1

2(4!) ∑64
m�1

nmm
4. (b)

The Equations for a0 and a1 are expressed as:

za0
zξ

� −12S02f
2
0

ar20
, (c)

za1
zξ

� (8 − 20a0) S02f
2
0

ar20
. (d)

Here, B00 is the initial wave field at z = 0, a0 and a1 are the
coefficients of x2 and x4, respectively, S00 is the slowly varying functions
of x and z, r0 is the transverse scale size of thewave, and γ � 1/B2

n is the
normalization factor. The system of coupled equations (a)-(d) is
numerically solved using the fourth-order Runge–Kutta method for
a plane wave front under initial conditions being f0 = 1 and
df0/dz � 0 at z = 0 and a0 � a1 � 0 at z = 0.

As illustrated in Figure 5. The wave intensity becomes high
when the parameter f0 takes a minimum value and vice versa.
The time dependence in the model is consolidated through the
dependency of n on time (using simulation results). As time

progresses, the intensity and localization pattern of the KAW
changes through the change in density harmonics.

Nonlinear Effects due to KAW
Various wave modes interact with KAW to comprehend the
turbulence in the space plasma. Other wave modes are excited by
the ponderomotive force of KAW which leads to modification in
density resulting in the nonlinear dynamics of KAW. Low-
frequency KAW (LKAW) is also one of the wave modes
present in the plasma, and its excitation by the ponderomotive
force of relatively high-frequency, high-power pump KAW is
analyzed to study its effect on the solar wind turbulence. With
cold plasma assumption and two fluid models (separate ion and
electron motions) in the solar wind regime, the dynamical
equations are formulated and solved numerically to study the
KAW evolution and the power spectra at 1 AU [ Gaur, N and R.P
Sharma, 2014]:
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zz2
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∣∣∣∣2 − c2
z4

zz3zx

∣∣∣∣By

∣∣∣∣2.
This system of equations is solved under the following initial

conditions (ICs) for the magnetic field and density perturbation:

FIGURE4 | Power spectrum of normalizedmagnetic field fluctuations |Bk |2/B2
n
againstk(normalized with ρs). (A)With IC-1 at t = 15. (B)With IC-2 at t = 17. (C)With

IC-3 at t = 15. “Reproduced from [Gaur et al. (2014), Astrophys Space Sci (2014) 350, https://doi.org/10.1007/s10509-013-17701], with the permission of Springer
Publishing.”
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By(x, z, 0) � By0(1 + εeiθ cos(αxx))(1
+ εeiθ cos(αzz))and n(x, z, 0)

� a1 cos(αmxx + αmzz), (IC − 1)
By(x, z, 0) � By0(1 + εeiθ cos(αxx))(1

+ εeiθ cos(αzz))and n(x, z, 0)
� a1(exp( − rxx

2/r201))(exp( − rzz
2/r202)), (IC − 2)

By(x, z, 0) � By0(1 + εeiθ cos(αxx))(1
+ εeiθ cos(αzz))and n(x, z, 0)

� a1(exp( − x2/r201))(exp( − z2/r202)). (IC − 3)

The initial amplitude of the pump wave is By0 � 1, a1 � 0.1
for density perturbation at t = 0, and ε represents the
magnitude of the perturbation. The normalized transverse
and longitudinal scale size of the perturbation is r01 and r02,
respectively. Here, rx and rz are the random variables
uniformly distributed on [0,1].

The filamentation process giving rise to strong magnetic
filaments parallel to the ambient field is demonstrated under
three initial conditions. The effect of the perturbation wave
number is shown in the Figures 6–8 under different initial
conditions. It exemplifies the dependence of nonlinear
evolution patterns on the values of αx, αz, and as shown, the
structures become highly irregular and random with increased
values of the perturbation wave number.

