
CHES robotic observation
software kit

Chen Zhang1,2* and Can Zhu2

1University of Science and Technology of China, Hefei, Anhui, China, 2Purple Mountain Observatory,
CAS, Nanjing, China

CHES (changing event survey) is an optical survey program that not only aims at

searching fast-moving RSOs in the sky for space domain awareness but also

takes other scientific goals into account, such asNEO and transient events. After

the success of the first array located at the Yaoan site in China, it evolved into a

wider network consisting of various types of devices. This study presents a full-

function framework for coordinating observation across such a network. The

robotic observation system takes both extension flexibility and operation

simplicity into account to meet special requirements such as timing,

complex tracking, dynamic scheduling, unique device configuration, and

distributed collaborative observation. Currently, this Python-based system

has been deployed to several sites, supporting observation systems from

single, entry-level telescopes to multiple medium-sized professional

telescopes and performing predefined routing surveys and user-defined

observation for different scientific goals. Some of them run unattended for a

regular survey to maintain the base catalog and produce survey images for

different purposes.

KEYWORDS

robotic telescope control, sensors, optical measurements, telescope network, space
debris, wide field survey

Introduction

Telescope networks and robotic techniques

Astronomy is an observation driven subject oriented by new discoveries. Telescope

networks can play important roles in many aspects of this subject, from high energy

astrophysics to planetary science. As the development of telescope and detector

technology, especially technics related to the robotic observation, more and more

networks have been created to meet various scientific goals.

The International Scientific Optical Network (ISON) (Molotov et al., 2008) from

KIAM is a very successful global optical telescope network with more than 30 telescopes at

more than 20 sites which focus on near-Earth asteroids, space debris, and gamma-ray

burst. KDS Polaris is its integrated telescope control system (TCS) written in C# for high-

performance, fully automated observation within the framework of the survey program

for searching small bodies in the solar system, observation for target designation (both

asteroids and comets and space debris in the Earth orbit), as well as for alert (urgent)

observation of short-lived optical transients, such as optical components of gamma-ray

OPEN ACCESS

EDITED BY

Alberto J. Castro-Tirado,
Institute of Astrophysics of Andalusia
(CSIC), Spain

REVIEWED BY

Francesco Berrilli,
University of Rome Tor Vergata, Italy
Ignacio Olivares,
Institute of Astrophysics of Andalusia,
(CSIC), Spain

*CORRESPONDENCE

Chen Zhang,
zhangchen@pmo.ac.cn

SPECIALTY SECTION

This article was submitted to
Astronomical Instrumentation,
a section of the journal
Frontiers in Astronomy and Space
Sciences

RECEIVED 15 March 2022
ACCEPTED 12 September 2022
PUBLISHED 30 September 2022

CITATION

Zhang C and Zhu C (2022), CHES
robotic observation software kit.
Front. Astron. Space Sci. 9:896570.
doi: 10.3389/fspas.2022.896570

COPYRIGHT

© 2022 Zhang and Zhu. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Astronomy and Space Sciences frontiersin.org01

TYPE Original Research
PUBLISHED 30 September 2022
DOI 10.3389/fspas.2022.896570

https://www.frontiersin.org/articles/10.3389/fspas.2022.896570/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.896570/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2022.896570&domain=pdf&date_stamp=2022-09-30
mailto:zhangchen@pmo.ac.cn
https://doi.org/10.3389/fspas.2022.896570
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2022.896570


bursts afterglow. In addition, another Python-based distributed

client–server architecture TCS Forte (Kouprianov and Molotov,

2017) is developed to enable extreme flexibility and scalability to

a wide range of sensor apertures and configurations. The Burst

Observer and Optical Transient Exploring System (BOOTES)

(Castro-Tirado et al., 1998) from IAA is a network of 60-cm

telescopes to quickly observe transient events within seconds or

minutes of being detected by scientific satellites. Its networked

robotic driving system is the well-known Remote Telescope

System, 2nd version (RTS2) (Kubánek et al., 2004), which is

composed of several device servers, central server, and various

observational clients that cooperate over a TCP network. Also,

BOOTES has a remotely accessible system whose TCS is based on

ASCOM under Windows for device compatibility. Télescope à

Action Rapide pour les Objets Transitoires (TAROT) is an

optical network for GRB (Boër et al., 1996) and RSO

observation (Boër et al., 2017). The developed control

software ROS (Klotz et al., 2008) is a set of programs

connected by a web interface. The Gravitational-wave Optical

Transient Observer (GOTO) (Dyer et al., 2020) is a wide-field

telescope network that focuses on detecting optical counterparts

to gravitational-wave sources, which consists of multiple

telescope units with a shared robotic mount. The GOTO

Telescope Control System (G-TeCS) (Dyer et al., 2018)

comprises of multiple independent Python-based control

daemons and a “just-in-time” scheduler, which are supervised

by a master control program. The Arizona Robotic Telescope

Network (ARTN) (Weiner et al., 2018) project is a flexible 1- to 3-

m class telescopes network to carry out monitoring, rapid

responding, and transient/target-of-opportunity following-up

in various domain of astronomy. The project creates an INDI-

based TCS-NG (TCS Next Generation) along with AzCam to

support RTS2 working as a control system. The Stellar

Observations Network Group (SONG) (Grundahl et al., 2008)

