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We present a Python-based framework for the complete operation of a robotic telescope
observatory. It provides out-of-the-box support for many popular camera types while other
hardware like telescopes, domes, and weather stations can easily be added via a thin
abstraction layer to existing code. Common functionality like focusing, acquisition, auto-
guiding, sky-flat acquisition, and pipeline calibration are ready for use. A remote-control
interface, a “mastermind” for truly robotic operations as well as an interface to the Las
Cumbres Observatory observation portal is included. The whole system is fully
configurable and easily extendable. We are currently running pyobs successfully on
three different types of telescopes, of which one is a siderostat for observing the Sun.
pyobs uses open standards and open software wherever possible and is itself freely
available.
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1 INTRODUCTION

At the turn of the millennium, a major change was starting to take place in observational astronomy:
at first unnoticed by most astronomers, many new telescopes were refitted or newly built for remote
or even fully autonomous observations. While there were lots of discussions and even a few robotic
telescopes in the early 90 s (see, e.g., Perlmutter et al., 1992; Alcock et al., 1992), their number grew
significantly in the decades thereafter.

While most of the very early robotic telescopes simply monitored known variable stars (e.g.,
Henry et al., 1995; Strassmeier et al., 1997), those that followed were designed to permit very rapid
follow-up of gamma-ray bursts–e.g., ROTSE-III (Akerlof et al., 2003), REM (Antonelli et al., 2003),
and BOOTES (Castro-Tirado et al., 2004)—or search for exoplanets (e.g., with SuperWASP, Street
et al., 2003), or to survey galaxies for supernovae (e.g., Filippenko et al., 2001; Lipunov et al., 2007). As
automation became easier and pipeline software more powerful, it was possible to survey
automatically for any transients or moving Solar System objects, e.g., with the Intermediate
Palomar Transient Factory (iPTF, Law et al., 2009), which later was refitted to become the
Zwicky Transient Facility (ZTF, Bellm et al., 2019; Riddle et al., 2018). About the same time,
Las Cumbres Observatory (LCO) started building a whole network of robotic telescopes (Hidas et al.,
2008), now one of the largest in the world.

Robotic telescopes can be used for many things–from the automated performance of a
heterogeneous list of independent observations to the dedicated performance of a particular
scientific project. The unique science that can be done with robotic telescopes almost exclusively
concerns transients, i.e., changes over time on the sky of any kind. The ultimate source for such
targets in the near future will be the Legacy Survey of Space and Time (LSST) at the Vera C. Rubin
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Observatory, an 8.4 m telescope designed for surveying the sky
for any kind of transients (Ivezić et al., 2019). When the LSST
starts operating in 2023, a legion of other robotic telescopes will
begin doing follow-up observations on the detected transients.

All truly robotic telescopes require a wide palette of
hardware–e.g., computer-controlled telescopes, cameras, filter
wheels, enclosures, and weather stations–and software for
autonomous operation of the entire system. While this
software can be rather basic (to avoid the fully unwarranted
word “simple”) for surveys that just do the same thing over and
over again, it gets immensely more complicated for all-purpose
telescopes. Unfortunately, this software almost never gets
published or placed in a form which is useful for another
project, mostly for the reason that it is very specific to the
hardware and the science case at hand.

Luckily, there is some software available that tries to be
applicable to many different hardware devices and kinds of
observations. Especially popular with amateur astronomers is
the Windows COM-based ASCOM system1, which defines
generic interfaces for different kinds of devices and can be
used by several client applications. A couple of years ago, a
HTTP REST based interface called Alpaca was released, which
allows the use of ASCOM in Unix-like systems as well. Additional
powerful software like ACP from DC3.com can be used to help
automate operations within an ASCOMnetwork. A very different
system but with the same basic philosophy and breadth of
support is the Instrument Neutral Distributed Interface
(INDI).2, which was designed for network transparency from
the beginning and can be used from any system and programmed
in any language, although the core libraries are written in C++.
The 2nd version of the Remote Telescope System (RTS2 for short;
Kubánek et al. (2004)) is widely used in a variety of mostly
scientific projects. It provides a complete framework–including a
back-end database–and is designed for fully autonomous
operations. RTS2 is written in C++ and runs on Linux only.

For our own MONET telescopes (Hessman, 2004, see also
Section 6) we first successfully used the robotic control software
developed for their twins, the STELLA telescopes (Granzer, 2006;
Granzer et al., 2012) on Tenerife, operated by the AIP in Potsdam,
which was thankfully made available to us by our colleagues there.
While the system itself is written in Java, over time we started to
implement some functionality usingmore familiar Python scripts.
These scripts grew and at some point became pyobs, a fully
functional observation control system for robotic telescopes on its
own. There was originally no other good reason for developing
pyobs than this; without pyobs and starting from scratch, we
probably would have chosen INDI. However, pyobs has now
grown to a level where it is just as powerful as INDI, RTS2, or
ASCOM: it is highly flexible, uses open standards, and is
programmed in the language most commonly used by
astronomers. Indeed, it stands on the shoulders of giants that
are the many amazing open source Python projects used in

computer science and astronomy. In this paper we will present
its architecture and the basic functionality.

We strongly believe in acknowledging the work other people
put into publicly available (open-source) software, and thus,
references for all the third party software projects used in
pyobs are listed in the Acknowledgments. All pyobs packages
themselves are published as open-source under the MIT license at
GitHub3, and its documentation is also available online.4

2 ARCHITECTURE

The astronomical community has spent the last 2 decades
migrating from diverse programming languages like IDL,
FORTRAN, or C/C++ to a common denominator, which
turned out to be Python. As a result, today we have powerful
scientific libraries available like NumPy, SciPy, and AstroPy.
Following this progress, Python was an easy pick as the
language of choice for a new Observatory Control System (OCS).

Nevertheless, Python has some drawbacks for a large project
like this, with the “global interpreter lock” (GIL) being the most
significant. The GIL is a multi-threading lock (or “mutex”) that
can only be acquired by one thread at a time. So, although Python
supports the creation and running of multiple threads, they never
run in parallel. The only way to achieve true parallelism is to use
multi-processing, so a decision was made to run pyobs inmultiple
processes, i.e., one process per block of functionality, which, in
pyobs terminology, is called a “module”. A module can be
everything from a controller for an actual hardware device to
routines for, e.g., an auto-focus series. With the OCS being split
up into multiple processes, the communication between them
became one of the most important parts of pyobs.

2.1 Asyncio
Given the already mentioned problems with multi-threading in
Python, it is only logical to rethink the use of threads in pyobs in
the first place. Most modules in pyobs do one thing most and
foremost: waiting. Waiting for a command to execute, waiting for
an exposure to finish, waiting for the dome to move into position.
However, in pyobs many things still need to be run concurrently,
e.g., a module should still be accepting commands while moving a
telescope. Luckily, Python introduced a new way of handling
concurrency in version 3.5 and improved it steadily in the years
thereafter. The new asyncio package uses a main loop and
switches between tasks on request, all on a single CPU core
and in a single thread. This avoids typical problems in multi-
threading like deadlocks and run conditions. However, calling a
blocking function in asyncio blocks all other tasks as well, so there
is also an easy way for running single methods in an extra thread
and waiting for it.

Functions that are running within the asyncio loop are called
coroutines and are defined with the async keyword, as will be
shown for the interfaces:

1https://ascom-standards.org
2https://indilib.org

3https://github.com/pyobs
4https://www.pyobs.org

Frontiers in Astronomy and Space Sciences | www.frontiersin.org July 2022 | Volume 9 | Article 8914862

Husser et al. pyobs

http://DC3.com
https://ascom-standards.org
https://indilib.org
https://github.com/pyobs
https://www.pyobs.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


class IPointingRaDec(Interface):
async def move_radec(ra: float, dec: float):

...

Coroutines can only be called directly from other coroutines
and always need to be “awaited”:

async def test():
await telescope. move_radec(1., 2.)

They can also be called without actually waiting for them to
finish. In those cases, a task should be created which can be
awaited later:

task = asyncio. create_task(telescope.
move_radec(1., 2.))
...
await task

In pyobs, this is, for instance, used for requesting FITS headers
from other modules before an exposure is started. The module
creates tasks for requesting the headers, but only awaits them
after the image has finished, in order not to delay the start of the
exposure.

As mentioned above, asyncio heavily reduces the risk of multi-
threading related problems. That is, because tasks never run in
parallel, but are only switched when one has finished or when
something is awaited. In multi-threading, parts of the code that
should not be interrupted are often secured using a mutex (or
lock), which is mostly unnecessary when using asyncio.

With asyncio, one just needs to be careful with long running
functions that are not defined async, e.g. the readout processes
of some cameras. Those method calls would block the whole
module, so asyncio provides an easy way to run them in an extra
thread:

loop = asyncio. get_running_loop()
data = await loop. run_in_executor(None,
camera. read_out())

Altogether, pyobs make heavy use of asyncio. For instance, all
interface methods and all event handlers must be defined async.
Switching from multi-threading to asyncio massively reduced the
number of difficult-to-debug errors and made developing a lot
easier.

2.2 Communication
Instead of inventing our own protocol for communication, we
decided to use XMPP (Saint-Andre, 2004), an XML-based chat
protocol. With it being mainly used for instant messaging (e.g., by
Jabber, WhatsApp, Zoom, Jitsi, and others), it naturally supports
multi-user chat, i.e., sending messages to multiple users. But due
to its wide variety of extensions (XMPP Extension Protocol,
XEP), it also supports remote procedure calls (RPC, calling
methods on another client), and a feature called auto-
discovery, which allows one client to determine the capabilities
of another.

The use of XMPP also frees us from writing and maintaining
our own server software, since there are multiple industrial-grade
servers available, like ejabberd5 and Openfire6. They can run with
tens of thousands of users, compared to maybe a few dozen pyobs
clients in a typical observatory. Although, admittedly, pyobs
sends more messages than even the most ambitious teenager
in WhatsApp.

While we use the Python package Slixmpp for pyobs itself,
there are also XMPP libraries available for all major programming
languages7. Therefore the “py” (for “Python”) in “pyobs” refers
only to the core package, but extension modules can be written in
any language that supports XMPP.

As Figure 1 shows, the communication in pyobs is based on
three pillars (remote procedure calls, interfaces, events), which all
will be discussed in more detail in the following.

2.2.1 Remote Procedure Calls
All methods within a module that are derived from an interface
(see below) can be called remotely. The easiest way to do so, is to
get a Proxy object for another module from pyobs. These objects
mimic the behavior of the original module and therefore any of
their methods can be called directly as if they were local.

For instance, a camera module might implement this method:

async def set_exposure_time(
self,
exposure_time: float,
**kwargs: Any

) -> None:

For another module, calling this method is a simple as:

camera = await self. proxy(name_of_camera
_module)
await camera. set_exposure_time(2.0)

While some methods should usually return immediately (e.g.,
requesting a position), some might take a longer time (e.g.,
exposing an image or moving a telescope). For the caller of a
method it would be good to have an estimate for the call duration
in order to avoid waiting forever in case of an error. To achieve
this, pyobs extends the XEP-0009 extension for RPCs with a
timeout mechanism: all methods can define a time after which
they should be finished. This time is sent back to the caller
immediately after a method is called. If this waiting time is
exceeded, a timeout exception is raised and the caller can
decide what to do about this. If a method takes longer than
10 s, it should be decorated with the @timeout decorator, which
defines the maximum duration:

@timeout(1,200)
async def move_radec(

5https://www.ejabberd.im
6https://www.igniterealtime.org/projects/openfire/
7see, e.g., https://xmpp.org/software/libraries/
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self,
ra: float,
dec: float,
**kwargs: Any

) -> None:

Calling a method like this works the same way as before,
although it now raises an exception only after 1,200 s, compared
to 10 s for un-decorated methods.

2.2.2 Interfaces
The basis for all RPCs in pyobs are the interfaces in pyobs.
interfaces, which describe methods that a module must
implement in order to provide a given functionality. For
instance, all telescope modules should implement the
ITelescope interface. While not defining any methods on
its own, it inherits the two methods move_radec and
get_radec from IPointingRaDec (shortened for clarity):

class IPointingRaDec(Interface):
@abstractmethod
async def move_radec(

self,
ra: float,
dec: float,

) -> None:
...