FIGURE 5 | Normalized magnetic field intensity distribution (|B2
y |/B2

n) of the wave from the (1) Simplified model and (2) Numerical simulation in a normalized x–z
plane ((x normalized with xn � ρs and z normalized by zn � 2/k0z ), at (A) t = 9, (B) t = 11, and (C) t = 12. “Reproduced from [(Sharma and Gaur, 2014), Physics of Plasmas,
21, 042,302, http://dx.doi.org/10.1063/1.4870500], with the permission of AIP Publishing.”
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The energy distribution is further illustrated in the contour plots
of Byk in the (kx, kz) Fourier space in Figure 9 which clearly
highlight the confinement of energy to low kx, kz wave numbers at
initial times and its distribution to higher wave numbers at later
times (energy flow from larger scales to smaller scales).

Finally, the averaged power spectra for all the three initial
conditions are also shown to analyze the energy transfer through
the localization process in Figure 10A with IC-1 and Figure 10B
with IC-2 and IC-3. For k< 1, the power spectrum nearly follows
the Kolmogorov scaling, and for k> 1, the power spectrum shows
steepening (for reference, the green line with a spectral index of
nearly -2.6 is shown, indicating that this nonlinear interaction
may lead to the distribution of energy at k > 1 (Saharoui, 2012).

The role of kinetic Alfvén turbulence in collisionless high beta-
plasmas is well documented, and the present model may be a step
further to understand the turbulence in the solar wind (Boldyrev
and Perez, 2012; Howes et al., 2008b).

B. Magnetic Island-Based Dispersive Alfvén
Wave Model

Since turbulence and magnetic reconnection work in alliance,
therefore for a comprehensive study, it is important to examine
their interplay. For this, we consider the existence of a fully
developed pre-existing chain of magnetic islands in the
background of the parallel propagating dispersive Alfvén
wave. The dispersion in the wave is considered due to the
wave frequency which is finite but less than the ion cyclotron
frequency. For the study, a uniform background magnetic field
(B 0 z) is considered in the z direction, and the magnetic field
(δBy) as a result of the magnetic islands is assumed along the y
direction. Therefore, our wave (DAW) subjected to a
transverse instability or filamentation is propagating in the
vicinity of the total magnetic field, �B0 � B0zẑ + δBy(x, y)ŷ. The
wave dynamical equation in terms of dimensionless flux

FIGURE 6 |Normalized magnetic field intensity of wave |B2
y |/B2

n in a normalized x–z plane (x normalized with xn � ρs and z normalized by zn � 2/k0z with IC-1 for (A)
αx , αz � 0.2, (B) αx , αz � 0.1, and (C) αx , αz � 0.4. “Reproduced from [(Gaur and Sharma, 2015), J. Geophys. Res. Space Physics, 120, 2,397–2,408, doi:10.1002/
2014JA020771], with the permission of AGU Publishing.”

FIGURE 7 | Normalized magnetic field intensity of wave |B2
y |/B2

n in a normalized x–z plane (x normalized with xn � ρs and z normalized by zn � 2/k0z ) with IC-2 for
(A) αx , αz � 0.2, (B) αx , αz � 0.1, and (C) αx , αz � 0.4. “Reproduced from [(Gaur and Sharma, 2015), J. Geophys. Res. Space Physics, 120, 2,397–2,408, doi:10.1002/
2014JA020771], with the permission of AGU Publishing.”
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function is obtained using a two-fluid model as follows
(Sharma et al., 2020):

i
z ~A 1

z z
+ c 1 (z 2 ~A 1

z x2
+ z 2 ~A 1

zy2
) − 2 ( − (x + x 0 1)2

2

− (x − x 02)2
2

+ b 0 1 cos (k 1
′y) + b 0 2 cos (k 2

′y)) ~A 1

+ ∣∣∣∣ ~A 1

∣∣∣∣2 ~A 1 � 0.