is a global network of 1-m telescopes to be able to observe single

objects continuously for days, weeks, and even months. The

overall system is operated by a database-driven control system,

which consists of several Python software packages (Andersen

et al., 2019). The Las Cumbres Observatory (LCO) (Brown et al.,

2013) is a private operating network of astronomical

observatories mainly for time domain astronomy. Its robotic

control system (RCS) (Fraser and Steele, 2004) works along with

the telescope control system (TCS) and the instrument control

system (ICS). The Search for habitable Planets EClipsing ULtra-

cOOl Stars (SPECULOOS) (Delrez et al., 2018) project keeps a

close eye on terrestrial planets hunting around nearby cool

dwarfs. It uses the commercial observation system DC-3

Dreams® ACP. The Test-Bed Telescopes (TBT) project (Ocaña

et al., 2016) works as a prototype of the autonomous optical

observing system for future NEO and space situational awareness

networks. RTS2 works as its TCS and specialized planning and

scheduling softwares (Racero et al., 2015) are adapted to RTS2 to

work together.

CHES program requirements and existing
techniques

Changing event survey (CHES) (Chen and Changyin, 2021)

is a general optical survey program mainly aimed at cataloging

and discovering Earth orbital resident space objects (RSOs), but it

also follows the interests of other astronomical goals. It is carried

out by multiple small- to medium-sized wide-field optical

telescopes and some other auxiliary telescopes, which form a

complex observation network located at multiple sites.

Basically, each sensor unit is a standard astronomical

telescope, but to meet the requirements of RSO observation,

there are some special features, including the following:

• GPS timing latch for frame high-precision timestamping;

• tracking with a custom rate and a variable rate other than

the sidereal rate;

• support special telescope configuration, such as multi-

instruments, multi-channels, and collaborative telescope

array;

• dynamic observation coordination;

• on-site plan adjustment from real-time observation

feedback;

• multi-user and multi-goal observation robotic

coordination.

These requirements are ultimately manifested in not only

telescope hardware and software but also the upstream

coordination system. Because of the development of

FIGURE 1
ogical connection of TCS. It communicates with upstream
modules such as observation coordinator and operation databases
and connects all devices within each telescope unit. Typical
devices including mount, filter wheel, and focuser are
connected via a universal platform, which can supply a standard
API, but also some devices such as camera can be connected
directly due to the performance requirements.

Frontiers in Astronomy and Space Sciences frontiersin.org02

Zhang and Zhu 10.3389/fspas.2022.896570

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.896570


instruments techniques and the difference in operating

conditions, the network contains many kinds of telescopes,

and the observation requirements may expand as new types of

devices are used. Therefore, the system should be flexible and

scalable to face the variety of devices, drivers, software

environments, and observation requirements.

The core component of this kit is the telescope control system

(TCS), shown in Figure 1. It connects devices, interprets

observation requests, and carries out actions. To support

different hardware configurations within a uniform operating

framework, the device-specific code and general function code

should be separated properly; the common practice is wrapping

each device’s code into a standard API.

There are many TCS solutions, from open source Ekos; to

proprietary Software Bisque® TheSkyX, Cyanogen Imaging®

MaxIM DL, and DC-3 Dreams® ACP; professional systems

such as OCS (Hickson, 2019) used by ES-MCAT; and systems

mentioned before such as RTS2 and FORTE. These open and

commercial systems usually could perform scheduled

observation sequentially and have been widely used in

astronomical photography and small observation projects.

However, there are some limitations if we want to apply them

to the CHES program, such as missing the networking, rate

tracking, or timing function. Because of this reason, we decided

to develop a whole system for CHES robotic operation as other

professional systems do.

A universal device platform provides a consistent API for the

same type of devices, which helps to reduce the compatibility

code within TCS for various devices support. Currently, in open

source community there are several universal platforms that have

broad compatibility, such as ASCOM/ASCOM Alpaca and Indi/

Indigo. Also, RTS2 has its own universal platform. ASCOM is

called a de facto standard for amateur to entry-level professional

telescope, which provides a universal API for different types of

telescope mounts, cameras, auxiliary devices, and even useful

telescope control functions. To add cross-platform capability, the

ASCOM team published a new platform called ASCOM Alpaca.

ASCOM Alpaca uses restful technology to implement a web-

based API other than the traditional ASCOM’s Microsoft® COM.

After years of development, there are plenty of support from

manufacturers and software clients. Indi and its fork Indigo are a

cross-platform distributed telescope framework, which uses

XML-based C/S architecture. They are more welcomed in the

open source community under the POSIX system and support

many embedded systems such as Arduino. In addition, there is a

Windows Indi server to bridge the ASCOMAPI. RTS2’s bridge is

not a standalone platform. It supports Indi API, but in most cases

it uses independently developed drivers for performance. Limited

by the developing community, the device support capability is

insufficient, and many supported devices are old model.

Each device has its own driver, and a driver wrapper if it

supports other platforms. Usually, this is enough to adapt to the

TCS, but because of the compatibility consideration, this solution

may lack performance and some functions, especially noticeable

in the camera driver. The image data throughput of modern

high-resolution high frame rate CMOS is far beyond the

capability of a universal platform, also the rich settings. So, in

some cases, a customized driver directly from device SDK is

preferable.

Hardware systems

Currently, the CHES observation system has been used on

multiple sets of telescopes at multiple sites, which involves

different types of instruments.