@abstractmethod
asyncdefget_radec(self,)->Tuple[float,float]:

...

class ITelescope(IPointingRaDec):
...

Therefore, in order to be a valid ITelescope, a module
must implement these methods.

All interfaces implemented by a module are published via
XMPP’s auto-discovery extension, so all other modules can easily
determine what functionality is available from a given module.
This allows for easy construction of Proxy objects for RPC.

Furthermore, it is extremely simple for a module to find all other
modules that implement a given interface. A good example for this
are the interfaces IFitsHeaderBefore and
IFitsHeaderAfter. When a camera starts a new exposure,
we usually want to collect FITS headers from different modules.
Instead of having this list pre-defined, the camera can just request
all modules that implement these interfaces and call their respective
methods before and after the exposure:

clients=awaitself.comm.clients_with_interface(
IFitsHeaderBefore

)
for client in clients:

proxy = await self.proxy(client,
IFitsHeaderBefore)
headers[client] =
await proxy.get_fits_header_
before()

This way, we can easily add a newmodule to the system that simply
provides new headers for new FITS files (e.g., with weather data).

As an example, Figure 2 shows parts of the inheritance for
DummyTelescope, a simulated telescope that can be used for testing.

2.2.3 Events
While RPC is an active process of communicating with other
modules, there is also a passive one, which is reacting to events.
Each module can define types of events that itself creates and that
it wants to receive from other modules.

For instance, a camera might want to declare that it can send
events, when a new image has been taken

await self.comm.register_event(
NewImageEvent

)

and can actually send those events:

await self.comm.send_event(
NewImageEvent(filename, image_type)

)

FIGURE 1 | The three pillars of communication in pyobs, described as interactions between a local module A and a remote module B. On the left, remote procedure
calls are actively called on another module. The list of interfaces, in the middle, is automatically retrieved after the connection to the XMPP server has been established.
And events can be sent at any time, as shown on the right. Only those events can be handled in a module that it had registered before.
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while another module might want to receive those events and
handle them in a callback method:

await self.comm.register_event(
NewImageEvent,
self.on_new_image

)

[...]

async def on_new_image(
self,
event: Event,
sender: str

) -> bool:
print(event)

The events can be chained by sending new events within a
handler method. As an example, events on new images from a
camera could be handled by an image pipeline, which in turn
sends events that are handled by a module that measures seeing
on the reduced images.

2.3 Configuration
Pyobs gets its high flexibility from configuration files in YAML
format. The most simple configuration consists of only a single
line like:

class: pyobs.modules.test.StandAlone

When running this configuration via pyobs config. yaml
from the command line, a new module is created from the given
class and started. The class to use is given by its full package name,
the same as one would use to import it in a Python shell.
Therefore, its definition could be anywhere within the Python
path and not just in the pyobs package.

The example in the documentation is a little longer:

class: pyobs.modules.test.StandAlone
message: Hello world
interval: 10

Comparing this with the signature of the constructor of the
given class:

class StandAlone(Module):
def __init__(

self,
message: str = “Hello world”,
interval: int = 10,
**kwargs: Any

):

This makes it clear that all items in the configuration are
simply forwarded directly to the constructor of the given class.
pyobs goes even a step further and allows many parameters to be
either an object or a configuration dictionary (mostly given in a
YAML file as in the example above), describing an object of the
same type. For instance, every module class has also a parameter
comm (derived from pyobs’ Object class) for defining its
method for communication with other modules, given as this:

comm: Optional[Union[Comm, Dict[str, Any]]] = None

So this parameter accepts both a Comm object directly or a
description thereof. A valid configuration file could therefore look
like this:

class: pyobs.modules.test.StandAlone
comm:

class: pyobs.comm.slixmpp.XmppComm
jid: test@example.com

FIGURE 2 | Part of the interface inheritance for DummyTelescope (on the left in green), a simulated telescope that accepts RA/Dec coordinates and offsets and
has a filter wheel, a focus unit, and some temperature sensors. All methods available for remote calls are defined in the interfaces. ITelescope does not define anymethod
of its own, but is just a collection of other interfaces and can be used as a device definition, i.e., “this is a telescope”.
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password: topsecret

Looking at the constructor of given class XmppComm explains
the given parameters (shortened for clarity):

class XmppComm(Comm):
def __init__(

self,
jid: Optional[str] = None,
password: str = "",

):

Note that this makes it possible to replace the whole
communication system via XMPP with another method by
just implementing a new class derived from Comm. In an
environment, in which it is impossible to run an XMPP
server, this could simply be replaced by, e.g., direct socket
communication or HTTP REST.

A similar configuration style is used for names of remote
modules, which are called within a module. Here is the
constructor of the default class for taking an auto-focus series
(shortened):

class AutoFocusSeries(Module, IAutoFocus):
def __init__(

self,
focuser: Union[str, IFocuser],
camera: Union[str, IImageGrabber],

):

The class needs two remote modules to work, a camera for
taking the images and a focus unit with which it can change the
actual focus value. Both are defined to accept either a string or
an object implementing the interface that is actually required.
While for testing, it might be easier to pass an actual object, at
the observatory we usually just set the name of the other
module. From this name, a proxy object is being created,
which is checked for implementing the given interface.
Therefore, in production, a configuration for a focus series
might look like this:

class: pyobs.modules.focus.AutoFocusSeries
camera: fli230
focuser: telescope

Note that all this behavior is completely up to the class that you
want to use. So it must implement the flexibility to accept both an
object and a description or a remote name. This should be the
case for all modules from the core package and the additional
packages.

The default is to have one YAML configuration file per
module, but pyobs also has a built-in MultiModule, which can
run multiple modules in a single process. This is especially helpful
in cases when multiple modules need access to the same
hardware, which can be implemented using an object that is
shared between those modules. A basic example for this is given
with DummyTelescope and DummyCamera, which can share

a common world simulation, so that the camera actually can
simulate images at the position the telescope is pointing to.
However, if not necessary, MultiModule should be avoided
in favor of a single module per configuration.

If possible, the configuration even allows changing the core
behavior of a module. Coming back to the AutoFocusSeries
class from above, this class itself only defines the functionality for
taking a series of images at different focus values. The actual
analysis of the images and the calculation of the final best focus is
delegated to an object of type FocusSeries as defined as a
parameter in the constructor:

series: Union[Dict[str, Any], FocusSeries]

The default implementation in pyobs
(ProjectionFocusSeries in utils. focusseries,
see Section 3.3.1) collapses the images along their x and y
axes, respectively, and calculates moments to get a rough size
of the stars. The final best focus is calculated using a hyperbola fit
to the series of focus and size data. But, given that this class is
explicitly specified in the configuration file, it can easily be
changed to another (custom) implementation that derives
from FocusSeries.

A module might want to make some configuration settings
changeable during runtime. This can be handled via the IConfig
interface, which is implemented by default by all modules and
calls internal methods of the form _set_config_<name> (if
exists) for changing the given variable <name>.

2.4 Virtual File System
In a simple pyobs system, all its modules might run on a single
computer. In that case, a module storing a file on a local disk can
be certain that another module can access it at the same location.
An easy workaround for using this system with modules on
different machines is to mount (e.g., via NFS or SMB) the
required directories on both machines, but even in that case
one has to be careful to mount to the same directory, otherwise
filenames would not be the same on both.

This is where a virtual file system (VFS) becomes useful: if we
could define a “virtual” directory that points to the correct
location on all computers, the problem would be solved. pyobs
provides a VFS in pyobs. vfs and uses it wherever files are
accessed. The VFS is automatically available in all modules,
although it needs to be configured. A simple VFS configuration
(within the module configuration) might look like this:

vfs:
class: pyobs.vfs.VirtualFileSystem
roots:

temp:
class: pyobs.vfs.LocalFile
root: /data/images

The VFS in pyobs uses the concept of “roots” to define
where a file is actually located. In this case, one root, temp, is
defined as a LocalFile, which itself has a root
parameter, pointing to a real directory in the file
system–note that root here has nothing to do with the
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roots system in pyobs’ VFS, but comes from the term “root
directory”.

Now, within a pyobs module with this configuration we can
open a file like this:

fd = self.vfs.open_file(“/temp/new/image.fits”, “r”)

Internally, pyobs maps the first part of the path (the root),
i.e., temp in this case, to the root of the same name given in the
configuration, so it actually creates a LocalFile. When
opening the file, the path is changed accordingly to/data/
images/new/image.fits. Following up on the example
from above, now the temp root can point to different
directories on all computers, but still the same filenames can
be used on all.

Since the mounting of remote directories might not be possible
in some cases, pyobs offers some more classes for file access
within the VFS:

• ArchiveFile connects to the pyobs-archive image
archive (see Section 4.1). Currently only writing is
permitted, i.e., uploading an image to the archive.

• HttpFile represents a file on a HTTP server, e.g., the
pyobs file cache (see Section 3.4.4).

• LocalFile is a local file on the machine the module is
running on.

• MemoryFile stores a file in memory.
• SMBFile allows access to a file on a Windows share
without mounting it.

• SSHFile accesses a file on a remote machine that is
accessible via SSH.

• TempFile works on a temporary file that will be deleted
after being closed.

A file opened via VFS almost works like a normal file-like
object in Python, with the one difference that all its methods are
async, so they need to be awaited. pyobs also offers some
convenience functions for reading and writing FITS, YAML,
and CSV files in the VFS.

Figure 3 shows some examples, how a VFS path maps to a real
path with a given configuration.

2.5 Image Processors and Pipelines
With the Image class in pyobs. images, pyobs offers a class
for reading and writing images that also has support for
additional data like a good pixel mask, a star catalog and pixel
uncertainties. It is a simple wrapper around the FITS
functionality in astropy and is used within pyobs whenever
images need to be passed along.

Building on this image class, pyobs has the concept of “image
processors” (defined in pyobs. images.processors),
which simply take an image, process it in some way, and then
return it. Currently, these types of processors are available:

• An astrometry processor takes an existing catalog
attached to the image and tries to plate-solve it (see
also Section 4.3).

• The detection processors try to detect objects in the image
and write a catalog.

• The processors in exptime try to estimate a good exposure
time from an image, the one existing implementation is for
star fields.

• In offsets are processors that calculate some kind of offsets,
usually used for guiding and acquisition.

• The photometry processors perform photometry on the
image (usually at positions determined using a detection
step) and write/extend the catalog.

• There are some more misc processors that can, e.g., add a
good pixel mask, calibrate the image, or bin it.

Since image processors take an image as input as well as
returning one as output, they can easily be chained into an
image pipeline. This is done by many modules for pre-
processing images in some (fully customizable) way
before working on them. Adding new image processors is
easily done and provides a perfect way for handling images.

Pyobs also offers a full (offline) image pipeline (in utils.
pipeline.Night) that is also based on image processors,
permitting the fully automatic processing of a night’s images.

2.6 Error Handling
Handling errors in a single program is sometimes difficult
enough, but it can get rather complicated in a distributed

FIGURE 3 | Some examples, how a VFS path (left) maps to a real path (right) with a given configuration (middle). Note that for the remote root the class SSHFile
requires more parameters for the connection, which have been omitted here for clarity.
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system like pyobs. The basic requirement for every module is
that it should handle errors on its own as well as possible (e.g.,
resolve errors states in hardware devices) but sometimes a
calling module needs to be informed about a problem, e.g., if a
camera does not respond to requests anymore.

Since error handling can be very specific to the problem at hand,
pyobs only provides a framework for dealing with this, not a final
solution. It introduces its own set of exceptions that are all derived
from PyObsError in pyobs. utils.exceptions, and new
exceptions can easily be added if required.

A module can call register_exception()and define
a callback that is called whenever a given exception is raised
and a given condition is met: the function accepts a limit of
how often this can happen (optionally in a given time span)
before the problem is escalated. In that case, the raised
exception is changed into a SevereError, keeping the

original exception as an attribute. That means, catching one
of these severe errors means that an error has occurred too
often (in a given time span).