In the aforementioned equation, ~A 1 is the right circularly
polarized DAW amplitude, c 1 � 1

2 k 2− λ 2
i
(1 + ε−00

ε0zz
) is constant, λ i �

c/ωpi is the ion inertial length, ρ s � cs/ωci is the ion gyroradius,
k− � ω0

c ε
1/2−00 is the wave number of propagation, ε− 0 0 � ω2

p e

ωc e(ω0+ωc i) is
the linear part of dielectric, and ω0 is the frequency of DAW. Here,
x01 � x02 � 0.1, k1′ � k2′ � 0.2, b01 � 0.5 and b02 � 0.3 are the
magnetic island parameters with b 0 1, b 0 2 as the magnitude of
the perturbation and k 1

′ , k 2
′ is the wave number of perturbation of

the magnetic island. The normalization parameters are: xn � yn �
λi, zn ≈ 2/k−, nn � n0, An � 0.1/

��
α0

√
, where

α0 � ω2
piω

2
0

32πn0c2T(ω2
ci−ω2

0) (1 −
ω0
ωci
). The last two terms of the

aforementioned equation are the fluctuations attributable to the

FIGURE 8 | Normalized magnetic field intensity of wave (|B2
y |/B2

n) in a normalized x–z plane (x normalized with xn � ρs and z normalized by zn � 2/k0z ) with IC-3 for
(A) αx , αz � 0.2, (B) αx , αz � 0.1, and (C) αx , αz � 0.4. “Reproduced from [(Gaur and Sharma, 2015), J. Geophys. Res. Space Physics, 120, 2,397–2,408, doi:10.1002/
2014JA020771], with the permission of AGU Publishing.”

FIGURE 9 | Contours of normalized |Byk |2 in kx , kz space for pump KAW at (A) t = 20 and (B) t = 32. “Reproduced from [(Gaur and Sharma, 2015), J. Geophys.
Res. Space Physics, 120, 2,397–2,408, doi:10.1002/2014JA020771], with the permission of AGU Publishing.”
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existence of magnetic islands and density perturbations,
respectively.

For typical solar wind parameters, B 0 ≈ 6.2 × 10− 5 G,
Te ≈ 1.4 × 105 K, T i ≈ 5.8 × 105 K, and n 0 ≈ 3 cm− 3 (Wilson
et al., 2018), the dynamical equation is solved numerically under
the following initial condition:

~A1(x, y, z � 0) � cos(2x + 2.3) + cos(y + 4.1).
The numerical value of the wave parameters is calculated

as ωci ≈ 0.594 Hz, VA ≈ 7.815 × 106 cm/s,
cs ≈ 7.713 × 106 cm/s, ωpe ≈ 9.767 × 104 Hz,
ρ s � 1.298 × 107 cm, and λ i � 1.315 × 107 cm. For the
wave with frequency, ω 0 ≈ 0.8ω ci, the wave number is k− �
4.531 × 10−8cm−1.

The results depict that the fluctuations in the field occurring due
to the existence of the chain of magnetic islands may induce
localization, and the amplitude of these localized structures
increases with z as shown in Figure 11. As clearly visible from
the contour plot in Figure 11, the symmetry in the patterns is
maintained only at the early stages, and as we evolve along z, this
symmetry is broken, and highly irregular structures are obtained.
The characteristic scale size of these coherent/localized structures is
of the order of ion inertial length scales. For DAW propagating
under the influence of both the factors, that is, density fluctuations
as well as magnetic islands, these localized structures seem to be
more intense and well evolved (Figure 12) compared to the case
when DAW was propagating under the influence of magnetic
islands only. Thus, these results clearly depict that nonlinearity

FIGURE 10 | (A) Ensemble averaged normalized wave number spectrum of pump KAW |Bk |2/B2
n
against k (normalized with ρs). “Reproduced from [(Gaur and

Sharma, 2015), J. Geophys. Res. Space Physics, 120, 2,397–2,408, doi:10.1002/2014JA020771], with the permission of AGU Publishing.” (B) Ensemble averaged
normalized wave number spectrum of pump KAW |Bk |2/B2

n
against k (normalized with ρs) obtained in a quasi-steady state with IC-2 (black line) and IC-3 (blue line).