• The first CHES array is located at Yaoan. It consists of

12 280-mm refractor, shown in Figure 2, and two 800-mm

reflector and comprises an ASA DDM85P equatorial

mount, FLI PL09000 CCD camera, ASA

AZ800 altazimuth telescope, and Andor iKon XL

231 CCD camera;

• the Dragonfly telescope network is located at Lenghu,

Muztagh, and Samoa; each site has one 280-mm

refractor and one 400-mm reflector and comprises an

ASA DDM100 equatorial mount and a FLI

KL4040 CMOS camera;

• 400-mm reflector at Ali uses a 10 micron GM1000HPS

equatorial mount and a FLI ML50100 CCD camera;

• 200-mm reflector at Xuyi uses a Paramount MX equatorial

mount and a QHY600P CMOS camera.

All these sites are connected to the Nanjing center for

universal coordination.

FIGURE 2
Photo of the CHES-YA telescope array located at the Yaoan
site which consists of 12280-mm refractor under a rolling roof.

Frontiers in Astronomy and Space Sciences frontiersin.org03

Zhang and Zhu 10.3389/fspas.2022.896570

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.896570


Observation system design

System architecture

The dedicated observation system for a certain project or

facility has different design patterns. The all-in-one (AIO) system

integrates all functions into an integral software program works

as a black box with plan input and data output, usually be

developed for a fixed model facility that has fixed

functionality. The do-one-thing (DOT) system follows the

philosophy of do one thing and do it well from unix

community, consists of a bunch of programs and uses scripts

to call these programs sequentially to finish a job, and usually

works with research-grade facility. The AIO system has

consistent usage experience, but it lacks flexibility and

robustness. It is difficult to extend the observation mode and

needs intensive maintenance to ensure the availability of all

mutually influenced parts. The DOT system is flexible

enough, can meet almost any needs with extraordinary design,

and has lower development cost by introducing massive

community resources. The problem is the user experience and

maintenance difficulty.

The CHES survey system takes both ideas into account by

using a multilevel scheme. The software architecture is designed

as several layers, center, site, sensor group, and single sensor. The

basis of this distinction is the operations’ mutual dependency

within each layer and the decoupling between layers. Each layer

has a single program to deal with the internal logic, and they

work together via communication. Some failure may only cause

functional loss other than crash the whole system, and it can be

replaced easily. For example, if the weather monitor in the site

layer fails, the robotic operation will be damaged. But we can

replace the monitor with a simple time-related logic temporarily

if we are sure about the weather until we put the weather monitor

back online. This could keep the system operational capability as

much as possible. The center layer works as a data hub and user

interface, which involves observation requests, working status,

and final data products. The site layer provides support for

observation such as operating conditions and environment

monitoring. Sensor groups and single sensors are the actual

operators, and the difference is about telescope arrays. The

sensor group program can perform joint observation by

controlling several telescopes to work together. Inside each

program, procedures follow a strict logic and work as an

entirety; the communication between programs uses a file

system, database, or WebSocket depending on the timeliness

requirements. The overall system architecture is shown in

Figure 3.

FIGURE 3
CHES optical telescope network architecture. Sensor is a minimum single telescope unit which can be work independently; sensor group is a
bunch of sensors which logically work as an entirety in the same site; site means all sensors in a geographical observatory that share one CHES
supporting facility, such as weather and on-site data center; center is a logical data center which aggregate all the sensors’ I/O together, either
locates in PMO or its redundant backup center.

Frontiers in Astronomy and Space Sciences frontiersin.org04

Zhang and Zhu 10.3389/fspas.2022.896570

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.896570


Data model and work flow

Under full-function operation, the data center receives generally

described observation requests from upstream calculations and user

indications. These requests will be translated into specific

observation plans that can guide certain sensors and then be

distributed to these sensors. When the plan is acquired by the

sensor, the sensor will ask the site for assistant information to decide

whether to perform. Finally, the sensor program controls the

telescope to carry out actual actions. Because of the need of real-

time feedback, there is an on-site data reduction facility to reduce

raw images, and the reduced product is fed back to the system aswell

as the center database. The overall workflow is shown in Figure 4.

Most non-real-time data communication is performed via

database systems, such as plans, data products, operation logs,

system status, and environmental information. DBS provides

data consistent communication for multiple clients

synchronization, data permanence, and rich query capability.

Under the circumstance of a poor internet connection, a loosely

bidirectional database synchronization mechanism is

implemented with a restful server at the center.

In addition, there are some other real-time communication

needs, such as device manual operation and massive

communication for HCI whose data do not need to be

retained. These will be done using WebSocket communication.

The WebSocket protocol can be used easily in web environments.

The computation, storage, and transmission throughput of

modern computer systems are high enough to let us choose

flexible formats other than formatted or binary data structures.

Here, we use JSON as the primary information exchange format

among different parts of this software kit, such as control

sequence and state quantity. JSON is simple, human-readable,

flexible, scalable, and perfectly matches the dict type of system

language Python. We have defined JSON keys for observation

plans, device operations, and site conditions to fulfill the fine-

tuning of each observation.