This gets more interesting in a real pyobs system with several
modules. There are some cases, in which a module should stop
working at all and inform other modules about this. So, e.g., the
BaseCamera, which is the base class for all cameras in pyobs,
registers an exception like this:

register_exception(
GrabImageError,
3,
timespan = 600,
callback = self._default_remote_error_
callback

)

TABLE 1 | List of available modules in the core package and in external packages.

Core Package (pyobs.modules.)

Module Package Description

DummyCamera camera Dummy camera for testing
DummySpectrograph camera Dummy spectrograph for testing
FlatField flatfield Taking a flat-field series
FlatFieldPointing flatfield Pointing for flat-fields
FlatFieldScheduler flatfield Scheduler for flat-fields
FocusModel focus Temperature model for focus
FocusSeries focus Auto-focus series
ImageWatcher image Watch directory for new images
ImageWriter image Write new images to disk
Seeing image Measure seeing in images
AutoGuiding pointing Auto-guiding with external camera
Acquisition pointing Fine acquisition
ScienceFrameGuiding pointing Auto-guiding with science camera
DummyAcquisition pointing Dummy acquisition for testing
DummyGuiding pointing Dummy guiding for testing
Mastermind robotic Main robotic module
PointingSeries robotic Automated pointing series
Scheduler robotic Task scheduler
DummyRoof roof Dummy roof for testing
DummyTelescope telescope Dummy telescope for testing
AutonomousWarning utils Acoustic warning in robotic mode
HttpFileCache utils File cache
Kiosk utils Take images and publish on website
Telegram utils Telegram interface
Trigger utils Event trigger
Weather weather Connection to pyobs-weather

External packages

Module Package Description

AlpacaTelescope pyobs_alpaca Telescope connected via ASCOM Alpaca
AlpacaFocuser pyobs_alpaca Focus unit connected via ASCOM Alpaca
AlpacaDome pyobs_alpaca Dome connected via ASCOM Alpaca
AravisCamera pyobs_aravis Aravis network cameras
AsiCamera pyobs_asi ZWO ASI cameras
AsiCoolCamera pyobs_asi ZWO ASI cameras with active cooling
FliCamera pyobs_fli FLI cameras
GUI pyobs_gui Graphical user interface for remote access
Pilar pyobs_pilar Pilar telescopes
SbigCamera pyobs_sbig SBIG cameras
SbigFilterCamera pyobs_sbig SBIG cameras with filter wheel
Sbig6303eCamera pyobs_sbig SBIG 6303e
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This defines that after three occurrences of the
GrabImageError exception within 600 s, the given method
should be called, which is a default implementation in Module. It
simply logs the error and sets the module to an error state that
prevents (almost) any of its methods to be invoked remotely. If
another module tries to call methods anyway, it receives a
ModuleError.

If a method is invoked remotely and an exception is raised, this
exception is wrapped in a RemoteError with the original
exception stored in an attribute. This is useful to register
exceptions with the module parameter, which only registers an
exception on a given remote module. For instance, the
FocusSeries module uses this:

register_exception(
RemoteError,
3,
timespan = 600,
module = camera,
callback = self._default_remote_error
_callback

)

So, whenever the remote module camera raises too many
exceptions, the FocusSeries module itself goes into error
state, which can be cleared remotely by calling
reset_error()— and of course might reappear when
the exception is raised again.

Note that registering an exception always also registers parent
exceptions. So if exception B is derived from A, all occurrences of
B also count for the registered limits for A.

3 AVAILABLE MODULES

In general there are two types of modules coming with pyobs:
those that control actual hardware and those that do not. While
the latter are part of the core package, the former are outsourced
to separate packages, since they will not be required by everyone
and often need special drivers to be installed. All modules can be
found on the central GitHub page.

For developing your own modules, please refer to the
documentation or just have a look at the existing ones as
examples. There is also a simulation available that can be used
for first tests. Please see the documentation for details on how to
set it up.

Table 1 lists all modules available in the core package and in
external packages.

3.1 Cameras
pyobs knows two kinds of cameras: classic cameras (derived from
the interface ICamera), for which one actually starts and stops
an exposure, and webcam-like cameras (interface IVideo),
which constantly provide a video (or a series of images) as
output. In addition, spectrographs are also supported
(interface ISpectrograph), which output a spectrum
instead of an image–therefore, most spectrographs would be

implemented as a camera, since they return an image, from
which the spectrum needs to be extracted.

In the following those camera types are listed, for which stable
modules exist and are available via GitHub and PyPi. In addition,
we also have modules for Andor and QHYCCD cameras, as well
as normal USB webcams (via Video4Linux2), but they are all not
in a publishable state. If you need one of those, please contact the
author of this paper.

3.1.1 SBIG
The pyobs-sbig package builds on the SbigDevKit Linux driver for
SBIG cameras. It is based on a Cython wrapper around that
library’s CSBIGCam and CSBIGImg classes. The different
modules support SBIG cameras with and without filter wheel.
There is a additional implementation for the STXL-6303E, due to
its different gain at different binnings. Note that this special
treatment of single models might be necessary for other cameras.
The module has been tested on STXL-6303E, STF-402M, and
STF-8300M cameras.

3.1.2 Finger Lakes Instrumentation
A Cython wrapper around the official libfli8 library for FLI
cameras is the core of the pyobs-fli. The module has been tested
on a FLI ProLine 230.

3.1.3 ZWO ASI
pyobs-asi is a thin wrapper around the zwoasi package to support
the cameras by ZWO ASI. It has been tested on a ZWO
ASI071MC Pro.

3.1.4 Aravis
Aravis9 is a library for Genicam cameras connected via gigabit
ethernet or USB3. The module in pyobs-aravis uses a modified
version of the python-aravis package for communicating with the
cameras. It has been tested with several cameras from The
Imaging Source10.

3.2 Other Hardware
While astronomical cameras are often bought off the shelf and a
few brands are most common between observatories, this is
mostly quite different for the other hardware in the dome–and
the dome itself. Those devices are often operated by custom
controllers and need special treatment. However, if a driver of any
kind exists, it is very simple to write a wrapper for it to be used
within a pyobs system.

An attempt to standardize the communication between all
kinds of devices has been made with ASCOM. A pyobs module
for ASCOM will be described in detail below. Another of those
attempts is INDI, for which we do not have a pyobs wrapper yet.
Interfaces to those two standards are an easy way to add hardware
to a pyobs system, for which ASCOM/INDI drivers already exist.

8https://www.flicamera.com/downloads/FLI_SDK_Documentation.pdf
9https://github.com/AravisProject/aravis
10https://www.theimagingsource.de
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3.2.1 ASCOM
ASCOM is a standard for communicating with astronomical
devices in Windows and is supported by a wide range of
cameras, telescopes, domes, etc. Furthermore, there a many
client applications like “The Sky” or “Stellarium” that can
operate an ASCOM based system.

While pyobs can run on Windows, we made the experience
that some things are a little more prone to error on that operating
system–pyobs processes sometimes quit without warning. There
is a (private) pyobs package for calling ASCOM interfaces directly
on Windows, but due to these problems, we never published it.
However, we can provide access on request.

The restriction to Windows systems is due to the use of
Windows COM as means for communication, which is not
available for other operating systems. Luckily, in 2018
ASCOM presented a new interface, called Alpaca, which is
based on HTTP REST requests, and therefore can also be
accessed from Unix-like systems. The pyobs-alpaca package
provides modules for telescopes, domes and focus units via
Alpaca. However, in contrast to most other modules in the
pyobs ecosystem, these ones are not meant to be used directly,
but more as some kind of inspiration for an observatory specific
implementation. They are not a general implementation of the
ASCOM protocol, but tailored specifically for the use case of the
50 cm Cassegrain telescope based at the Institute for Astrophysics
and Geophysics in Göttingen.

3.2.2 Pilar
Pilar is a telescope control software from “4pi Systeme”11 based
on the Open Telescope Software Interface (OpenTSI), and
currently used by our MONET telescopes via the pyobs-pilar
package. While the specific implementation of this module might
not be of interest for most observatories, it shows an example for a
socket based communication protocol wrapped in a pyobs
module.

3.3 Automating
While the modules described so far are all built around a specific
piece of hardware, there are also those that purely consist of
software to automate the boring stuff.

3.3.1 Auto-Focus
A common problem in astronomy is focusing the image on the
camera sensor. In most cases this will be done by moving either a
mirror (mostly the secondary) or the camera back and forth until
stars appear sharp, i.e., with the smallest possible width. The
AutoFocusSeries (in pyobs. modules.focus) module
accomplishes this by taking a series of images at different focus
values (i.e., position ofM2 or camera), and tries to find an optimal
focus by fitting a hyperbola through the estimated star widths in
each image as a function of focus value. For this, references to a
camera and a focus unit must be specified so that they can be
controlled remotely.

The estimation of star sizes is fully configurable by injecting a
class implementing the FocusSeries (in pyobs.
utils.focusseries) interface. Our current default
implementation is defined in ProjectionFocusSeries,
which projects the image along its x and y axis, respectively,
and measures moments on the resulting 1D data. Another
possibility is to use a method for star detection/photometry for
estimating star widths, as used in PhotometryFocusSeries.

While especially smaller telescope will typically work well with
a constant focus value throughout the whole night, larger
telescopes (with a steel structure) are constantly changing their
size (and therefore the position of the perfect focus) due to
temperature changes. For these cases, pyobs provides a
temperature model for the focus, which is implemented in the
modules.focus.FocusModel module and can adjust the
focus continuously throughout the night. The configuration
needs to specify a model function like this:

model: −0.043*T1 - 0.03*T2 + 0.06*temp + 41.69

While the value for temp is automatically fetched from a
given weather module (see Section 3.4.1), those for T1 and T2
must also be specified in the configuration. In this case they are
mirror temperatures and are supposed to be requested from the
telescope module:

temperatures:
T1:

module: telescope
sensor: T1

T2:
module: telescope
sensor: T2

For this to work, a module named telescope must exist
and its get_temperatures method must return values for
T1 and T2. With these values the module now calculates new
focus values at a given interval and sets them accordingly.

An AutoFocusSeries also sends an event, when it has
successfully determined a new focus, which can be handled by the
FocusModel automatically to optimize its temperature model.
For that to work, the model function must be defined with
variables that can be fitted:

model: a*T1 + b*T2 + c*temp + d

In this case, a set of default values must also be provided:

coefficients:
a: −0.043
b: −0.031
c: 0.062
d: 41.694

If this is set up correctly, a fully robotic system can perform
multiple focus series during each night (e.g., if there is nothing
else to do) and automatically optimize the focus temperature
model over time.11http://www.sonobs.de/company/company.html
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3.3.2 Flat-Fielding
A task that is prone to be automated as early as possible is flat-
fielding. While this is quite simple in a controlled environment
with a closed dome, e.g., with a flat-field screen, it becomes more
challenging when done on-sky during twilight. In that case,
exposure times have to be adjusted continuously to obtain
optimal count rates on the images.

To perform this task in a fully automatic way, it is best to first
measure optimal exposure times as a function of solar altitude.
For taking flat-fields, we always point the telescope at the same
sweet spot on the sky, right opposite the Sun at an altitude of 80°

(see Chromey and Hasselbacher, 1996). That way, we get
comparable count rates for a given solar altitude and exposure
time. We take a series of flat-fields, for which we try to get a
constant flux level–in our case 30, 000 counts –, and calculate the
optimal exposure time that would be required to get exactly the
given level. Figure 4 shows this for a set of RGBC filters and three
different binnings as measured at the 50 cm Cassegrain telescope
based at the Institute for Astrophysics and Geophysics in
Göttingen.

As one can see, the measured points do not overlap perfectly
over several nights, which can be caused, e.g., by clouds. But the
data is good enough to fit exponential functions to it (see lines in
plot), which we can use to roughly estimate the optimal exposure
time for a given solar altitude.