“Reproduced from [(Gaur and Sharma, 2015), J. Geophys. Res. Space Physics, 120, 2,397–2,408, doi:10.1002/2014JA020771], with the permission of AGU
Publishing.”
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supports the formation of localized structures, thereby aiding the
generation of turbulence.

The localized structures unveil the turbulent behavior that
may further result in the development of current sheets. The
current density plot of DAW as shown in Figure 13 explains that
in the beginning, there is a symmetrical distribution of current in
the x–y plane, but for larger z, it grows into several asymmetric

and irregular structures. The size of these current sheets is found
to be of the order of sub-ion scale length.

The power spectrum of DAW (Figure 14) shows that the
energy distribution takes place from larger length scales to
smaller length scales. For k λi ≈ 1, the fluctuations start
deviating from the typical Kolmogorov’s scaling, and the spectra
go steeper beyond the ion inertial length ( k λi > > 1 ). The

FIGURE 11 | (I)DAW localization (normalizedmagnetic vector potential |A1|/An ) and (II) contour of DAW-normalizedmagnetic vector potential (|A1|/An) in a normalized
x–y plane (x and y axis is normalized by λ i ) at three snapshots of normalized z (normalization constant zn ≈ 2/k−), (A) z = 0, (B)z = 4, and (C) z = 8, respectively, when only
magnetic islands are present. “Reproduced from [(Sharma et al., 2020),Physics of Plasmas, 27, https://doi.org/10.1063/1.5142893], with the permission of AIP Publishing.”

FIGURE 12 | (I) DAW localization (normalized magnetic vector potential |A1|/An ) and (II) contour of DAW-normalized magnetic vector potential (|A1|/An) in a
normalized x–y plane (x and y axis is normalized by λ i ) at three snapshots of normalized z (normalization constant zn ≈ 2/k−), (A) z = 0, (B)z = 4, and (C) z = 8, respectively,
when magnetic islands and perturbation in the background density are present. “Reproduced from [(Sharma et al., 2020), Physics of Plasmas, 27, https://doi.org/10.
1063/1.5142893], with the permission of AIP Publishing.”
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observed scaling exponents bear resemblance with the observations
in the inertial and dispersive regime in the solar wind (Alexandrova
et al., 2008; Voros et al., 2014). Although the study is restricted to
limited dispersion of the wave and nonlinear evolution of the
perturbation, it does provide an assessment of the turbulent energy
transfer and coherent structures/current sheet formation in the
vicinity of magnetic islands and the ponderomotive nonlinearity
which is useful for future studies.

Semi-Analytical Method
For a better insight into the development of coherent structures and
to determine their scale size, a semi-analytical approach is adopted
for the aforementionedmodel equation as discussed by Sharma et al.,
2020. Within the paraxial limit (x< < r 01 f 1 and y < < r 02 f 2),
where r 01 and r 02 are the transverse scale size of the DAW,
following Akhmanov et al. (1967), the dimensionless beam width
parameters f1andf2 can be obtained as:

FIGURE 13 | DAW-normalized current density for different z, (A) z = 0, (B) z = 2, and (C) z = 5 when the magnetic islands and perturbation in the background
density are present. “Reproduced from [(Sharma et al., 2020), Physics of Plasmas, 27, https://doi.org/10.1063/1.5142893], with the permission of AIP Publishing.”

FIGURE 14 | Normalized saturated average wave number spectrum of DAW showing the distribution of energy over length scales when magnetic islands and
background density perturbations are existing. In the figure, we plot (A) 〈|A1k |2〉/A2

n versus k �
�������
k2x + k2y

√
(here kx and ky are normalized by λ i ) using nine spectra,

i.e., between z = 24 and z = 32 and (B) 〈|A1k |2〉/A2
n versus the wave number kx (normalized by λ i ) using seven spectra, i.e., between z = 25 and z = 31. “Reproduced from