A sample JSON plan is shown in Appendix 1. This is the

observation guidance part of a plan directly related to the

telescope control; the other parts for plan query are presented in

other column of the plan database. According to this plan, the TCS

will get device prepared such as bias and dark calibration frame

acquisition, switch filter, and set up camera parameters. Then move

the telescope and take exposures.Most of the information in this plan

is action parameters. We used SkyCoord from astropy.coordinates

(Astropy Collaboration et al., 2018) other than the values in the

special coordinate frame for flexibility; nomatter what coordinate the

telescope used, the device code will transform the coordinate to the

right one. Following theASCOMconvention, in a common scenario,

the coordinates will be transformed to true equator true equinox

(TETE)when sidereal tracking need to be activated immediately after

slewing and altitude–azimuth (AltAz) when we want the telescope to

keep still after slewing. The coordinate frame is prepared based on the

site location and time in advance. The camera control is the most

complicated part if we want to achieve the best performance under

various scenarios. The JSON format is suitable to extend parameters

keywords. Other than the common readout mode, binning,

subframe, offset, and gain, we can have more such as the CMOS

merge mode, USB traffic, DDR buffer, and even FITS (Wells et al.,

1981) header keywords setting. The action can be guided according

to the presence of these optional parameters. Moreover, the

parameters can be repeated to adjust the behavior of a certain

frame, to observe a series of coordinates or with a series of filters.

Data archive

The main data product of CHES program is images. The

format of image data is FITS supported by the astropy package,

including tile compression for bandwidth saving and multi-

extension for exposure grouping. The ASDF (Greenfield et al.,

2015) format is another supported modern choice, and the image

saving–related code is isolated to support various formats.

Typically, one sensor can produce 200–1000 GB raw images

per night depending on the camera resolution, because of the

short exposure. Images will be sent to the on-site storage for

reduction while being cached in an acquisition computer for a

couple of days. Raw images of short exposure are cached in on-

site storage after reduction for several months. Stacked, ROI, and

other scientific images are tile compressed, archived, and sent to

data center for permanent retention via Internet, tape, or disc.

This reduces each sensor’s image archive size to tens of gigabytes

per night. The raw images can be accessed internally for

backtracking during the caching period, whereas the archived

images can be accessed publicly from data center.

FIGURE 4
CHES network system connection and data flow. Each part
runs a set of closely connected programs from this software kit
and work together by exchanging different types of information.

Frontiers in Astronomy and Space Sciences frontiersin.org05

Zhang and Zhu 10.3389/fspas.2022.896570

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.896570


Observation system

Programming language

Programming technology affects the implementation.

Thanks to the high performance and broad compatibility,

static languages such as C++ or C# are used when hardware

and massive calculation are involved. Meanwhile, dynamic

languages can provide more flexibility and scalability when

dealing with the control pipe logics. Python community has

extraordinary base in machine learning, scientific computing,

hardware controlling, and even web hosting. This made us to

choose Python as the main programming language of TCS,

site manager, web interface, and other auxiliary programs. It

is also a good choice to glue all static language drivers

together even by Cython coding when performance is

required.

TCS and observation program

To adapt different working environments and telescope

configurations, this program is designed as cross-platform and

multithreaded. The program has the following features:

• direct access to all hardware devices, including mount,

focuser, filter wheel, rotator, timing, and so on;

• translate the plan into device actions and operate properly;

• feedback system overall status, especially device status

during operation;

• query plan with predefined strategy which may differ for

each telescope;

• auxiliary features, such as configuration, logging, HCI,

WebSocket communication, and database access.

This program has several modules to accomplish the

observation goal and the relations among them, as shown in

Figure 5. During the whole life cycle of a running instance, there

are four threads that keep working, to deal with GUI responding,

websocket communication, telescope controlling, and operation

management. The practical operation related to a specific plan is

performed by an independent operation thread which can choose

differentmodules according to the plan indication, such as observing

a series of coordinates or tracking a moving object. Currently, the

operation module collection includes coordinates observation and

orbital tracking observation and can be extended via a program

plug-ins mechanism in the future. The decision of which plan to

perform is made by Plan Manager according to the information in

the plan database. Basically, all the modules communicate with the

central management thread.

Telescope control

To support different devices, the usual method is to abstract

each type of device driver and encapsulate it into a common API,

FIGURE 5
Modules and relations among them within the TCS program structure. MainThread, ManageThread, WebsocketThread, and TelescopeThread
are long-lived daemon thread to maintain the system operation. The extensible OperationThread performs the observation plan and PlanManager
provide plan acquisition strategy.

Frontiers in Astronomy and Space Sciences frontiersin.org06

Zhang and Zhu 10.3389/fspas.2022.896570

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.896570


such as ASCOM or Indi. If it is impossible to use all devices with

ASCOM or Indi platform, then the driver must be encapsulated

again. Formost cases, this would be a duplicatedwork; and if there is

no common API for some special devices, the code base could be

messier. In this system, we decide to abstract the device code from

another perspective that encapsulates several actions into a common

operation, such as slew, set rate, take image, or even startup and

shutdown. This can still use ASCOMor Indi platform, if available, to

reduce the development complexity. Each operation involves

multiple devices, so they work together more closely and have

many more possibilities. In addition, we can add system features

related to the telescope, such as preparing a standard FITS header for

data reduction and managing the remaining disk space. For CHES

project currently used devices, we implement a device configuration

based on ASCOM drivers and a customized timing tag device.

However, because of the particularity ofAscom2XMountAdaptor’s

offset tracking rate used by the Paramount mount, we have another

telescope configuration using TheSkyX RASCOM.

