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The study of solar energetic particles (SEPs) is an important area of solar research and
space weather. An SEP event extends over large regions of the heliosphere, involves
energy ranges varying by decades, and evolves over various time and spatial scales and
with ion composition, but with SEP observations limited to in situ detections on a few
spacecraft for any given event, we are unable to observe these properties synoptically.
Solar studies in general are the beneficiaries of imaging and remote sensing observations
over practically all wavelengths and timescales from ground and space based detectors
that drive increasingly highly sophisticated models. I see this divide as creating a two-class
system for researchers, with us SEP researchers as second class members. Following a
brief review of my experience with solar imagery and failed ideas on remote imaging of SEP
events, I review two remarkable developments that give hope for some new SEP imaging
technique. Finally, I discuss two poorly understood questions of impulsive and gradual SEP
events that I think can be feasibly approached with current modeling techniques.
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INTRODUCTION

Solar-heliophysics encompasses a broad range of topics and research techniques. Over the past
several decades I believe there has been a growing broad division in the community between those
who work with remote observations and imaging techniques, and others, like me, who are confined
to getting their primary solar data only from in situ observations. I have in mind observations of solar
energetic particles (SEPs) that can be observed only at several heliospheric locations, currently
confined to the ecliptic plane. It is great that we have Parker Solar Probe and Solar Orbiter, but the
point is that no matter howmany SEP detectors we have in space, we are still just drawing samples of
a broadly distributed and evolving phenomenon, the SEP event (I’m thinking E > 10 MeV ions and
maybe E > 0.5 MeV electrons). There may be multiple sources of unknown size scales from various
seed populations and spatial distributions of unknown numbers of SEPs over wide (or maybe
narrow) ranges of longitude and latitude for a given SEP event, and the story gets more complex as we
ask about different SEP energy ranges and ions of different rigidities. We continue to depend on
statistics of many SEP events just to get a rough handle on their basic energy and spatial distributions.
The blind man is much better informed about his proverbial elephant than we are about SEP events
in the heliosphere. In the meantime from the remote observers, I am dazzled by solar images and
model representations of increasing spatial, temporal, and thermal or energy resolution with ever
more detailed physics.

Maybe years of frustration are catching up with me. It didn’t always seem this way. I began with
analysis of SEP proton events in grad school, then at NRL I worked with OGO-V X-ray flares from
the NRL full-sun proportional counter. A definite change of focus from SEPs to flare X-rays, but the
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basic tool was still analysis of time series of detector counting
rates at different energy bands. The object was to get temporal
variations of X-ray spectra (flare temperatures and emission
measures) or SEP energies and their characteristic values.
While one case was in situ observations (SEPs) and the other
remote observations of full disk emission from the Sun, that
seemed like a minor distinction. It was all solar flare physics.

SOLAR IMAGES CONFRONT AUTHOR

I remember my first encounter with a full disk solar X-ray rocket
image, proudly presented for my consideration in an early
meeting with my new boss, Pippo Vaiana, the American
Science and Engineering (AS&E) physicist in charge of solar
observations within the Ricardo Giacconi X-ray astrophysics
group. I had a sense of panic that I would somehow have to
make a big transition from working with simple time series data
to getting physics out of those dark photographic blobs
representing solar active regions. Then came the AS&E X-ray
telescope on Skylab with lots of solar X-ray images on film.
Locations and evolution of coronal holes or numbers and
distributions of bright points seemed like straightforward
approaches to take from solar X-ray images, and after a poor
start (Kahler, Krieger, and Vaiana, 1975), I got used to analyzing
X-ray flare images and later analyzed X-ray coronal hole
boundaries (e.g., Kahler and Hudson, 2002). Continued
interest in SEP events led to correlations of radio bursts and
CMEs with SEP events, which did not require image analysis. I
began collaborating with Don Reames and Ed Cliver about 1982,
again looking only at CME or radio burst listings, not needing
image analysis. Work using SEP events as probes of magnetic
clouds followed (Kahler et al., 2011), again no remote images
needed.

THE DIVIDE OF IMAGING VERSUS IN SITU

During the past 2 decades it has been impressive to see the great
successes of solar imaging missions. SOHO images greatly
eclipsed the pioneering Skylab images, thanks to the
revolution from film detectors to CCDs, with ever greater
fields of view and spatial resolutions as images of Hinode,
SDO, IRIS, PSP, and other missions are presented and
analyzed in detail. Advances in physical models combining
detailed calculations with quantitative images of magnetic field
lines and ionic radiation have led to deeper appreciation of the
physical processes in space and time in the solar atmosphere and
interplanetary space. Figure 1 shows several recent examples in
which authors have combined models and data to extend imagery
to heliospheric SEP ion distributions.