[(Sharma et al., 2020), Physics of Plasmas, 27, https://doi.org/10.1063/1.5142893], with the permission of AIP Publishing.”
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d2f1

dz2
� 1
4
(1 + ε−00/ε0zz)2( 1

f3
1

− 4R2
d1λ

2
i f1(λiρs)2(1 + ε−00/ε0zz)

− 2 � |E00|2R2
d1α0

r201f
2
1f2(1 + ε−00/ε0zz) exp(α0|E00|2

f1f2
)),

d2f2

dz2
� 1
4
(1 + ε−00/ε0zz)2( 1

f3
2

− 4 × 0.04R2
d2λ

2
i (b01 + b02)f2(λiρs)2(1 + ε−00/ε0zz)

− 2|E00|2R2
d2α0

r202f
2
2f1( + ε−00/ε0zz) exp(α0|E00|2

f1f2
)),

where R d 1 � k− r201 andR d 2 � k− r202 and E 00 is the amplitude
of the wave. The aforementioned equations are solved using the
Runge–Kutta method under the initial conditions df1

d z � df2

d z �
0 at z � 0 andf1 � f2 � 1 at z � 0.

On the right-hand side of the aforementioned equations,
the opposite sign between the first and last two terms
indicates that they behave contrary. The first term is the
diffraction due to DAW, and the last two terms show
convergence due to nonlinearity and magnetic islands. A
competition between them goes on until the converging
effects dominate the divergence leading to the localization
of DAW. The result in Figure 15 shows that the localization
of the wave occurs in both the planes, but the distribution of
these structures is uneven due to different rates of diffraction
and nonlinearity.

To calculate the critical scale size, we equate the diffraction and
convergence term and when only magnetic islands are present, it
is found to be: r01 � (ρ2s(1 + ε−00/ε0zz)/4k2−)1/4 �
1.195 × 107cm: r02 �
(ρ2s(1 + ε−00/ε0zz)/4 × 0.04(b01 + b02)k2−)1/4 � 2.827 × 107 cm .
If we plot the critical scale size versus DAW field strength, we
see that with the DAW field, the scale size also varies. Thus, the

coherent structures ranging from few proton scales to sub-proton
scales may be formulated by changing the strength of DAW. In a
similar manner, we can find out the critical scale size when
ponderomotive nonlinearity as well as magnetic islands are present.

SUMMARY AND CONCLUSION

In this review, we have discussed the role of kinetic Alfvén waves
and dispersive Alfvén waves interacting with the surrounding,
nonlinearities, other low-frequency modes, and pre-existing
chain of magnetic islands in the evolution of solar wind
turbulence. Amongst the different validated processes for
explaining the small-scale physics, emphasis is given on the en
route generated coherent or localized structures which lead to the
turbulent behavior and transfer of energy along and across the ion
scales. The background vicinity and initial conditions affect the
evolution of these structures, but the energy transfer continues to
occur from larger length scales to smaller length scales. Although
some variation in the spectral index is observed due to these
effects, it lies within the observed spectral range of the solar wind
turbulence, that is, ~1.41.7 for large scales and ~2.62.8 for small
scales. As indicated by the observations, a reconnection flow can
also generate turbulence in the solar wind, and the magnetic
reconnection (magnetic island sites) may customize the plasma
conditions such that several dissipation mechanisms may
contribute to the evolution of the solar wind (Voros et al.,
2014). Thus, solar wind turbulence is a result of various
nonlinear processes like transverse collapse or localization due
to KAW, its interaction with other wave modes, and/or the
formation of coherent (magnetic) structures resulting from the
current sheets, and all these processes gives solar wind turbulence
the structure it is found in.

FIGURE 15 | DAW normalized vector potential in the presence of magnetic islands as well as perturbation in the density in the (A) x–z plane (fixed y) and (B)y–z
plane (fixed x) obtained using a semi-analytical model. “Reproduced from [(Sharma et al., 2020), Physics of Plasmas, 27, https://doi.org/10.1063/1.5142893], with the
permission of AIP Publishing.”
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