During dusk twilight, a flat-field module picks a filter and
binning combination and estimates the exposure time t for the
current solar altitude. If the time is shorter than a given minimum
Tmin, it does nothing and waits. When t reaches 0.5 · Tmin, test
exposures are started, actually measuring the counts in the image,
and calculate a new best exposure time. Only when t ≥ Tmin the
module starts taking actual flat-fields until either a given number

of images has been taken or t gets larger than a given maximum
Tmax. In dawn twilight, the procedure can be performed
accordingly with Tmin and Tmax swapped and opposite
comparisons. This is implemented in the FlatField module
in modules.flatfield.

The class handling the actual flat-fielding is, again, fully
configurable. An example for the flat_fielder parameter of
the module might look like this, defining functions for the
exposure time for different binnings and filters:

class: pyobs.utils.skyflats.FlatFielder
pointing:

class: pyobs.utils.skyflats.pointing.
SkyFlatsStaticPointing

combine_binnings: False
functions:

1 × 1:
Clear: exp(−1.22421*(h+4.06676))

2 × 2:
Clear: exp(−0.99118*(h+4.66784))

3 × 3:
Clear: exp(−1.14748*(h+5.38661))

The given class for pointing can also be used in the
FlatFieldPointing module, which only points the
telescope to a specific position without taking flat-fields. This
can be useful, if multiple instruments are supposed to be flat-
fielded at the same time.

A twilight is usually long enough for taking flat-fields in
more than one filter/binning combination. The
FlatFieldScheduler module provides a way to run
multiple ones as long as the twilight lasts. It can also read

FIGURE 4 | An example for empirical models for flatfield exposure times. The points are optimal exposure times for getting a mean flux of 30,000 counts in the
image as a function of solar altitude. The colors indicate different filters and binnings. A fit with an exponential function was performed and the best coefficients are given in
the legend and plotted as lines.
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priorities from a customizable source, which can be, e.g., an
image archive, so that the priorities are the larger the longer
ago the last flat-fields in this combination were taken. The
most simple solution, though, is not covered by this scheduler:
just a list of filter/binning combinations, which are flat-fielded
in the order as they are given. However, the implementation
would be so simple that we can leave it as an exercise to the
reader.

3.3.3 Acquisition
After moving a telescope to a target, it is often off by some
arcseconds or even arcminutes. Sometimes this is unacceptable,
especially when the light of a star, e.g., needs to be coupled into a
small fiber. In those cases, a fine acquisition based on images from
some camera is required. The Acquisition module (in
modules.pointing) takes images, runs them through a
pipeline (see Section 2.5) to determine what offset to move
the telescope, and then applies this offset. This is repeated
until the offset is smaller than a given limit.

The configuration for the pipeline typically consists of three
steps:

pipeline:
-class:pyobs.images.processors.detection.
SepSourceDetection

- class:pyobs.images.processors.astrometry.
AstrometryDotNet
url: https://astrometry.example.com/
radius: 5

- class: pyobs.images.processors.offsets.
AstrometryOffsets

First, a source detection is run on the images, followed by an
attempt to plate-solve it using the service of Astrometry.net (Lang
et al., 2010), for which we provide a self-hosted solution (see
Section 4.3). In the last step, the found coordinates are compared
to those from the pointing, and an offset is calculated. Alternative
methods are possible by simply changing the pipeline. For
instance, an image processor could find the brightest star in
the image and set the offset to move the telescope there.

Applying the offset to the telescope is also fully configurable.
For a telescope that accepts RA/Dec offsets, it might look like this:

apply:
class: pyobs.utils.offsets.Apply
RaDecOffsets
max_offset: 3,600

The given class simply takes the offsets from the image
(written by an image processor) and moves the telescope
accordingly.

3.3.4 Auto-Guiding
The task of auto-guiding is quite similar to that of acquisition, so
the configuration is as well: it also mainly consists of a
pipeline and an apply step. But instead of running until
the calculated offset is small enough, the auto-guiding runs

forever, or until stopped, to correct for any shift in pointing
that the telescope is doing over time.

In pyobs, two kinds of auto-guiding are ready to use:

• Science-frame auto-guiding (module
ScienceFrameAutoGuiding) uses the images of the
science camera for guiding. This works quite well if the
exposure time is small enough to correct for any shifts of the
telescope over time.

• In contrast, what we just call auto-guiding (module
AutoGuiding) requires an extra camera that is mounted,
e.g., at the same focal plane as the science camera or at an extra
guiding telescope thatmoves along with themain telescope. In
this case, with a bright enough star in the field, the auto-
guiding can perform its corrections, independently of the
actual science taken, in intervals as short as required.

While the astrometric method used in the acquisition would
also work for auto-guiding, it is usually too slow. These alternative
methods are provided with pyobs:

• A projection method as implemented by
ProjectedOffsets projects the images separately
along x and y axis and cross-correlates both individually
with a reference image. The resulting x/y pixel offset can be
translated into a RA/Dec or Alt/Az offset.

• Cross-correlating full images is usually too slow, so
NStarOffsets uses star positions from a source
detection that needs to run before, and cross-correlates
only small images around the N brightest stars in the image.

3.4 Utilities
A couple of smaller utility modules for common tasks are
provided for convenience.

3.4.1 Weather
For fully autonomous observatories, the most important task is
not to get observations done, but to close the roof on bad weather
and to keep it closed–an expensive telescope and camera is worth
nothing if regularly rained on. With pyobs-weather (see Section
4.2) there is an affiliated project that acts as an aggregator for data
from several weather stations and evaluates some logic to
determine, whether the weather is good or bad, i.e., suitable
for observations or not.

The Weather module connects to an instance of pyobs-
weather and can provide several functions within a pyobs
network:

• It provides FITS header entries with weather information
for science data.

• It has a simple is_weather_good() method
returning a Boolean, indicating whether the weather is
good or not.

• It sends events when the weather status changes,
GoodWeatherEvent and BadWeatherEvent, which
other modules can handle and react accordingly.
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Note that the safety net cast by this module is mainly for the
robotic system to react on changes. It is not a replacement for an
emergency shutdown in case of, e.g., rain, which should work
even without network.

3.4.2 Telegram
Even the best logging is only good, if someone reads it. Therefore,
the module Telegram can forward all messages of a given level
(info, warning, error, . . . ) into a Telegram12 chat – the default
configuration would be to have only error messages sent. That
way the telescope administrator usually gets notified of a problem
within seconds.

The Telegram bot used for this provides several commands
that can be issued to it by simply opening a chat on the smart
phone. For security reasons, every user has to login (/login
command) before receiving any logs and before being able to
issue any other command./loglevel changes the current log
level and/modules lists all online modules. The most powerful
command is/exec, which allows the user to issue any pyobs
command to any module, similar to what is possible within a
module or in the Shell of the GUI (see Section 3.5). Using this, the
administrator can easily shut the roof or abort an observation
from within a Telegram chat.

While Telegram currently is the only supported chat system,
adding other ones should be as simple, as long as an API is
provided that can be used by pyobs.

3.4.3 Trigger
Events are a powerful system in pyobs and for some of them a
default action should be performed every time they are
encountered. Instead of writing a new module for this, one
can simply use the existing Trigger module. It defines events
and the method on a given module that should be executed,
when the event is triggered. For example:

triggers:
- event: pyobs.events.GoodWeatherEvent
module: dome
method: init

- event: pyobs.events.RoofOpenedEvent
module: telescope
method: init

This configuration calls dome.init() on a
GoodWeatherEvent and telescope.init() on a
RoofOpenedEvent, thus opening roof and telescope
when the weather changes from bad to good–which, in case
of pyobs-weather, is usually also the case after sunset for a
night telescope. Note that there is no trigger configuration for

FIGURE 5 | A screenshot of the graphical user interface (GUI) as provided by pyobs-gui. It shows the list of connected modules that are supported by the GUI on
the left. When selecting one, a custom widget for each kind of module is shown in the main area right of it. Below is the logging area, which shows log entries from all
connected modules.

12https://telegram.org
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the bad weather case, since all modules handle that on
their own.

3.4.4 FileCache
While a camera module can be configured to store its files locally,
that can be quite impractical, if it runs on a different computer
than the rest of the pyobs system, which might be the case quite
often. So there is need for a place to store the images that can be
accessed from all modules–or at least those that need access to the
images.

A network mount using, e.g., SMB or NFS does the job
well, but with HttpFileCache there is also a module
available for that in pyobs. It opens a web server on a
given port, which can be used to upload images from the
camera and download them somewhere else. It can simply be
accessed via the VFS (see Section 2.4) using a
HttpFile root.

3.4.5 ImageWriter and ImageWatcher
When the camera uploads its images to a FileCache (see above),
they should still be stored somewhere, since the cache only holds a
limited amount of files. An easy way to do that is the
ImageWriter module that waits for NewImageEvents,
downloads those images and stores them at a different VFS
location.

To make this a little safer and reduce the risk of losing images,
an ImageWriter should always write images to a local disk. If
they are supposed to be copied to a remote location, the preferred
way is an additional ImageWatcher, which watches a given
path for new files, copies the files somewhere else, and only
deletes the original files if there was no error. So a typical setup
would configure the ImageWriter to store its files into a local
directory like this, assuming that the camera stores its images at
/cache/ and /some/temp/dir/ is some local temp
directory:

class: pyobs.modules.image.ImageWriter
vfs:

class: pyobs.vfs.VirtualFileSystem
roots:

cache:
class: pyobs.vfs.HttpFile
download: http://somewhere:37075/

archive:
class: pyobs.vfs.LocalFile
root:/some/temp/dir/

Note that the root archive is used since the default value for
the filenames parameter of the module is/archive/FNAME.

After the images have been stored locally, an
ImageWatcher should pick them up and copy them into an
archive (note that curly brackets in destinations indicate
placeholders which are filled from FITS header values):

class: pyobs_iagvt.filewatcher.FileWatcher
watchpath:/temp/
destinations:

-/archive/{FNAME}
vfs:

class: pyobs.vfs.VirtualFileSystem
roots:

temp:
class: pyobs.vfs.LocalFile
root:/some/temp/dir/

archive:
class: pyobs.vfs.ArchiveFile
url: https://archive.example.com/

After the images have been copied into the archive, they will be
delete from the temp directory by the ImageWatcher.
Currently the copied files are not validated in order to make
sure that they are identical to the original, but this would be a
simple feature to add.

3.5 Graphical User Interface
While all the other modules presented here are fully
autonomous, pyobs also provides a graphical user interface
(GUI) for easy (remote) access to the system. Technically it is
also just another module, which opens a window for
interaction with the user.

Figure 5 shows a screenshot of the GUI right after a bias image
has been taken with the selected SBIG camera. The main window
of the GUI consists of three major parts:

• The list of module pages on the left, including the three
special pages Shell, Events, and Status.

• The system log on the bottom, showing all log entries from
all connected modules as well as a list of all those modules
on the lower right.

• The module page, filling the rest of the window, which
changes depending on the selected module.

The three special pages mentioned above are:

• The Shell is an interactive command prompt, in which the
user can execute any command on any module in the form
<module>.<method>(<params>). This makes the
shell a very powerful tool for admins and for debugging.

• The Events page shows a chronological list of all events that
have been sent in the pyobs network. It also allows to send
events on its own with parameters defined by the user.

• The Status page shows the current status of a module, e.g.,
whether it is in an error state. It also shows the pyobs version
of every module to keep track of updates.

In the list of modules on the left, not all modules are listed, but
only those for which a graphical user interface has been designed.
The GUI is fully dynamic, which means that it changes according
to the list of connected modules. Single module pages also adapt
to the capabilities of the associated module, e.g., the camera page
only shows options for window and binning, if the camera
supports it.

The customization of the GUI goes even further with user-
defined pages. For example, pyobs does not provide a user
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interface for acquisition and guiding, but in the case of our solar
telescope, a visual feedback is important. So we created a new
widget and defined it in the configuration of the GUI:

widgets:
- module: guiding
overwrite: True
widget:
class: pyobs_iagvt.guidingwidget.
GuidingWidget
acquisition: acquisition

This tells the GUI to overwrite an existing widget for the
guiding module with the given class. Using custom widgets,
one can adapt the GUI to work with any special requirements.

