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The influence of birefringence on rays entering and exiting a non-isotropic medium is a
complex process that depends on its dielectric tensor, the orientation and geometry of the
medium, the surrounding material, and the inclination of the incident ray. Thus, when
aiming for a calculation of the effects, many parameters need to be taken into account
while simplifications are generally not applicable. Moreover, the complexity of the general
issue makes it almost impossible to find an analytical solution for backward calculations of
stress-birefringence from polarization measurements. In this paper, a report is given on the
formulation of a birefringence ray-tracing program in Python for the convenient evaluation
of optical effects inside uniaxial crystals under stress. The aim thereby is to have an easily
applicable tool that can be used in interferometer commissioning for current and future
gravitational-wave detectors. Results from test simulations using realistic parameters for a
sapphire mirror as used in the gravitational-wave detector KAGRA are implemented and
show the capabilities of this tool.
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1 INTRODUCTION

Large-scale laser-interferometer form the fundamental technology of modern gravitational-wave
detectors like LIGO in the United States (Aasi et al. (2015)), Virgo in Italy (Acernese et al. (2015)) and
KAGRA in Japan (Akutsu et al. (2019; 2020)). This technology proved to be successful in the
detection of gravitational waves (Abbott et al. (2016)). Ever since, the number of detections is rising
and while the observations give enormous insight into previously only theoretically describable
phenomena, scientists are striving to further upgrade the existing detectors to increase their
sensitivity and broaden the detectable frequency range (Kalogera et al. (2021); Bailes et al.
(2021)). Newer detectors like KAGRA entered the stage of gravitational-wave detection at lower
sensitivities and still have to catch up to the current limits, mainly set by the LIGO detectors (Akutsu
et al. (2020); Martynov et al. (2016); Aso et al. (2013)). KAGRA, in particular, is using cryogenic
cooled mirrors which decreases the thermal noise limiting sensitivity at higher frequencies to a
greater extent than LIGO and Virgo can do with room-temperature mirrors (Akutsu et al. (2020)).

Unsurprisingly, the most sensitive parts of those detectors are their optics. The most crucial
components are formed by the large (and heavy) mirrors that create the Fabry-Perot cavities (“test-
mass”, or TM). In each cavity a large amount of laser-energy is stored which increases the effective
sensitivity to space-time deformations of gravitational waves (Saulson (1994)). The partially
transmitting mirror at the beam-splitter side of the cavities (ITM) thereby governs the
properties of the light entering and exiting (see also Figure 1 for a basic outline of the optics
alignment in KAGRA). Since all mirror-coatings in those detectors are designed to reflect (or
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transmit) a specific portion of light depending on the
polarization, it is of utmost importance for the signal’s readout
that the polarization remains constant inside the interferometer.
A change of polarization especially at the ITMs will decrease the
effective signal-power and thus harm sensitivity. While in
reflection the dependence of polarization on external
parameters like the angle of incidence (AOI) can be kept low
by accurately engineered coatings, in transmission a lot more
uncertainties exist which make it difficult to predict the precise
behavior of the transmitted polarization. Polarization
characterization by polariscopes could be very helpful but are
still not a standard technique in the construction of gravitational-
wave detectors. Instead, transmitted wavefront-error (TWE)
maps are analyzed which can indeed detect local density
inhomogeneities and thus changes of the refraction index.
This however only if the changes are isotropic (Chipman et al.
(2018)). For anisotropic inhomogeneities of the refraction index,
TWEmaps taken at different rotation angles need to be taken and
analyzed, an endeavor which currently just has started. In
KAGRA the substrate of ITMs is made of sapphire, a non-
isotropic (uniaxial) crystal which naturally can change the
input polarization of an incoming beam if it is not aligned to
be parallel to the sapphire’s c-axis (Dobrovinskaya et al. (2009)).
Small inhomogeneities during the growth of the crystal can lead
to local misalignment (crystal-defect) and hence disturbed
polarization performance. LIGO and Virgo, on the other side,
are using substrates made of silica (amorphous SiO2) for their

test-masses which is isotropic. But even though, internal stress
remaining from manufacturing can turn isotropic materials into
(locally) uniaxial ones, making them to behave basically as an
anisotropic waveplate (Chipman et al. (2018)). Uniaxial crystals
on the other hand may become even biaxial if internal stress
resides.