Image acquisition

Using a device from Python via ASCOM is very convenient,

but there is a performance issue when reading a camera. ASCOM

uses Microsoft COM technology and stores image data in

SAFEARRAY. When converting a very large image from a

SAFEARRAYto a NumPy array, it takes a very long time

because of the loop used. A safearray_as_ndarray decorator

from the comtypes module can improve slightly but not

sufficiently when handling the modern large format CMOS.

Therefore, we develop two Python modules, python-qhy and

python-fli, with ASCOM compatible APIs to support the

QHYCCD® and FLI® cameras. The module is written in

Cython language to call the native SDK on Windows and

Linux. The code can operate the camera as fast as the SDK

original speed. The module has both official API and ASCOM

API to use under different circumstances.

When observing RSO, the time accuracy should be higher than

micro seconds. The operation of the camera is controlled by

internal logics, so a high precision time tagging system is used.

One method is to use a GPS PPS signal to trigger the camera

externally, and the other is to trigger the time latch by using the

frame exposure indicator signal from the camera. The timestamp

tagging procedure can be performed by using the camera internal

system or read from a serial port. This system supports either way.

Coordinate system and tracking

The coordinate system used by the telescope includes

topocentric equatorial, J2000 equatorial, and altitude–azimuth

coordinates. Thanks to the astropy.coordinates module, the

system supports different coordinate inputs and transforms

FIGURE 6
Open loop orbital object tracking observation workflow. This
is key to observing very faint fast-moving object, to make sure the
signal accumulate correctly. Due to the strong correlation of time
and position, the workflow is time sensitive.

Frontiers in Astronomy and Space Sciences frontiersin.org07

Zhang and Zhu 10.3389/fspas.2022.896570

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.896570


them to required coordinates. The topocentric frame is

equivalent to the TETE frame from Astropy.

When tracking RSOs, the telescope moves nonsidereally.

Usually telescopes support offset tracking and/or axis

movement. Offset tracking is more precise, as the axis rate is

calculated with pointing model, but the axis movement can be

faster in some of mounts’ software. This system supports both

methods and chooses offset tracking preferentially. When

performing rate tracking, the average rate from position

difference is recommended rather than the instantaneous rate.

This is to keep the telescope axis rate fixed during the exposure, to

ensure that the center of the star streak is related to the middle of

the exposure time.

Observation method

The designed survey types include sky field surveys, solar

body surveys, and Earth orbital surveys. The major difference is

the tracking rate because latter’s tracking rate is time-varying.

Each observation mode is implemented as an individual derived

class of threading.Thread and works as a plug-in to the main

program. This means we can extend the observation mode later

without modifying the main program. Each time it starts a new

plan, a new observation thread instance is started until the plan is

completed or aborted, so the actual observation night is divided

into multiple observation units. The observation thread and

daemon thread can access the devices at the same time.

Sky field observation involves taking several images at

specific coordinates with specific rate sequentially. First, all

parameters in the plan are set, including exposure time,

camera parameters, and filter, and then calibration frames are

taken with set camera mode if necessary. The second step is

slewing the telescope to the coordinates and setting the tracking

rate. After that, the frames are exposed. It is worth mentioning

that the system can perform all set procedures before a specific

frame so that the plan is flexible enough for most cases.

For NEO or RSO observation, the tracking rate is strictly

time-related. To maximize the detection depth, we should set the

rate before each frame. We do not implement it with frame lists

only like the sky field survey mode. Instead, we use instance-

guided open loop tracking with a custom coordinate generator,

such as TLE propagator, Ephem propagator, or ephemeris table

lookup generator. The procedure is shown in Figure 6. Similar to

sky field observation, first, the telescope should go to the

coordinate at 20 s later and check the remaining time until

there is still some time left. After that, count down and start

to move the telescope by using the axis rate control.

A plan defines a set of actions with sequential logic, and it is

irrelevant between plans. The life cycle of a plan is shown in

Figure 7. Therefore, there is no need to make a strict sequence for

plans; instead, the observation resource can be maximized by

dynamically adjusting oversaturated plans. The possible conflict

of plans requires an instant scheduler. In each plan record, in

addition to the guidance data, there are also metadata to help the

decision system in the scheduler. Metadata includes user-defined

priority, valid period, usage timespan, requested fields, objective,

and list of demanding sensors. The scheduler will query the plan

database and use this metadata to decide which one to start or

even abort the running one.With this strategy, all 12 CHES wide-

field telescopes can be used as one telescope.

There is an all sky field grid map for each telescope according

to the field of view, which is recorded in an individual database

table. Other than arbitrary coordinates the system can also

observe with a predefined sky field serial number. It is good

for sky template reduction during the image differential. Any

visit of these sky fields will be recorded so that the system can

determine which field needs to be visited if the system is free. This

helps the system to perform a blind all sky survey while

accomplishing other requests.

We define several run levels to support the robotic

operation, and daemon thread operates according to the

run level. The run level will be assigned by operators, and

there are two procedures related to the switch of run level,

startup, and shutdown. The shutdown procedure will park the

telescope, turn off the camera cooling, switch filter to protector

(an aluminum sheet in filter wheel to protect CMOS camera

without shutter), turn off mount motor, and turn off mirror

shutter, if they are available. The startup procedure will

operate in reserve, take the master bias frame, wait for the

cooling temperature, and manage the remaining disk space by

deleting the outdated file directory.