The other way around, restricting access in the GUI, can
also be accomplished in the configuration via the
show_shell, show_events, and show_status
parameters, which, if set to False, hide the corresponding
page. An explicit list of allowed module pages can be provided

with the show_modules parameter. Here is an example for
a very limited access to the camera only:

show_shell: False
show_events: False
show_status: False
show_modules: [camera]

Altogether, the GUI tries to allow access to all modules as
well as it can, but it is also highly customizable to match any
requirements of an observatory. With ports for the
XMPP server (and probably the file cache) open to the
public, this enables a safe and easy remote access to the
pyobs system.

4 AFFILIATED PROJECTS

There are a few projects with “pyobs” in their name that do not
provide any new modules but some external services that are
essential for operating a fully-autonomous telescope.

FIGURE 6 | Screenshot of the pyobs-archive instance that we use for the MONET telescopes and the IAG50 cm telescope.

FIGURE 7 | Two screenshots from the pyobs-weather web frontend for the IAG 50 cm telescope. The main page is shown on the left and the Sensors page on
the right.
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4.1 Image Archive
In classic astronomy an observation consists of three steps:

1) Planning an observation, i.e., finding targets, defining filters and
exposure times, evaluating best times for the observation, etc.

2) Actually performing the observation at the telescope.
3) Calibrating and analyzing the data.

Nowadays it is absolutely possible to automate all three and
avoid human interaction at all. While this topic goes far
beyond the scope of this paper, we want to mention that a
full automation does not only work for large surveys, but also
for small telescopes in the middle of a town like Göttingen (see
Masur et al., in prep). However, for robotic observations at
least the second step falls away from the observer’s
responsibility, but also parts of step one (defining observing
times) and three (calibrate data). In that case, probably not
knowing exactly when an observation was taken, an efficient
way to find data becomes more important.

This is where an image archive comes into play. There is the LCO
science archive13,14 to use, but it stores the images inAmazonAWS S3,
while we wanted to store data locally. So we developed our own
backend, which also supports the LCOAPI, and took parts of the LCO
web frontend with permission and adapted it to our needs. We also
added aHTTP endpoint for uploading images.Within pyobs there are

classes for both an easy upload using the VFS (via ArchiveFile),
and a full wrapper for accessing the archive in PyobsArchive.

Figure 6 shows a screenshot of the archive that we use for the two
MONET telescopes and the IAG50 cm telescope. On the left, there is a
list of options to filter the data by. On the right is the list of images
matching the selected criteria. More details–including connected data
(for calibrated images), a link to the FITS headers and a thumbnail
preview–can be accessed by clicking on the plus symbol. Single or
multiple images can also easily be downloaded using this web frontend.

4.2 Weather Aggregator
In Section 3.4.1 we already mentioned a project for aggregating data
from different weather stations and evaluate the values in order to
determine, whether the weather is good for observing. Figure 7 shows
two screenshots frompyobs-weather as used by the IAG50 cm telescope.

On the left, the main page is shown, with average values from all
sensor types as well as plots for the current night (top), weather
status (green and red shaded areas in the plot below, indicating good
or bad) and solar altitude (yellow line in same plot), and plots for all
sensors, grouped by type (i.e., temperature, humidity, etc). On the
right, the Sensors page is shown with current values for all sensors
from all stations, times of last changes (for evaluated sensors, see
below) and comments on the current status. There is a public API for
the weather data, which can easily be accessed via the weather
module (see Section 3.4.1).

The system is fully customizable. The basic unit in pyobs-weather
is a station, which usually defines a single physical weather station.
There are some station classes already present, of which some are
more generic (getting data from aMySQL or CSV table) and some are

FIGURE 8 | Structure of a task in the LCO portal. While the green fields can occur only once, there can be multiple entries for the yellow fields (Request,
Configuration, Window, InstrumentConfig).

FIGURE 9 | Left: Mid-resolution resolved Sun fiber setup for the VVT: The full image of the Sun is re-imaged onto the fiber pickup mirror that is hosting a 525 μm
fiber (corresponding to a 32 arcsec field of view). The fiber leads to a Fourier-Transform-spectrograph. Behind the pickupmirror the light is again re-imaged, this time onto
the guiding camera which is used by pyobs for both pointing and guiding. Right: CAD-model of the fiber-guiding unit for the 50 cm telescope. Starlight is re-imaged onto
a fiber-pickup mirror and the remaining light is redirected into the guiding camera, allowing for nearby stars to act as guidestars.

13https://archive.lco.global/
14https://github.com/observatorycontrolsystem/science-archive
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specific to the observatories where our telescopes are located (e.g., for
the weather station on Mt. Locke at McDonald Observatory).
Additional classes for more stations can easily be added. There are
three special stations that do not represent an actual weather station:
Current contains the current average values from all stations, while
Average keeps a 5-min average. Finally, Observer calculates
current conditions, which, at the moment, is only the solar altitude.

Every station then contains one or more sensors, which provide
values for a sensor of a given type: temperature, relative humidity,
pressure, wind speed and direction, particle count, rain, sky
temperatures, or solar altitude. To each sensor, one or more
evaluators can be attached, which take the current value and
decide whether it allows for observations or not. Currently,
pyobs-weather offers four different kinds of evaluators:

• A Boolean is a simple logic evaluator, which is True if the
sensor value is True, and vice versa–or the opposite, if invert
is set to True.

• Switch is a simple switch, which is True, if the sensor value
is above a given threshold, and vice versa. And, again, the
other way around, if invert is set to True.

• A Schmitt trigger is similar to a Switch, but it takes two
values: for it to become True, the sensor value must be below a
given good value, but to become False again, it must rise
above a given bad value.

• Sensor values have a valid flag, which is mostly used (and set to
False), if the value is older than 5minutes. The Valid evaluator
only evaluates to True, if the value is valid.

As an example, we assume getting relative humidities from two
weather stations. For both we would typically set a Schmitt
evaluator with values like good = 80 and bad = 85, which
means that the weather is marked as bad, if the humidity rises
above 85%, but is onlymarked good again, if the humidity falls below
80%. It would not be a good idea to attach a Valid evaluator to
both, since weather stations can break. However, we still always want
a valid reading for the humidity, so we assign it to the humidity
sensor in the Current station. That way, if we get no valid value at
all, the weather is marked as bad. Evaluators on the Average
station are never evaluated, but they are used for color coding the
plots, i.e., mark areas that would mean bad weather.

Every sensor can also have a delay before switching from good to
bad or vice versa. This can be used so that, e.g., the rain sensor only
reports good weather if the last rain was at least an hour ago. Or, the
other way around, a sensor that tends to flapping, i.e. wrongly reports
badweather for a short time before going back to normal, could be set
to switch to bad only if this condition lasts for a given time.

4.3 Astrometry
Getting astrometric solutions for images (i.e., “plate-solving” them) is
a task required atmultiple occasions (see, e.g., Sections 2.5 and 3.3.3).
For this we use a self-hosted version of Astrometry.net (Lang et al.,
2010), adding a HTTP interface for accessing its service. Similar to
Astrometry. net’s own web service, 15 it accepts a list of X/Y positions

of stars on an image, but in addition some parameters for thefit can be
provided, like a first guess for the coordinates and an estimate for the
plate-scale. A successful call returns FITS header entries that can be
added to an existingfile in order to get a validworld coordinate system
(WCS). The whole process usually takes well below one second. pyobs
provides an image processor that uses this web service for easy use in a
pipeline (see Section 2.5).

5 FULL ROBOTIC MODE

With everything described so far, we already have a working
observatory. We can control all devices, automate some things,
and remotely control the system with the GUI. All that is needed
for a fully autonomous telescope is some piece of software that
coordinates everything. These robotic systems come in all shapes
and colors: from a rather simple survey mode, in which a pre-
defined list of targets is executed from top to bottom, probably all
to be done with the same settings, whenever the conditions are
right, to a system with user-defined tasks, maybe multiple
instruments, and a scheduler that tries to fit all together.

5.1 Scheduling
The most simple robotic system imaginable is a simple list of
targets that are to be observed one after the other, top to bottom.
An algorithm for that might look like this:

1. Select a target from a list, probably the first one.
2. Move the telescope to the given coordinates.
3. Take an image and store it.
4. Repeat.

A system like this still has someother things to take care of, e.g., open
up at dusk (for night observations) and close down at dawn–or when
the weather gets bad. Any interruption (like daylight or rain) would just
delay the selection of the next target. While very simple, this kind of
system is suitable for many types of observations. There is no module
implementing a surveymode in pyobs, but it could easily be addedwith
very few lines of new code, specialized on the use case at hand.

This “survey mode” is also easily extendable, e.g., add an exposure
time and a filter to the table of targets and set them before starting the
exposure.However, the targetswould still be observed in the order that
they appear in the table. Therefore, the next step might be to filter the
table of targets by visibility and sort it by some kind of priority. If we do
that every time the system is idle, we get some kind of “just-in-time”
(JIT) scheduler, always picking the next target when needed, but never
planning further ahead. Some control systems, like the one for
STELLA on Tenerife (Granzer et al., 2012), developed this idea
further and have been using it successfully for years. A JIT
scheduler can be very powerful, because it can easily adapt to
changing observing conditions like seeing or transparency and
picks its next target accordingly.

There is, however, one major disadvantage for these kind of
systems: selecting only the next targets means there is no full plan
for the night (or day), so it may be difficult to impossible to predict,
whether a specific target will be observed or not. It may even be
difficult to decide, which parameters need to be changed in order to15http://nova.astrometry.net
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make sure the observation will take place. Furthermore, the selection
of targets may never be “optimal”, i.e., it is challenging to fill the
observing time with the best possible targets. For example, take an
object A that can be observed at the beginning and at the end of the
night (maybe a transit event). Another object B can only be observed
at the beginning of the night. Even if A has a higher priority, it might
be better to observe B first and then A at the end of the night.

An astronomer, going on an observing run, would probably plan
the nights in advance and make a schedule, when to observe which
target. This is an optimizing problem and so we can call these kinds
of schedules “optimal”. This is a different approach to selecting
targets and not as straightforward as the one for JIT schedulers
described before. Luckily, there are free schedulers available for use,
e.g., the adaptive scheduler developed by LCO16 and the Astropy-
affiliated project astroplan, just to name two. In principle, they all try
to optimize the placement of observations for the whole night so that
a given value is maximized, e.g., the total observing time or
something like the time-integrated priorities of the tasks.

While the LCO scheduler can run fully independent from pyobs,
there is amodule based on astroplan:Scheduler. It takes schedulable
tasks from a TaskArchive object, calculates a schedule, and writes it
to a TaskSchedule object. A TaskArchive simply holds a list of
tasks (in the form of Task objects) and returns them on request. The
scheduler takes these tasks, converts them into astroplan’s
ObservingBlocks, applies given constraints, and starts the
scheduler. The result is a time table, giving start and end times for
all scheduled tasks, which is passed to the TaskSchedule, storing it
to be accessed by the robotic telescope system.

All these three classes (TaskArchive, TaskSchedule,
and Task) are abstract and need specific implementations for a
method to store tasks and schedule. The implementation coming
with pyobs is one tailored to be used with the LCO observing
portal, but access to other task databases can easily be added.

Furthermore, this gives a simple framework for changing the used
scheduler at a later time. The one implemented in astroplan is a
“greedy” one, i.e., it schedules the task with the highest priority first,
then the one with the next lower priority, and so on.While it ensures
that the highest priority target is observed, this is not true for all other
targets. Thus, the result of a “greedy” scheduler is still far away from
an optimal one. However, changing the actual scheduler will not
affect the rest of the robotic system at all.

5.2 LCO Observing Portal
The central part of the LCO observing portal is a database, mainly
storing tasks, schedules, and observations, and aHTTPREST interface
for accessing it–see details about the API on LCO’s developers page17.

When the portal is set up correctly and running, a new account
must be created with “Staff” permissions to access all the necessary
endpoints. The security token for this accountmust be provided in the
configuration of LcoTaskArchive and LcoTaskSchedule,
which are the LCO-specific implementations of the classes
discussed above. They both make use of LcoTask that simply

stores the JSON object returned from the portal. These classes are
enough to run the scheduler in connection with an LCO portal.