In stark contrast, the observation of SEPs can be made only
with in situ detectors, from which we can produce intensity-time
profiles (Figure 2A), evolving or fluence energy spectra, and
spatial distributions of SEP events by compiling event averages
(Lario et al., 2006; Cohen et al., 2017; see Figure 2B), but a host of
questions about spatial/temporal/compositional/energetic

evolution of SEP events remains untouched and
unapproachable. As a researcher of SEP events, I am
frustrated and envious of my first-class colleagues who traffic
in spiffy, eye-catching solar/heliospheric images even more
spectacular than those of Figure 1. If you are a magazine or
journal science editor hoping to engage your reader with a single
image from heliospheric SEP physics, do you go with an example
from Figure 1 or from Figure 2? Are the SEP distributions of
Figure 1 right on or badly off the mark? We’ll never know
because we can’t image the SEP events we now study.

This is not my first whine on the physical barrier to becoming
a first-class heliospheric research citizen with images of real SEP
particle distributions, evolving in time, and color-coded for
energy, maybe even (I’m dreaming here) composition. With
co-author B. Ragot we set the goal (Figure 2C) of exploring
possible ways that SEPs might interact with the SW to produce
neutral radiation that can be imaged by a detector and maybe
deconvolved to produce 3-D spatial reconstructions. We (Kahler
and Ragot, 2008) found that 4–7 MeV ion de-excitation from SEP
collisions with heliospheric 16O and 12C would be far too weak for
observation, but that π0-decay γ-rays as detectable signatures of E
≥ 300 MeV nuc−1 SEP ions was possible in large events.

Further candidate remote SEP signatures of positron-decay
0.511 MeV line emission from E > 300 MeV protons; neutrons
and the 2.23 MeV neutron-capture line from E > 30 MeV nuc−1

ions; synchrotron emission from E > 0.3 MeV electrons; and
transition radiation (TR) from E < 100 keV electrons and from
ions were discussed in Kahler and Ragot (2009). TR arises any
time a particle crosses an inhomogeneous medium with variation
in refractive index and has likely been observed in decimetric
bursts of turbulent flares (Fleishman et al., 2005) and in type II
bursts from narrow density structures in wakes of CMEs
(Chernov et al., 2007). It is best generated by electrons in
dense regions where ωp >>ωB, but by protons only in tenuous
regions of ωp << ωB (Fleishman and Kahler, 1992). A common
theme is that it is not enough to detect such radiation, but it must
be imaged to distinguish populations trapped in the corona from
those of interplanetary space.

TWO HOPEFUL SURPRISES

SEP Event ENAs
At the time of our second paper (Kahler and Ragot, 2009)
energetic neutral atoms (ENAs) were known as messengers of
distant energetic particle populations and the basic tool of the
then recently launched (2008) Interstellar Boundary Explorer
(IBEX) mission (McComas et al., 2009) to explore the
heliospheric termination shock and heliosheath. We
acknowledged, but did not explore, ENAs as possible probes
of SEPs, so it was an exciting surprise to learn that a SEP event on
5 December 2006 had been detected on STEREO with ENAs by
Mewaldt et al. (2009). This was an appropriately big deal at the
time and a quick glimpse of ENAs as a promising basis of SEP
imaging, as they propagated directly to Earth through a thick
sludge of heliospheric magnetic turbulence that retarded the
arrival of the charged SEPs composing the main event. The
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FIGURE 1 | (A): E > 50 MeV proton distribution of the 14 July 2000 event 3 h after injection with the STAT model of Linker et al. (2019). (B): Equatorial log color-
coded distribution of 10 MeV protons 3 h after impulsive injection based on the FP-FLRPmodel of Laitinen et al. (2016). (C): model images of H (turquoise) and 4He (red)
SEP spatial distributions following spatially separated but simultaneous impulsive injections (Guo et al., 2022).

FIGURE 2 | (A): GOES profiles of the 14 July 2000 SEP event modeled in Figure 1. (B): Longitude of event fluences for 10 MeV nuc−1 He, O, and Fe with best fit
curves (Cohen et al., 2017). (C): schematic of remote observation of SEPs against a grey background of SW and dust (Kahler and Ragot, 2008).