• −1: System uninitialized;

• 0: Stopped, if switched from other levels, all operations

will be aborted, and then shutdown procedure will be

performed;

• 1: Paused, keep the telescope standby, started but do

nothing;

• 2: Manual, accept operating instruction from GUI and

Websocket server, to prevent the conflict between

robotic operation and manual operation;

• 4: Guided, operate telescope totally according to the

plans, usually for system debugging;

• 5: Robotic, the system will read plans, site condition,

and calculate Sun elevation to decide the operation

according to the robotic strategy.

Database and interface

The whole system relies on a database system and uses

JSON as the primary data exchange format. Therefore,

PostgreSQL is the first choice because of its good support

of JSON type. Considering the various conditions, the system

uses object–relational mapping (ORM) technology from the

Frontiers in Astronomy and Space Sciences frontiersin.org08

Zhang and Zhu 10.3389/fspas.2022.896570

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.896570


SQLAlchemy package so that it is easy to turn to other

database systems. Similar to the SQLite in the Ali

400 telescope case. The databases between the center and

sites are synchronized in some way but are not fully

synchronized. Therefore, the synchronization bridge must

be customized. The current solution is starting a Restful

server at the center, and each site accesses this server to

retrieve and post necessary updates.

In some cases, the human–computer interaction (HCI) is

still needed, such as system maintenance or single node

operation, especially when the operator wants to check the

large image interactively. We implement optional user

interface (UI) from command line to graphic and web

interface by cmd. CUI PySimpleGUI and WebSockets.

For end users and operators who want to access multiple

telescopes, site managers and databases at the same place,

aggregated web pages are very practical. Users need just a

browser to accomplish it. As mentioned before, Python is

powerful enough in multiple areas including serving the web.

We choose Django from several famous frameworks. It has

many apps to make the development easier. This web page

primarily serves telescope checking and basic controlling, site

environment reviewing, power and dome controlling, and

plans adding viewing and modifying.

FIGURE 7
Observation plan life cycle. This shows a plan how to be acquired, performed, and which modules are involved, after the plan is inserted to the
plan database by user. In addition to themodules in TCS, the sitemanager is involved to provide the observation condition related to the plan, such as
the partial sky field weather condition that plan requests. The observation steps are from top to bottom in order.

FIGURE 8
CHES site manager architecture. The main thread starts the other threads. Each one is responsible for one function, such as weather monitor
device reading, dome controlling, and remote request answering. All the function are coded into the separated thread class so that it can be easily
modified, extended or replaced to adapt different scenarios which usually do not have common platform API.

Frontiers in Astronomy and Space Sciences frontiersin.org09

Zhang and Zhu 10.3389/fspas.2022.896570

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.896570


FIGURE 9
CHES site manager UI was used to show the webcam, all sky cam, solar power and weather, and to control the dome and power distribution
unit. Each part of this UI is shown only if the related device is presented in the configuration, to keep the code universal for different site as much as
possible. The similar UI is implemented in the Django website and communicate with this manager via websocket.

FIGURE 10
A sample survey plan for CHES-SA. The green patches are field of view of the telescope. The observation order is arranged by themovement of
twilight terminator and Moon. The survey region is typically five belts around the equator with 6° wide based on the telescope FoV.

Frontiers in Astronomy and Space Sciences frontiersin.org10

Zhang and Zhu 10.3389/fspas.2022.896570

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.896570


Site support system

Site management plays an important role in robotic

observation. In addition the common features such as manual

device control and environment monitor, it can consolidate all

information to make decision of observability. The manager

should access different kinds of devices, such as.

• APC remote power distribution unit, to control the power

supply of each device;

• Boltwood Cloud Sensor and Davis Weather Station, to

collect the temperature, wind and cloud metrics;

• All Sky Monitor to record visible sky image;

• SQM sky quality meter to measure the brightness of the

night sky;

• Cyclope seeing monitor to measure the seeing;

• Solar power monitor, to retrieve the status of panel and

battery;

• Webcams.

Site manager access these devices via ASCOM, serial port,

TCP/IP socket, SNMP and other methods. Each type of device is

operated in individual thread to gather the information then

converge to main thread. The architecture is shown in Figure 8.

An analytic thread reduces these data by simple threshold and

machine learning to do the decision, then feedback the

observability as ASCOM Alpaca SafetyMonitor. Clients can

use Restful links or COM object to get the value. Also, the

reduced data will be downsized and recorded to the database.

This manager is also a terminal. There is a PySimpleGUI

powered GUI and a WebSockets powered server. This websocket

server will interact with the web page’s websocket client, so that

all features can be available on the website. The GUI of the

manager shown in Figure 9.

FIGURE 11
The stacked image of 2020FB7 near-Earth asteroid detected
by the CHES-YA 280-mm wide field survey. The moving rate is
faster than GEO objects and detected as new debris candidate.
The following reduction confirmed it as a flyby asteroid.

FIGURE 12
This is the searching fields of GRB 190728A event. Based on this, a fast searching plan for this event is carried out by the CHES-YA 280-mmwide
field survey.