Figure 8 shows the structure of a task in the LCO portal:

• The top-most element is a request group, which has a name
and belongs to a proposal. It can contain one or more requests.

• A request contains a location (i.e., the telescope to use), one or
more observation windows and one or more configurations.

• A configuration stores settings for acquisition and guiding,
observing constraints (airmass, moon distance, etc.), the target
information and one or more instrument configurations.

• Finally, an instrument configuration holds information like
exposure time and count, and filter to use, all depending on
the selected instrument.

Each of these elements also contains an extra_params
field, which can be used for any extra information that is not
supported by the default parameters.

Configurations have atype parameter, whichwill be important for
running the task. The default value for an imaging camera would
usually be EXPOSE, which just exposes as many images as given in the
instrument configuration. Another possibility is REPEAT_EXPOSE,
which loops all instrument configurations, until a given
repeat_duration is reached. There are also other, more
specific types, like AUTO_FOCUS for performing an auto-focus series.

5.3 Running Tasks
With the schedule in place, we actually need to observe the tasks. In
pyobs this is done by a TaskRunner, which only has two methods:
can_run()checks, whether a given task can run right now, and
run_task() actually executes it. For this, pyobs uses the concept of
“scripts”, which can be fully customized in the runner section of a
configuration for a task runner. While the following will concentrate
on running tasks from an LCO portal, implementations for other task
archives should be easily implemented.

In the case of the LCO portal, the script to use is defined by the
configuration type. A possible configuration might look like this:

runner:
class: pyobs.robotic.TaskRunner
scripts:

BIAS:
class: pyobs.robotic.lco.scripts.
LcoDefaultScript
camera: sbig6303e

EXPOSE:
class: pyobs.robotic.lco.scripts.
LcoDefaultScript
telescope: telescope
filters: sbig6303e
camera: sbig6303e
roof: dome
acquisition: acquisition
autoguider: autoguider

This uses the same script (LcoDefaultScript in
robotic.lco.scripts) for two different configuration types.

16https://github.com/observatorycontrolsystem/adaptive_scheduler
17https://developers.lco.global
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The script checks internally, what kind of observation to perform. As
usual, all parameters in the configuration are forwarded to the
constructor of the given class–in this case all of them are names
of modules handling specific tasks. Note that a request can contain
multiple configurations, and each might use a different script and
might be observable or not.

An LcoTask checks and runs all configurations in a request.
The procedure that the LcoDefaultScript runs for a single
configuration looks like this:

• If the configuration type is EXPOSE, which is a science
observation, move the telescope to the given coordinates.

• If a fine acquisition is requested, do it.
• If guiding is requested, start it.
• Now loop all instrument configurations and for each set the
filter and binning and take the given number of images.

If the configuration type is BIAS or DARK, this procedure
would simplify to just taking images.

In the case of this LcoDefaultScript, the script needs to
know about internals of the task that are not available via the public
interface of Task, so an LCO specific script is required. The same is
true for the auto-focus script LcoAutoFocusScript. On the
other hand, there are some scripts that do not need any information
from the task and can therefore be run in any system, e.g. the
SkyFlats script. When using this in a LCO environment, the
configuration type SCRIPT is required and a special script
LcoScript, which evaluates a script parameter in the
extra_params of the configuration to delegate execution to
another script. It can be configured like this:

runner:
class: pyobs.robotic.TaskRunner
scripts:

SCRIPT:
class:
pyobs.robotic.lco.scripts.LcoScript

scripts:
skyflats:
class: pyobs.robotic.scripts.SkyFlats
[...]

Now, whenever the configuration type is SCRIPT and the
script is set to skyflats, the given script SkyFlats is
executed. The whole script system is designed to be as flexible as
possible and should allow for writing custom scripts for any
requirement.

For our solar telescope we also use a (modified) LCO portal,
but the robotic mode is a lot simpler: there is no scheduler, but the
task archive just requests the schedulable blocks and returns the
one with the highest priority. This is possible, because all
positions on the solar disc are visible as soon as the Sun is up
in the sky. There is also a different default script that just moves
the telescope and triggers the spectrograph.

5.4 The Mastermind
Using the scripts system, building a central module that runs them
becomes very simple–we call thismodule the “mastermind”. It creates a
TaskSchedule and a TaskRunner from its configuration and
then continuously gets the tasks from the former and executes themvia
the latter. It also sends events when starting and finishing a task and
writes information about the task into the FITS headers of the images.

The whole system is flexible enough that we run two 1.2m and
one 0.5 m night telescope with it, as well as a 0.5 m solar
telescope–however, for the last one the default scripts are not used
(they use, e.g., a different coordinate system) and even the LCOportal
had to be adapted for this use case. Nevertheless, the changes were
minimal and we can use the same code base for all telescopes.

FIGURE 10 | List of all pyobs modules that are currently running at MONET/S and how they are distributed to four different computers. Marked in green are those
modules that are available in pyobs-core or one of the additional packages. The three other modules are custom implementations for the given hardware.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org July 2022 | Volume 9 | Article 89148619

Husser et al. pyobs

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


The solar telescope is also a good example on how to customize
the mastermind. Since all functionality is included by referencing
Python classes in the configuration, the whole execution of a task can
be changed, even when sticking with the LCO portal–with other task
backends one needs to write own code anyway. It is completely
possible to change the code to operate multiple instruments or even
telescopes. For instance, we are currently adapting the system to
calibrate three instruments at two telescopes simultaneously for
MONET/S (see next Section).

6 TELESCOPES

The Institute for Astrophysics and Geophysics in Göttingen
(IAG) operates four telescopes, of which two are located
within the faculty building, one is in Texas, and the last one is
in South Africa. In this section we will describe the hardware for
each one and their level of automation with pyobs.

6.1 IAG 50cm
The IAG 50 cm is a Cassegrain telescope located on the roof of the
institute with a main mirror with 0.5 m diameter and a focus length
of 5 m (f/10), housed in a classical rotating dome. The telescope is
mainly used for educational purposes and public outreach. With the
use of pyobs we now also use the rare days of good weather in
Göttingen for science observations, but it is mainly a testing platform
for the two MONET telescopes (see below). The main instrument is
a SBIG STL-6303E with a pixel scale of 0.55 ”/px (with a focal
reducer). Attached to the telescope is a smaller 110mm f/7 refracting
telescope with a ZWO ASI 071 MC camera.

Dome, telescope and focusing unit are running with ASCOM and
are connected to pyobs via pyobs-alpaca. The two cameras use
their respectivemodules (pyobs-sbig andpyobs-asi). The other
modules that we use perform the following tasks (for all see Section 3):

• Fine acquisition with both of the cameras,
• auto-focus for the main telescope and camera,
• flat-fielding for both cameras,
• file cache and image writer and watcher,
• scheduler and mastermind for robotic mode,
• telegram bot,
• weather from a connected pyobs-weather (see Section
4.2) page.

The main telescope runs fully robotically with a copy of the LCO
portal (shared with the MONET telescopes), while the smaller
telescope is not yet supported in this mode. We are currently
working on guiding with the small telescope and on implementing
the necessary pointingmodel in pyobs.We are also currently adding a
fiber pick-up to transfer the light from the main telescope to a
spectrograph in the optical lab (see next section). For this, the guiding
uses a camera from The Imaging Source pointed at the fiber pin hole
in a 45° mirror, which has already been tested (see Figure 9, right).

6.2 IAG Vakuum-Vertikalteleskop
The Vakuum-Vertikalteleskop (VVT) consists of a siderostat on the
top of the faculty building, redirecting the light two stories down into

the building, where the 0.5m primary mirror is reflecting the light
back up one story and into the optical lab. It provides both a f/11
primary focus and a Gregory f/50 secondary output.

There are a total of six observingmodes for the telescope, with five
of them using pyobs for pointing and guiding using a custommodule
via an interface to its control system. These modes include different
spatial resolved observingmodes (with field of views between about 4
and 100 arcsec) and Sun-as-a-star integrated light modes. As an
example, Figure 9 (left) shows a Zemax raytracing of the mid-
resolution resolved Sun fiber setup. The light from the primary
mirror is collimated and re-imaged onto a fiber pickupmirror and re-
imaged a second time onto the CCD guiding camera that is used for
acquisition and guiding via detecting the solar disk.

The light entering the fiber is sent to our Fourier-Transform-
spectrograph (FTS), a Bruker IFS 125HR with a maximum
resolving power of > 700, 000 at 600 nm. For the FTS, another
custom module is used for HTTP communication with a LabView
instance, which in turn is connected to the instrument software OPUS.
For more details on the resolved Sun setup–see Schäfer et al. (2020b),
and for more details on the coupling into the FTS see Schäfer et al.
(2020a).We are currently commissioning the fully roboticmode, based
on a modified LCO portal, which now accepts coordinates in the
Stonyhurst Heliographic system (HGS).

6.3 MONET/N
The two MONET Alt/Az telescopes (Hessman, 2001; Bischoff et al.,
2006) have (almost) identical hardware with a 1.2mmainmirror at f/
7. They were optimized for fast operations with up to 10°/s on both
axes and therefore also have a clam-shell roof that opens completely.
The northern telescope, MONET/N, is located at McDonald
Observatory in Western Texas, United States the process of
designing a fiber-fed high resolution spectrograph for high-
precision radial velocity observations of G-type stars on them/s-level.

The level of automation is about the same as for the IAG
50 cm, with the exception of the piggyback telescope.

6.4 MONET/S
With MONET/S, located at the South African Astronomical
Observatory (SAAO) near Sutherland, South Africa, having mostly
the same hardware asMONET/N, there are still some differences. The
science camera is currently a FLI PL230 and there is a 0.25m f/8
piggyback telescope mounted at the (unused) second Nasmyth port,
with a SBIG STX-8300M camera attached to a Gemini derotator and
focuser. Furthermore, outside the field of view of the main camera we
installed a pickup for a fiber bundle leading to MORISOT, a low-
budget, low-resolution spectrograph.

Again, the level of automation is similar to its twin in Texas
and the IAG 50 cm. Figure 10 shows an illustration of all pyobs
module running at MONET/S, how they are distributed over
several computers, and how they are connected to the actual
hardware. As one can see, there is an additional module for the
derotator of the piggyback telescope that we will publish as soon
as it is fully tested. Acquisition (with an offset) and guiding of the
spectrograph is supposed to be done with the science camera, and
we hope to be able to do parallel photometry of the target with the
piggyback. The custom module for the roof simply calls HTTP
REST endpoints on our roof controller, and BonnShutter
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continuously checks the health of our Bonn shutter, and resets it,
if any error occurs.

When everything is finished, there will probably be three modules
for acquisition (one for each instrument) and three modules for
guiding: science-frame auto-guiding on the main camera, guiding via
piggyback, and guiding via science camera for the spectrograph. There
will also be auto-focusing for both telescopes and flat-fielding for all
three instruments. A challengewill be to calibrate all three instruments
during twilight, but with the flexible scripts in the robotic part of
pyobs, this should not be too much of a problem.

7 DEVELOPMENT

The development of pyobs is completely public, all the projects
are hosted on GitHub and we use its “Issues” page as a bug
tracker. At the moment, all the code comes from a single
institution. We would, however, love to see contributions from
other people, and would be glad to accept pull requests.

Development for pyobs has two different sides: creating new
modules or change existing ones is quickly done and we can
include as many into the main package as we went, as long as
they provide some functionality that is otherwise missing and
required by some observatories. Some possible extensions that
come to mind are, e.g., support for dithering, focus offsets with
respect to filters (which is already supported by the FocusModel
module), guiding with PHD2, and so on.

Changing the core of pyobs (like, e.g., interfaces, error handling,
communication, . . . ) on the other hand would have to include some
discussions in order tomake sure that no existing code is broken and
that it fits the general design philosophy of pyobs. Feel free to contact
the author about any changes you would like to see.