FIGURE 3 | (A): Plot of the measured angle to the Sun for individual 1.6–12 MeV proton events on 5 December 2006 (red = LET-A; blue = LET-B). Note the group of
counts within ±10⁰ of the Sun from ~1130 UT to ~1350 UT, well before the SEP onset at ~1445 UT (Mewaldt et al., 2009). (B): Surface brightness in S10 units versus
solar elongation angle for zodiacal and star light, and of expected CME brightness extrapolated from Helios measurements. A calculation of an ambient medium having a
density of 10 e− cm−3 at one AU and an inverse-square density drop off with solar distance is also shown (Jackson et al., 2004).
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STEREO A/B Low Energy Telescopes (LET-A and LET-B) were
not designed to select neutrals, so it was the timing profile and
directional information that confirmed the presence of SEPs
(Figure 3A). While the LETs are not ENA detectors,
separating charged and neutral particles, there were favorable
conditions to observe that event. It was a very big (2000 pfu for E
> 10 MeV proton) event, able to produce an observable ENA flux
at one AU, and it originated on the east limb, allowing a sufficient
temporal delay of the onset of the far larger SEP event. The ENAs
were further confined to E < 5 MeV, as the cross section for the
charge exchange cross section with ambient O+6 coronal/SW ions
drops rapidly with energy (Mewaldt et al., 2009). Finally, the SW
density drops at least as r−2, presumably negating their use as
heliospheric probes of SEPs, although charge exchange
calculations of protons with atomic H, O6+, and C4+ by Wang
et al. (2014) suggest that ENA detectors of sufficiently low
background could detect particle acceleration in the low
corona. The Earth’s dipole magnetic field may be such a
detector, channeling high energy charged particles to the poles
and converting low energy (>0.8 MeV) ENAs into quasi-trapped
magnetic equatorial protons (Mason et al., 2021).

White Light Interplanetary CMEs
Imaging the SW was thought impossible until Helios B white-
light photometer observations revealed the passages of CMEs
through its heliospheric field of view (Jackson, 1985). Observing
Thomson-scattering of solar white-light photons was also at one
time considered a difficult challenge, but because of a very steady
zodiacal and stellar white-light background the Solar Mass
Ejection Imager imaged CMEs two orders of magnitude
fainter than that background (Jackson et al., 2004; Figure 3B).
The combination of interplanetary scintillation (IPS) and white-
light observations now enable the SW velocities and densities to
be reconstructed throughout the inner heliosphere (Jackson et al.,
1988, 2020); see https://ips.ucsd.edu), a feat considered
impossible at one time and suggesting that there may yet be
hope for some new way to image SEPs in space.

Coronal/Interplanetary SEP Imaging
The hope and plea here is that somebody somewhere will get a
brilliant idea to detect some kind of neutral radiation from
energetic ions and electrons distributed throughout the
heliosphere as a SEP event. The odds are really long, but the
rewards are enormous. We (currently second-class research
citizens stuck with our in situ observations) will be able to
join our fellow first-class citizens in proudly displaying images
of SEP events and making direct comparisons with increasingly
sophisticated model outputs. The advances in understanding
where SEPs originate relative to shocks and coronal and solar
wind features, followed by their transport histories will greatly
accelerate our understanding of SEP physics.

A PLEA FOR TWO NEEDED SEP MODELS

I will end this story with a modest request to the SEP modeling
community for two efforts addressing currently neglected targets

that I think well within the capabilities of several SEPmodels. Rather
than the usual procedure of starting with SEP events observed at one
AU to estimate injection spectra and numbers, the models would
start with injected SEP profiles and calculate resulting SEP numbers
and energies observed in one AU detectors.

Total Numbers in 3He Events
For nearly 50 years (Reames, 2021) SEP events have been observed
with substantial enhancements (>100 ×) of 3He/4He over the
coronal/SW abundance of 5 × 10−4 in the few MeV/nuc energy
range. Those events are generally small and impulsive, with source
regions in coronal flares and jets. The 3He acceleration process was
first explained by absorption of electromagnetic ion cyclotron waves,
but currently favored (Reames, 2021) is magnetic reconnection in
confined coronal volumes, whichmay account for upper limits to the
observed 3He event fluence distribution observed at one AU (Ho
et al., 2005; Figure 4). The 3He acceleration process appears to occur
differently from that of 4He (Ho et al., 2019) and may even
completely strip a coronal source region of all 3He ions (Reames,
2021).

Well-developed models of jets (Panesar et al., 2016, 2017;
Wyper et al., 2018) and extensive observations of 3He coronal
sources (Bučík, 2020; Bučík et al., 2021) make it imperative that
we compare a calculated 3He ion injection population with
corresponding one AU observations to determine the accelerated
fraction of the source 3He as a measure of the strength of the
acceleration process. This has not been attempted since the
Reames (1999) estimate assuming a source region area of
3,000 km2, density of ρ = 1010 cm−3, scale height of 104 km, 3He/
4He = 5 × 10−5 for a total 5 × 1031 3He in the volume. He assumed a
large one AU event of 105 cm−2 3He (see Figure 4A) resulting from
uniform injection in a 20⁰ cone followed by scatter-free propagation
and concluded that >10% of the source 3He was accelerated. Surely
we (the modelling community intended) can do much better than
that. The basic goal is to connect the number of 3He in the source
region to the number accelerated and injected from the corona. A size
estimate of a reconnection region of an observed jet source could
serve as the basis of an input 3He number with a nearly delta function
injection in space and time assumed for the accelerated population.