In general, when an electromagnetic plane-wave enters an
uniaxial or biaxial material, it will split into two separate fields
representing its eigenpolarizations inside the material and
traveling in different directions (see Figure 2). Polarization
direction, wavevector k and Poynting vector S of each
eigenstate are a function of the material’s indicatrix
(refraction-index ellipsoid), AOI, and incoming medium’s
optical properties (since in this paper the case of gravitational-
wave interferometer is treated, the incoming medium will be
assumed to be a vacuum and therefore isotropic). Usually, it is
just a mirror’s coating that is of concern when designing its
properties which is to reflect and transmit a particular portion of
incoming light under a given constraint. Hence, the thickness of
mirror-substrates may be of not great interest and can become
even negligible for light passing it if birefringence is sufficiently
small. In gravitational-wave detectors, however, the test-masses
need to meet certain mass and geometry requirements in order to
fulfill suspension constraints (Saulson (1994)) or (in case of
KAGRA) constraints on thermal conductivity (Akutsu et al.
(2020)). The substrates of ITMs are therefore particularly
thick. For example, the test-masses in KAGRA measure

FIGURE 1 | Sketch of the basic optics and their principal alignment in the KAGRA detector. The ITM and ETM mirrors forming the Fabry-Perot cavities are (silica-
tantala coated) sapphire single-crystals with their c-axis aligned parallel to the laser-beam path.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org June 2022 | Volume 9 | Article 8813482

Zeidler Numerical Tool for Calculating Birefringence

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


220 mm in diameter and ~ 150 mm in thickness (given are the
mean values). With such thicknesses even small AOIs lead to
considerable optical path differences between the two refracted
beams and thus to changes in the resulting polarization once the
beams emerge from the sample. Here, we assume a typical laser-
beam (λ = 1064 nm with ø = 35 mm after Aso et al. (2014))
entering the ITMs in KAGRA. The change in polarization is
thereby a result of both beams overlapping each other when
leaving the substrate. Moreover, even when normal incidence is
assured, small changes in the orientation of the indicatrix will also
lead to ray-doubling and hence polarization changes. On the
other side, any Gaussian beam offers a constantly changing AOI
throughout its wavefront when impacting a mirror, thus ray-
doubling appears as a function of the wavefront curvature leading
to multiple beams passing the substrate. Understanding how the
polarization of laser-beams is altered when transmitting through
TMs is thus an important aspect in the selection of substrates as
well as the calibration of gravitational-wave detectors and should
be taken seriously into account for any future detector striving to
even greater sensitivities.

In this paper, a tool will be presented to calculate the impact of
internal-stress and changes in indicatrix-orientation on the
polarization of rays passing large mirror-substrates using the
NumPy and SymPy packages in Python. The theoretical concept
of this tool is based on the chapters 10, 19 and 21 of the book
“Polarized Light and Optical Systems” by Chipman et al. (2018)
where the algorithm is explained in much greater detail. In
Section 2, I will thus first give a brief overview of the calculus
before the specific case of sapphire substrates in KAGRA is
discussed. In Section 3, then, I will present calculation results
using the ray-tracing tool from Section 2 to show dependencies of
the polarization-impact on stress-induced birefringence and
indicatrix alignment for the sapphire substrate as used by
KAGRA. Possible impacts of the polarization changes on the
sensitivity in gravitational-wave detectors and ray-doubling in
KAGRA ITMs will be discussed in Section 4.

2 THEORETICAL CONCEPT OF
POLARIZATION RAY-TRACING

In an uniaxial crystal like sapphire, we usually distinguish
between an optical axis, denoted as extraordinary, or e, and
ordinary axes, o, perpendicular to e. Along e, we find a
different refraction index than for o which can be larger
(positive crystal) or smaller (negative crystal). If we introduce a
stress-tensor affecting the crystal, then generally we have to
assume that among axes in o a splitting of the refraction index
appears, changing the uniaxial crystal to become basically a
biaxial crystal with three refraction indexes along three
independent directions. However, unlike pure biaxial crystals,
the generation of refraction indexes becomes a function of the
spatial vector r, due to the spatial distribution of stress. Hence,
each point of the crystal under stress has its own unique indicatrix
and needs to be treated individually. This is why a simplification
of the problem cannot be done. Moreover, since the
representation of the crystal changes to be biaxial, we
distinguish a fast and a slow axis for each beam entering the
crystal where the electric field experiences a refraction index
which is either smaller or larger.

Each separate beam along the fast and along the slow axis
represent the electric field’s eigenstate inside the crystal. An
important aspect for polarization ray-tracing is therefore a
proper description of the electric-field vector E since it defines
the direction of polarization. In the general case, the field
along the fast axis Efast and the field along the slow axis Eslow
have different directions and need thus to be treated
separately. As we are using a very general description in
global coordinates, a utilization of Jones-vectors and
matrices is not very effective and a more generalized
calculus in three dimensions with, so called, P-matrices is
applied (Chipman et al. (2018)). A P-matrix relates an
incoming electric field with its outgoing counterpart of any
system in the form

FIGURE 2 | (A): reference-frame for the numerical tool. The ray (red) enters the sapphire sample with AOI = α in z-direction, while the orientation of the two
separated axes perpendicular to the c-axis is given by θ. The input polarization is described with γ, governing the direction of the input electric-field vector. The global
reference direction is given by the x-axis. (B): ray-doubling in birefringent media.
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Eout � P · Einc. (1)
Each beam emerging from a system has its own P-matrix

where all information about the emerging field are encoded in,
inclusively transmission and reflection ratios. In the following, I
will show how to construct a P-matrix in a general way before a
description of biaxial systems with the presented calculus will
be done.