As the leading zero in pyobs’ version number indicates, we do not
assume pyobs to be in a “stable” condition, i.e. major (even breaking)
changes can occur with every new version. However, the number of
these changes has reduced significantly as of late. A potential user still
needs to understand that things can and will change, which, of course,
also gives the opportunity to actively shape those changes. As soon as
we reach a stable version, we will fully implement semantic versioning
and only apply breaking changes for new major versions.

For us, pyobs is mainly a tool for operating our four telescopes
(see Section 6). Therefore, keeping it in a state that is useful for us is
our top priority. However, as we already showed with our solar
telescope, we are willing to adapt existing code to work in new
environments. That said, our time is limited, so we will not be able to
give full-time support, but we continuously work on the
documentation and try reply to emails and GitHub issues as
quickly as possible. We would love to see a little community
growing around pyobs that actively develops and supports it.

One group of observational astronomers that we have skipped
over completely in this paper are the amateurs. Over the last decades
they have built an amazing foundation of tools to build on, be it
ASCOM, INDI, N.I.N.A.18, and somany others. Nowadays, amateur
astronomers do some scientific work that many professional
observatories cannot do anymore, e.g., long-time monitoring of

variables. One great example as of late was the dimming of
Betelgeuse, which is far too bright for larger telescopes.

However, at least in its current state, we do not believe that pyobs
is a good tool for amateur astronomers. It was designed mainly for
robotic observations at professional observatories. For instance, the
GUI, which is an essential part for every remote setup, is mainly a
maintenance tool for us and not used during regular observations.
With pyobs being as open as it is, though, there is no reason, why it
can not be developed into a direction that wouldmake it more useful
for amateurs as well. Therefore, any interested amateur astronomers
are welcome to play around with pyobs, improve it, and contact us
with any question or comment.

8 SUMMARY AND OUTLOOK

In this paper we presented the observation control system pyobs.
While pyobs itself is written in Python and highly depends on third-
party packages, it can easily be extended by any programming
language that supports the communication protocol XMPP. We
showed that pyobs is highly customizable due to its configuration
files, and provides a lot of functionality for robotic telescope
operations out of the box: it has support for common tasks like
flat-fielding and auto-focus series and connects to the open-source
LCO observation portal for organizing tasks.

At the time of writing this paper, pyobs is available in version
0.17. As the leading zero suggests, we do not believe that it has
reached a stable state, in which no major changes to any of its
system will happen in the near future. However, at least the
currently planned modifications are mostly minor, and we expect
to publish a first release this year or soon thereafter–so this should
not keep anyone from using pyobs before that.

The list of planned improvements for the core of pyobs is long,
but contains mostly minor items, which probably will not affect
running systems. Some of the more major ones are:

• The error handling (see Section 2.6) is quite new and not used
everywhere. It is missing, especially, in the robotic modules.

• Some access control will be added, so that a module can allow
some of its methods to be called only by authorized clients.

• There already exist a few unit tests for the core package, but they
are not covering everything, not even the most important parts.

• New interfaces (see Section 2.2.2) will be added–e.g., for
supporting to track non-sidereal targets –, which might
make it necessary to change existing ones.

While these items are for the core system, future development
will mainly concentrate on additional modules. For instance, we
would like to guide using a guiding telescope, which would
require applying some pointing model to the offsets in order
to compensate for different movements of the telescopes like
bending and (thermal) stretching. We would also like to add a
wrapper to the PHD2 guiding software, which would allow us to
use this well-tested package in addition to our own guiding
modules. Furthermore, as mentioned in Section 5.1, a new
(non-greedy) scheduler is high up on the wish list.

Using existing software was the goal for pyobs from the
beginning. Instead of developing code from scratch it was built18https://nighttime-imaging.eu/
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on top of widely used Python packages from the astronomical
community and beyond. With pyobs-alpaca we already showed
that we can bridge towards other protocols, and there probably will
be a wrapper for INDI as well, which we can use to add devices for
which an INDI driver already exists. There is also a plan to add
wrappers for client software like Stellarium19 or KStars, 20 that will
make accessing a remote system easier, e.g. for students.

We will continue developing pyobs mainly for our own
telescopes, but always trying to be as general as possible, so that
it can be used by other observatories. The documentation is a good
place to start playing around with pyobs and will be extended
continuously. The author of this paper is looking forward to any
contribution to pyobs, any comment and suggestion for
improvement, and any question via email or GitHub issue tracker.

DATA AVAILABILITY STATEMENT

The software presented in this article can be found here: https://
github.com/pyobs https://www.pyobs.org/.

AUTHOR CONTRIBUTIONS

T-OH is the main developer of pyobs. FH, the former PI of
MONET, developed a few of the device modules and gave helpful
input for the big picture. KR and SMworked on adapting pyobs for the
solar telescope. TM implemented the auto-guiding for single stars. SS is
the PI of the FTS and responsible for a long list of feature requests and
suggestions for improvements.

ACKNOWLEDGMENTS

The development of pyobs and its modules was only possible by
using several Python packages (in alphabetical order): Aiohttp,
an asynchronous HTTP Client/Server for asyncio and Python.21.
Astroplan, an open source Python package to help astronomers
plan observations (Morris et al., 2018). Astropy,22 a community-

developed core Python package for Astronomy (Astropy
Collaboration et al., 2013; Astropy Collaboration et al., 2018).
Astroquery, a set of tools for querying astronomical web forms
and databases (Ginsburg et al., 2019). asyncinotify, an async
python inotify package.23. ccdproc, an Astropy package for image
reduction (Craig et al., 2017). Cython, an optimising static compiler
for the Python programming language.24. lmfit, Non-Linear Least-
Squares Minimization and Curve-Fitting for Python.(Newville et al.,
2021). Matplotlib, a comprehensive library for creating static,
animated, and interactive visualizations in Python.25. Numpy, a
fundamental package for scientific computing with Python (Harris
et al., 2020). Pandas, an open source data analysis and manipulation
tool (McKinney, 2010; Pandas Development Team, 2020). Paramiko,
a pure-Python implementation of the SSHv2 protocol.26. Photutils, an
Astropy package for detection and photometry of astronomical
sources (Bradley et al., 2020). py-expression-eval, a Python
mathematical expression evaluator.27. PyQt5, a set of Python
bindings for Qt application framework.28. Python-aravis, a
Pythonic interface to the auto-generated aravis bindings.29. Python-
daemon, Python library to implement a well-behaved Unix daemon
process.30. Python-telegram-bot, a Python wrapper for using
Telegram.31. Python-zwoasi, a Python binding to the ZWO ASI
version two library.32. PyYAML, a full-featured YAML framework
for the Python programming language.33. Qasync, an implementation
of the PEP 3156 event-loop to be used in PyQt applications.34. Scipy, a
package for fundamental algorithms for scientific computing in
Python (Virtanen et al., 2020). SEP, a Python and C library for
Source Extraction and Photometry (Barbary, 2016; Barbary et al.,
2017), based on Source Extractor (Bertin and Arnouts, 1996). Single-
source, a single source of truth for version and name of a
project.35. Slixmpp, an XMPP library for Python 3.7 + .36. Some
more packages are currently used by pyobs but not mentioned
here, since they are going to be replaced soon. The GUI uses
icons from the “Crystal Clear” set.37. Running our own instance
of the LCO Observation Portal as well as connecting it to pyobs
was made possible with the help of the great team at Las
Cumbres Observatory (LCO). We also use parts of the
frontend of their science archive. Both are parts of the LCO
Observatory Control System (OCS).38

19http://stellarium.org
20https://edu.kde.org/kstars/
21https://docs.aiohttp.org/
22http://www.astropy.org

23https://asyncinotify.readthedocs.io/
24https://cython.org
25https://matplotlib.org
26https://www.paramiko.org/
27https://github.com/AxiaCore/py-expression-eval/
28https://www.riverbankcomputing.com/software/pyqt/
29https://github.com/SintefManufacturing/python-aravis
30https://pagure.io/python-daemon/
31https://github.com/python-telegram-bot/python-telegram-bot
32https://github.com/python-zwoasi/python-zwoasi
33https://pyyaml.org
34https://github.com/CabbageDevelopment/qasync
35https://github.com/rabbit72/single-source
36https://slixmpp.readthedocs.io/
37https://commons.wikimedia.org/wiki/Crystal_Clear
38https://observatorycontrolsystem.github.io/

Frontiers in Astronomy and Space Sciences | www.frontiersin.org July 2022 | Volume 9 | Article 89148622

Husser et al. pyobs

https://github.com/pyobs
https://github.com/pyobs
https://www.pyobs.org/
http://stellarium.org
https://edu.kde.org/kstars/
https://docs.aiohttp.org/
http://www.astropy.org
https://asyncinotify.readthedocs.io/
https://cython.org
https://matplotlib.org
https://www.paramiko.org/
https://github.com/AxiaCore/py-expression-eval/
https://www.riverbankcomputing.com/software/pyqt/
https://github.com/SintefManufacturing/python-aravis
https://pagure.io/python-daemon/
https://github.com/python-telegram-bot/python-telegram-bot
https://github.com/python-zwoasi/python-zwoasi
https://pyyaml.org
https://github.com/CabbageDevelopment/qasync
https://github.com/rabbit72/single-source
https://slixmpp.readthedocs.io/
https://commons.wikimedia.org/wiki/Crystal_Clear
https://observatorycontrolsystem.github.io/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


REFERENCES

Astropy CollaborationPrice-Whelan, A. M., Price-Whelan, A. M., Sipőcz, B. M.,
Günther, H. M., Lim, P. L., Crawford, S. M., et al. (2018). The Astropy Project:
Building an Open-Science Project and Status of the v2.0 Core Package. AJ 156,
123. doi:10.3847/1538-3881/aabc4f

Astropy CollaborationRobitaille, T. P., Robitaille, T. P., Tollerud, E. J.,
Greenfield, P., Droettboom, M., Bray, E., et al. (2013). Astropy: A
Community Python Package for Astronomy. A&A 558, A33. doi:10.1051/
0004-6361/201322068

Akerlof, C.W., Kehoe, R. L., McKay, T. A., Rykoff, E. S., Smith, D. A., Casperson, D.
E., et al. (2003). The ROTSE-III Robotic Telescope System. Publ. Astron Soc. Pac
115, 132–140. doi:10.1086/345490

Alcock, C., Axelrod, T. S., Bennett, D. P., Cook, K. H., Park, H. S., Griest, K.,
et al. (1992). “The Search for Massive Compact Halo Objects with a (Semi)
Robotic Telescope,” in Robotic Telescopes in the 1990s. Vol. 103 of
Astronomical Society of the Pacific Conference Series. Editor A. V. Filippenko,
193–202.

Antonelli, L. A., Zerbi, F. M., Chincarini, G., Ghisellini, G., Rodonò, M., Tosti, G.,
et al. (2003). The REM Telescope: a Robotic Facility to Monitor the Prompt
Afterglow of Gamma Ray Bursts. Mem. Soc. Astron. Ital. 74, 304.