Nearly all 0.02–2MeV/nuc 3He-rich events are associated with
type III radio bursts (Wang et al., 2012; Bučík et al., 2016; Bučík et al.,
2018; Bučík et al., 2021), which are used for timing 3He injections but
could also aid substantially in the 3He source volume estimate. If we
are lucky, the coronal injection regions of the type III-burst electrons
are shared by the 3He ions, so the coronal size and location of a 3He
event and its extent into the heliosphere will be defined by that of the
type III radio burst. It is not yet feasible to image type III radio bursts,
but that is exactly one of the goals of the NASA SunRISE mission,
due for launch in 2023 (Kasper et al., 2019). SunRISE consists of six
small spacecraft at supra-geosynchronous orbit with radio telescopes
operating the in the 0.1–22MHz region, which extends from 10 Rs
to one AU.

Shock SEPs for CME Energetics
Fast CMEs are the drivers of shocks that accelerate coronal and
SW seed particles to energies sometimes reaching GeV energies
(Reames, 2020). That SEP energy is ultimately derived from the
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kinetic energy of the CME, so an important question is the
conversion efficiency of the CME energy into that of SEPs.
Mewaldt et al. (2008) examined this question for the 50
biggest E > 30 MeV SEP events of 1996–2003 using associated
CME speeds and masses given for 23 of those events in
Gopalswamy et al.(2004, 2005). The CME energies are
estimated to be accurate within a factor of 2, but the hard part
of the comparison was to estimate the total SEP energies, which
Mewaldt et al. (2008) calculated with fluence spectra observed
from 10 keV/nuc to 1,000 MeV/nuc. Included in their energy
calculation were numbers of H and He particle crossings at one
AU and adiabatic energy losses for each crossing. The source
longitude and latitude distributions were assumed to fall off
exponentially from central meridian with e-folding drop-offs
of 25° east of CM and 45° to the west and 35° with latitude.
For six events the abundances of He and heavier ions were
measured, and for the remaining 17 events protons were
assumed to be 75 ± 7% of the total energy. Assuming that the
shock properties depend on the CME speed relative to the SW,
Mewaldt et al. (2008) subtracted an assumed SW speed of
400 km/s from the CME speeds to calculate the CME kinetic
energies. The resulting comparison is reproduced in Figure 4B,
where the median efficiency is 6.5%.

A similar improved comparison based on simulations of one
AU SEP scatterings and energy losses by Chollet et al. (2010) and
Gaussian spatial distributions of SEP events adopted by Lario
et al. (2006) was carried out by Emslie et al. (2012) for 20 SEP
events with results (their Figure 2B) comparable to those of
Figure 4B. Another comparison of 94 SEP and CME energies by
Kahler and Vourlidas (2013) used CME speeds at measured
centers of mass rather than the leading edge speeds and a
rotationally symmetric exponential distribution with an
e-folding angle of 45° for SEP events with spectra determined
by only the 2 and 20 MeV H fluences. Their Figure 7 also showed
high SEP efficiencies, including some exceeding unity.

The preceding works all used spatial, spectral, and transport
assumptions to convert one AU observed SEP fluences to total

numbers and energies of the produced SEPs. The results can be very
model-dependent, however. With a simple CME latitude correction
Gopalswamy et al. (2021) increased the number of interplanetary E>
500MeV protons by about an order of magnitude in five of 14 SEP
events calculated by de Nolfo et al. (2019) in their study of solar
sustained gamma-ray events. In general, however, the assumption
parameters are not tested in these SEP calculations. I propose that
modelers go the other way, starting with a CME shock model
producing SEP events of known spatial, temporal, and energy
distributions. The model, with full transport properties, would
then track and predict both the total accelerated SEP energies
and the intensities and fluences observed at a designated one AU
detector. In this scheme the shock longitudinal and latitudinal
widths and acceleration timescale variations with energy could all
be tracked. The advantage of this approach is that the SEP
distributions and energies are known and can be compared with
resulting one AU SEP observations and CME energies. Multiple
model runs can then establish the uncertainties of the reverse process
of estimating SEP energies solely from the one AU observations. The
SEP efficiencies of CMEs are too important to be left in their current
state of understanding.

CONCLUSION

I am resigned to continue my SEP investigations as a second-class
citizen of the heliospheric research community, operating in the slow
lane of in situ observations, while hoping for a better future through
some great discovery. In the meantime I would be delighted to see
acceptance of my challenges of the preceding Section.
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FIGURE 4 | (A): Plot of 3He events versus fluence (cm2 sr MeV/nucleon)−1 observed 1997 to 2003 on ACE (Ho et al., 2005). (B): Plot of SEP event energies versus
the associated CME kinetic energies for 23 events (Mewaldt et al., 2008).
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