Frontiers in Astronomy and Space Sciences frontiersin.org11

Zhang and Zhu 10.3389/fspas.2022.896570

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.896570


Summary

Current status

Currently, this software has worked routinely on several

sensors, including:

• CHES-YA telescope array at the Yaoan site;

• CHES-SA at the Bonnie Vale site;

• CHES-ES with a collaborative Celestron RASA 11 at the El

Sauce site;

• Dragonfly-LH, Dragonfly-MF, and Dragonfly-TU at

Lenghu Muztagata and Tuamasaga sites separately;

• CANDLE-XY at the Xuyi site;

• CANDLE-AL at the Ngari site.

These telescopes share the same data center for unified

coordination and data aggregation.

A GEO region survey, such as in Figure 10, will be carried out

three times per night routinely, acquiring thousands of higher

orbital tracklets belonging to hundreds of objects by using one

large FoV telescope. Using CHES-YA array, wider field can be

covered to get more data of up to more than 2000 objects.

During the survey, other objects will be captured too. In the

observation of 2020-03-31, CHES-YA got a new bright NEO in the

routine survey; the stacked image is shown in Figure 11. It is

confirmed as 2020FB7 whose magnitude fell from 11m to 20m in

2 days and then disappeared. The first measurement from CHES-

YA is earlier than the public data.

The system can receive other observation requests and make

proper plan for each sensor. For example, a custom plan

generator which is triggered by the gamma-ray coordination

network (GCN) is implemented to follow important events. The

upstream generator produce a searching area based on the event

position estimation and a galaxy catalog, as shown in Figure 12.

Followed by this procedure, LIGO/Virgo S191216ap (Sun et al.,

2019b), GRB 191122A (Sun et al., 2019a), and GRB 190728A

events had been followed by CHES-YA for optical counterpart

searching.

Another scientific goal of interest is solar bodies’ occultations

for faint objects using high-precision positioning. Thanks to the

wide distribution of telescopes, there may be greater probability

of capturing these events. Several observations have been carried

out including Pluto (2020-06-06), Callisto (2020-06-20), Varuna

(2020-12-27), and Quaoar (2022-05-17) occultation events.

Conclusion

In this article, the software techniques of a robotic large-field

survey network has been discussed in depth, especially the

features related to RSO observation and the unified

architecture to support various telescope configurations.

The mentioned techniques of software architecture,

programming pattern, data model, and network topology are

implemented for the CHES-YA telescope array and distributed to

other facilities. The system function can satisfy the optical survey

needs for RSOs, solar bodies, transient events, and the hybrid

coordination of them. Also, currently, the software kit is still in

development actively for more telescope support and function

such as closed loop tracking and AI observation sequence

optimization.

Data availability statement

The raw data supporting the conclusion of this article will be

made available by the authors, without undue reservation.

Author contributions

ChZ contributed to conception and design of the software

and implemented the local application. CaZ contributed to the

user interface design and implemented the web part of the

system. ChZ wrote the manuscript. All authors contributed to

manuscript revision, read, and approved the submitted version.

Funding

This work was funded by the Basic Research Program of

Jiangsu Province, China (Grant No. BK20201510) and the

National Natural Science Foundation of China (Grant No.

12073082).

Acknowledgments

The author would like to thank the CHES project team for

supporting this development, the technical team for the hardware

support, and the staff of Yaoan site for the operation of the CHES

telescope array.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

Frontiers in Astronomy and Space Sciences frontiersin.org12

Zhang and Zhu 10.3389/fspas.2022.896570

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.896570


organizations, or those of the publisher, the editors, and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Andersen, M., Grundahl, F., Christensen-Dalsgaard, J., Frandsen, S., Jørgensen,
U., Kjeldsen, H., et al. (2019). Hardware and software for a robotic network of
telescopes-song. arXiv preprint arXiv:1901.08300.

Boër, M., Atteia, J., Barat, C., Niel, M., Olive, J., Chevalier, C., et al. (1996)., 384.
American Institute of Physics, 594–597.The tarot project: An optical glance at
grbsAIP Conf. Proc.

Boër, M., Klotz, A., Laugier, R., Richard, P., Pérez, J. C. D., Lapasset, L., et al.
(2017). “Tarot: A network for space surveillance and tracking operations,” in 7th
European conference on space debris ESA/ESOC.

Brown, T., Baliber, N., Bianco, F., Bowman, M., Burleson, B., Conway, P., et al.
(2013). Las cumbres observatory global telescope network, 125. Bristol, England:
Publications of the Astronomical Society of the Pacific, 1031.

Castro-Tirado, A. J., Gorosabel, J., Hudec, R., Soldán, J., Bernas, M., Pata, P., et al.
(1998). “The status of the burst observer and optical transient exploring system
(bootes),” in AIP conference proceedings (American Institute of Physics), 428,
874–878.

Chen, Z., and Changyin, Z. (2021). Activities of pmo optical space debris survey.
An. Acad. Bras. Cienc. 93, e20200827. doi:10.1590/0001-3765202120200827

Delrez, L., Gillon, M., Queloz, D., Demory, B.-O., Almleaky, Y., de Wit, J.,
et al. (2018). “Speculoos: A network of robotic telescopes to hunt for terrestrial
planets around the nearest ultracool dwarfs,” in Ground-based and airborne
telescopes VII (Bellingham, WA: International Society for Optics and
Photonics), 10700, 107001I.