Barbary, K. (2016). Sep: Source Extractor as a Library. Joss 1, 58. doi:10.21105/joss.
00058

Bellm, E. C., Kulkarni, S. R., Barlow, T., Feindt, U., Graham, M. J., Goobar, A., et al.
(2019). The Zwicky Transient Facility: Surveys and Scheduler. PASP 131,
068003. doi:10.1088/1538-3873/ab0c2a

Bertin, E., and Arnouts, S. (1996). SExtractor: Software for Source
Extraction. Astron. Astrophys. Suppl. Ser. 117, 393–404. doi:10.1051/aas:
1996164

Bischoff, K., Tuparev, G., Hessman, F. V., and Nikolova, I. (2006). “MONET/
North: a Very Fast 1.2m Robotic Telescope,” in Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series. Vol. 6270 of Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Editors
D. R. Silva and R. E. Doxsey, 62701Q. doi:10.1117/12.671433

Castro-Tirado, A. J., Jelínek, M., Mateo Sanguino, T. J., and de Ugarte Postigo,
A.the BOOTES Team (2004). BOOTES: A Stereoscopic Robotic Ground
Support Facility. Astron. Nachr. 325, 679. doi:10.1002/asna.200410333

Chromey, F. R., and Hasselbacher, D. A. (1996). The Flat Sky: Calibration and
Background Uniformity in Wide Field Astronomical Images. PASP 108, 944.
doi:10.1086/133817

Barbary, K., Boone, K., Craig, M., Deil, C., and Rose, B. (2017). Kbarbary/Sep:
v1.0.2. doi:10.5281/zenodo.896928

Bradley, L., Sipőcz, B., Robitaille, T., Tollerud, E., Vinícius, Z., Deil, C., et al. (2020).
Astropy/Photutils: 1.0.0. doi:10.5281/zenodo.4044744

Craig, M., Crawford, S., Seifert, M., Robitaille, T., Sipőcz, B., Walawender, J., et al.
(2017). Astropy/Ccdproc: v1.3.0.Post1. doi:10.5281/zenodo.1069648

Newville, M., Otten, R., Nelson, A., Ingargiola, A., Stensitzki, T., Allan, D., et al.
(2021). Lmfit/Lmfit-Py: 1.0.3. doi:10.5281/zenodo.5570790

Pandas Development Team, T. (2020). Pandas-Dev/Pandas: Pandas. doi:10.5281/
zenodo.3509134

Filippenko, A. V., Li, W. D., Treffers, R. R., and Modjaz, M. (2001). “The Lick
Observatory Supernova Search with the Katzman Automatic Imaging
Telescope,” in IAU Colloq. 183: Small Telescope Astronomy on Global Scales.
Vol. 246 of Astronomical Society of the Pacific Conference Series. Editors
B. Paczynski, W. P. Chen, and C. Lemme, 183, 121–130. doi:10.1017/
s0252921100078738

Ginsburg, A., Sipőcz, B. M., Brasseur, C. E., Cowperthwaite, P. S., Craig, M. W.,
Deil, C., et al. (2019). Astroquery: An Astronomical Web-Querying Package in
Python. AJ 157, 98. doi:10.3847/1538-3881/aafc33

Granzer, T. (2006). STELLA and RoboTel - a Prototype for a Robotic Network?
Astron. Nachr. 327, 792–795. doi:10.1002/asna.200610635

Granzer, T., Weber, M., and Strassmeier, K. G. (2012). “The STELLA Control
System,” in Astronomical Society of India Conference Series. Vol. 7 of
Astronomical Society of India Conference Series, 247.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., et al. (2020). Array Programming with NumPy. Nature 585,
357–362. doi:10.1038/s41586-020-2649-2

Henry, G. W., Fekel, F. C., and Hall, D. S. (1995). An Automated Search for
Variability in Chromospherically Active Stars. AJ 110, 2926. doi:10.1086/
117740

Hessman, F. V. (2001). “MONET: a MOnitoring NEtwork of Telescopes,” in
IAU Colloq. 183: Small Telescope Astronomy on Global Scales. Vol. 246 of
Astronomical Society of the Pacific Conference Series. Editors
B. Paczynski, W. P. Chen, and C. Lemme, 183, 13–21. doi:10.1017/
s0252921100078544

Hessman, F. V. (2004). The MONET Project and beyond. Astron. Nachr. 325,
533–536. doi:10.1002/asna.200410274

Hidas, M. G., Hawkins, E., Walker, Z., Brown, T. M., and Rosing, W. E. (2008). Las
Cumbres Observatory Global Telescope: A Homogeneous Telescope Network.
Astron. Nachr. 329, 269–270. doi:10.1002/asna.200710950

Ivezić, Ž., Kahn, S. M., Tyson, J. A., Abel, B., Acosta, E., Allsman, R., et al. (2019).
LSST: From Science Drivers to Reference Design and Anticipated Data
Products. ApJ 873, 111. doi:10.3847/1538-4357/ab042c

Kuba´nek, P., Jelínek, M., Nekola, M., Topinka, M., Štrobl, J., Hudec, R., et al.
(2004). “RTS2 - Remote Telescope System, 2nd Version,” in Gamma-Ray
Bursts: 30 Years of Discovery. Vol. 727 of American Institute of Physics
Conference Series. Editors E. Fenimore and M. Galassi, 753–756. doi:10.
1063/1.1810951

Lang, D., Hogg, D. W., Mierle, K., Blanton, M., and Roweis, S. (2010).
Astrometry.net: Blind Astrometric Calibration of Arbitrary
Astronomical Images. Astronomical J. 139, 1782–1800. doi:10.1088/
0004-6256/139/5/1782

Law, N. M., Kulkarni, S. R., Dekany, R. G., Ofek, E. O., Quimby, R. M., Nugent, P.
E., et al. (2009). The Palomar Transient Factory: System Overview,
Performance, and First Results. Publ. Astron Soc. Pac 121, 1395–1408.
doi:10.1086/648598

Lipunov, V. M., Kornilov, V. G., Krylov, A. V., Kuvshinov, D. A.,
Gorbovskoy, E. S., Tyurina, N. V., et al. (2007). Observations of
Gamma-Ray Bursts and a Supernovae Search at the Robotic Telescope
MASTER. Astronomical Astrophysical Trans. 26, 79–86. doi:10.1080/
10556790701300462

McKinney, W. (2010). “Data Structures for Statistical Computing in Python,” in
Proceedings of the 9th Python in Science Conference. Editors S. van der Walt
and J. Millman, 56–61. doi:10.25080/Majora-92bf1922-00a

Morris, B. M., Tollerud, E., Sipőcz, B., Deil, C., Douglas, S. T., Medina, J. B., et al.
(2018). Astroplan: An Open Source Observation Planning Package in Python.
AJ 155, 128. doi:10.3847/1538-3881/aaa47e

Perlmutter, S., Muller, R. A., Newberg, H. J. M., Pennypacker, C. R., Sasseen, T.
P., and Smith, C. K. (1992). “A Doubly Robotic Telescope: the Berkeley
Automated Supernova Search,” in Robotic Telescopes in the 1990s. Vol. 103
of Astronomical Society of the Pacific Conference Series. Editor
A. V. Filippenko, 67–71.

Riddle, R., Cromer, J., Hale, D., Henning, J., Baker, J., Milburn, J., et al. (2018). “The
Zwicky Transient Facility Robotic Observing System (Conference
Presentation),” in Observatory Operations: Strategies, Processes, and Systems
VII. Editors A. B. Peck, C. R. Benn, and R. L. Seaman (Bellingham, WA, USA:
SPIE). doi:10.1117/12.2312702

P. Saint-Andre (Editor) (2004). “Extensible Messaging and Presence Protocol
(XMPP): Core,” RFC 3920, RFC.

Schäfer, S., Huke, P., Meyer, D., and Reiners, A. (2020a). “Fiber-coupling of Fourier
Transform Spectrographs,” in Ground-based and Airborne Instrumentation for
Astronomy VIII. Editors C. J. Evans, J. J. Bryant, and K. Motohara (Bellingham,
WA, USA: International Society for Optics and Photonics (SPIE)), Vol. 11447,
784–795. doi:10.1117/12.2561599

Schäfer, S., Royen, K., Huster Zapke, A., Ellwarth, M., and Reiners, A. (2020b).
“Observing the Integrated and Spatially Resolved Sun with Ultra-high Spectral
Resolution,” in Ground-based and Airborne Instrumentation for Astronomy
VIII. Editors C. J. Evans, J. J. Bryant, and K. Motohara (Bellingham, WA, USA:
International Society for Optics and Photonics (SPIE)), Vol. 11447, 2187–2208.
doi:10.1117/12.2560156

Strassmeier, K. G., Bartus, J., Cutispoto, G., and Rodonó, M. (1997). Starspot
Photometry with Robotic Telescopes. Astron. Astrophys. Suppl. Ser. 125,
11–63. doi:10.1051/aas:1997369

Street, R. A., Pollaco, D. L., Fitzsimmons, A., Keenan, F. P., Horne, K., Kane, S.,
et al. (2003). “SuperWASP: Wide Angle Search for Planets,” in Scientific

Frontiers in Astronomy and Space Sciences | www.frontiersin.org July 2022 | Volume 9 | Article 89148623

Husser et al. pyobs

https://doi.org/10.3847/1538-3881/aabc4f
https://doi.org/10.1051/0004-6361/201322068
https://doi.org/10.1051/0004-6361/201322068
https://doi.org/10.1086/345490
https://doi.org/10.21105/joss.00058
https://doi.org/10.21105/joss.00058
https://doi.org/10.1088/1538-3873/ab0c2a
https://doi.org/10.1051/aas:1996164
https://doi.org/10.1051/aas:1996164
https://doi.org/10.1117/12.671433
https://doi.org/10.1002/asna.200410333
https://doi.org/10.1086/133817
https://doi.org/10.5281/zenodo.896928
https://doi.org/10.5281/zenodo.4044744
https://doi.org/10.5281/zenodo.1069648
https://doi.org/10.5281/zenodo.5570790
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1017/s0252921100078738
https://doi.org/10.1017/s0252921100078738
https://doi.org/10.3847/1538-3881/aafc33
https://doi.org/10.1002/asna.200610635
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1086/117740
https://doi.org/10.1086/117740
https://doi.org/10.1017/s0252921100078544
https://doi.org/10.1017/s0252921100078544
https://doi.org/10.1002/asna.200410274
https://doi.org/10.1002/asna.200710950
https://doi.org/10.3847/1538-4357/ab042c
https://doi.org/10.1063/1.1810951
https://doi.org/10.1063/1.1810951
https://doi.org/10.1088/0004-6256/139/5/1782
https://doi.org/10.1088/0004-6256/139/5/1782
https://doi.org/10.1086/648598
https://doi.org/10.1080/10556790701300462
https://doi.org/10.1080/10556790701300462
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.3847/1538-3881/aaa47e
https://doi.org/10.1117/12.2312702
https://doi.org/10.1117/12.2561599
https://doi.org/10.1117/12.2560156
https://doi.org/10.1051/aas:1997369
https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Frontiers in Research on Extrasolar Planets. Vol. 294 of Astronomical
Society of the Pacific Conference Series. Editors D. Deming and
S. Seager, 405–408.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,
D., et al. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nat. Methods 17, 261–272. doi:10.1038/s41592-019-0686-2

Conflict of Interest: Author TM was employed by company TNG Technology
Consulting GmbH.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Husser, Hessman, Martens, Masur, Royen and Schäfer. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org July 2022 | Volume 9 | Article 89148624

Husser et al. pyobs

https://doi.org/10.1038/s41592-019-0686-2
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles

	pyobs - An Observatory Control System for Robotic Telescopes
	1 Introduction
	2 Architecture
	2.1 Asyncio
	2.2 Communication
	2.2.1 Remote Procedure Calls
	2.2.2 Interfaces
	2.2.3 Events

	2.3 Configuration
	2.4 Virtual File System
	2.5 Image Processors and Pipelines
	2.6 Error Handling

	3 Available Modules
	3.1 Cameras
	3.1.1 SBIG
	3.1.2 Finger Lakes Instrumentation
	3.1.3 ZWO ASI
	3.1.4 Aravis

	3.2 Other Hardware
	3.2.1 ASCOM
	3.2.2 Pilar

	3.3 Automating
	3.3.1 Auto-Focus
	3.3.2 Flat-Fielding
	3.3.3 Acquisition
	3.3.4 Auto-Guiding

	3.4 Utilities
	3.4.1 Weather
	3.4.2 Telegram
	3.4.3 Trigger
	3.4.4 FileCache
	3.4.5 ImageWriter and ImageWatcher

	3.5 Graphical User Interface

	4 Affiliated Projects
	4.1 Image Archive
	4.2 Weather Aggregator
	4.3 Astrometry

	5 Full Robotic Mode
	5.1 Scheduling
	5.2 LCO Observing Portal
	5.3 Running Tasks
	5.4 The Mastermind

	6 Telescopes
	6.1 IAG 50 cm
	6.2 IAG Vakuum-Vertikalteleskop
	6.3 MONET/N
	6.4 MONET/S

	7 Development
	8 Summary and Outlook
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References