Dyer, M. J., Dhillon, V. S., Littlefair, S., Steeghs, D., Ulaczyk, K., Chote, P.,
et al. A telescope control and scheduling system for the gravitational-wave
optical transient observer (goto). Observatory Operations Strategies, Process.
Syst. VII (2018)., 10704. Bellingham, WA: International Society for Optics and
Photonics, 107040C.

Dyer, M. J., Steeghs, D., Galloway, D. K., Dhillon, V. S., O’Brien, P., Ramsay, G.,
et al. (2020). “The gravitational-wave optical transient observer (goto),” in Ground-
based and airborne telescopes VIII (Bellingham, WA: International Society for
Optics and Photonics), 11445, 114457G.

Fraser, S., and Steele, I. A. (2004). Robotic telescope scheduling: The liverpool
telescope experience. Optim. Sci. Return Astronomy through Inf. Technol. 5493,
331–340.

Greenfield, P., Droettboom, M., and Bray, E. (2015). Asdf: A new data format for
astronomy. Astronomy Comput. 12, 240–251. doi:10.1016/j.ascom.2015.06.004

Grundahl, F., Christensen-Dalsgaard, J., Kjeldsen, H., Frandsen, S., Arentoft, T.,
Kjaergaard, P., et al. (2008). Song–stellar observations network group. Proc. Int.
Astron. Union 4, 465–466. doi:10.1017/s174392130802351x

Hickson, P. (2019). Ocs : A flexible observatory control system for robotic telescopes
with application to detection and characterization of orbital debris.

Klotz, A., Boër, M., Eysseric, J., Damerdji, Y., Laas-Bourez, M., Pollas, C., et al.
(2008). Robotic observations of the sky with tarot: 2004–2007, 120. Bristol, England:
Publications of the Astronomical Society of the Pacific, 1298.

Kouprianov, V., and Molotov, I. (2017). Forte : Ison robotic telescope control
software, 18–21.

Kubánek, P., Jelínek, M., Nekola, M., Topinka, M., Štrobl, J., Hudec, R., et al.
(2004). “RTS2 - remote telescope system, 2nd version,” in Gamma-ray bursts:
30 Years of discovery. Editors E. Fenimore and M. Galassi (American Institute
of Physics Conference Series), 727, 753–756. doi:10.1063/1.1810951

Molotov, I., Agapov, V., Titenko, V., Khutorovsky, Z., Burtsev, Y., Guseva, I., et al.
(2008). International scientific optical network for space debris research. Adv. Space
Res. 41, 1022–1028. doi:10.1016/j.asr.2007.04.048

Ocaña, F., Ibarra, A., Racero, E., Montero, Á., Doubek, J., and Ruiz, V. (2016).,
9906. SPIE, 2135–2143.First results of the test-bed telescopes (tbt) project: Cebreros
telescope commissioningGround-Based Airborne Telesc. VI. Bellingham, WA.

Astropy CollaborationPrice-Whelan, A. M., Sipőcz, B. M., Günther, H. M., Lim, P.
L., Crawford, S. M., et al. (2018). The astropy project: Building an open-science project
and status of the v2.0 core package. Astron. J. 156, 123. doi:10.3847/1538-3881/aabc4f

Racero, E., Ocana, F., Ponz, D. and TBT Consortium (2015). Towards an
autonomous telescope system: The test-bed telescope project. Highlights Span.
Astrophysics 8, 828–833.

Sun, T., Zhang, C., Ping, Y., and Wu, X. (2019a). Grb 191122a: Ches optical
observations. GRB Coord. Netw. 26271, 1.

Sun, T., Zhang, C., Ping, Y., and Wu, X. W. (2019b). Ligo/virgo s191216ap: No
candidates found in ches observations of hawc error region. GRB Coord. Netw. 26487, 1.

Weiner, B. J., Sand, D., Gabor, P., Johnson, C., Swindell, S., Kubánek, P., et al.
(2018)., 10704. International Society for Optics and Photonics,
107042H.Development of the Arizona robotic telescope networkObservatory
Operations Strategies, Process. Syst. VII. Bellingham, WA.

Wells, D. C., Greisen, E. W., and Harten, R. H. (1981). Fits - a flexible image
transport system. Astronomy Astrophysics Suppl. 44, 363.

Frontiers in Astronomy and Space Sciences frontiersin.org13

Zhang and Zhu 10.3389/fspas.2022.896570

https://doi.org/10.1590/0001-3765202120200827
https://doi.org/10.1016/j.ascom.2015.06.004
https://doi.org/10.1017/s174392130802351x
https://doi.org/10.1063/1.1810951
https://doi.org/10.1016/j.asr.2007.04.048
https://doi.org/10.3847/1538-3881/aabc4f
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.896570


Appendix: Plan sample in the JSON
format

Frontiers in Astronomy and Space Sciences frontiersin.org14

Zhang and Zhu 10.3389/fspas.2022.896570

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.896570

	CHES robotic observation software kit
	Introduction
	Telescope networks and robotic techniques
	CHES program requirements and existing techniques
	Hardware systems

	Observation system design
	System architecture
	Data model and work flow
	Data archive

	Observation system
	Programming language
	TCS and observation program
	Telescope control
	Image acquisition
	Coordinate system and tracking
	Observation method
	Database and interface
	Site support system

	Summary
	Current status
	Conclusion

	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References
	Appendix: Plan sample in the JSON format