2.1 Constructing P-Matrices
A very comprehensive description of how a P-matrix is derived
for various cases can be found in the mentioned book by
Chipman et al. (2018). Here, I will just give a brief overview
of the construction.

When a plane-wave reaches an interface between two media,
we can generally expect a splitting into 4 different waves: two in
transmission and two in reflection. Each of them traveling in a
different direction as they experience their own index of
refraction. It is thus the refraction index n which firstly needs
to be calculated for each refracted/reflected wave. On the other
side, n appears as a function of k for each wave and vice versa.
Thus, both parameter have to be derived simultaneously. From
Maxwell’s equations, it is straightforward to show that in any
medium

k × k × E( ) + ω2

c2
εE � 0, (2)

where ω is the angular frequency of the wave and c the speed of
light in vacuum. The dielectric tensor ε, which relates the
variation in refractive index with the polarization direction of
the electric field inside a medium, can be written as (using local
coordinates X,Y,Z)

ε �
εX 0 0
0 εY 0
0 0 εZ

⎛⎜⎝ ⎞⎟⎠ �
nX + iκX( )2 0 0

0 nY + iκY( )2 0
0 0 nZ + iκZ( )2

⎛⎜⎜⎝ ⎞⎟⎟⎠,

(3)
with κ as the absorption index. Please refer to Figure 2 for a
description of the reference frame. In Eq. 2, the influence of
magnetic permeability has been omitted as it will not be of any
concern for the issues to be discussed.We can further simplify Eq.
2 to

ε + n2K2( )E � 0, with K �
0 −k̂z k̂y
k̂z 0 −k̂x
−k̂y k̂x 0

⎛⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎠, (4)

with the normalized vector k̂.
Consider now an intercept between two media 1 and 2,

whereas we know the input wavevector k1 and refractive index
n1. In order to find solutions for k2 and n2 one can use the
generalized Snell’s law:

k1 × N � k2 × N , (5)
and the assumption that any k2 can be constructed from the
normalized vectors k̂1 and N̂ (N being the intercept’s normal) as
basis vectors. The expression in Eq. 5 is also valid for reflected

rays. By setting the determinant of the matrix in Eq. 4 for the
waves in medium 2 zero, the necessary set of equations which
need to be solved is given by

k̂2 �
n0k̂1 + −n0k̂1 · N̂ +
















n22 − n21 + n21k̂1 · N̂

√( ) · N̂
n1k̂1 + −n1k̂1 · N̂ +
















n22 − n21 + n21k̂1 · N̂

√( ) · N̂
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
ε + n22K

2
2

∣∣∣∣ ∣∣∣∣ � 0.

(6)
Once wavevectors and refraction indexes are known, the field

vectors of both electric and magnetic field are calculated for slow
and fast wave in refraction and reflection. By singular-value
decomposition of the matrix-part in Eq. 4, one will then get
the electric fields. The P-matrices, finally, can then be calculated
by using the field- and Poynting-vectors of the incoming beam
together with the transmission and reflection coefficients of each
eigenstate (“1” and “2”) of the incoming field. In the following the
coefficents are summarized into vectors, referring to them as t1,
and t2. For a more detailed description how to calculate the
coefficient matrices, see the Supplementary Appendix. Using i =
(tf, ts, rf, rs) as index for each transmitted fast/slow ray (tf, ts) or
reflected fast/slow ray (rf, rs), we can write (Chipman et al.
(2018))

Pi � ti,1 · Êi ti,2 · Êi Ŝi( ) · Êinc, 1 Êinc, 2 Ŝinc( )T. (7)
By changing into global coordinates, the ε-tensor needs to be

rotated accordingly, but the general calculation scheme will not
change.

2.2 Describing Stress-Induced Uniaxial
Crystals
With the P-matrices at hand, we can describe a ray passing any
medium of concern. The objective is, however, to do so in stress-
induced media, and particular in sapphire. Sapphire is a variety of
crystalline Al2O3 which crystallizes in a hexagonal lattice-
structure. The oxygen anions are arranged in a (slightly
distorted) hexagonal close-packing in which the aluminum
cations occupy two thirds of the octahedral interstices (Zeidler
et al. (2013); Dobrovinskaya et al. (2009)). Due to this, we can
differentiate between a distinct axis along the hexagon (c-axis)
and 3 axes perpendicular to the c-axis representing the
3 symmetry-directions of a hexagon’s barrel. In the following,
we will consider that the sapphire is characterized by a spatially
modulated birefringence perturbation superimposed to the
constant intrinsic birefringence of the crystal which is given by
no − ne = 0.008, with no ≈ 1.754 and ne ≈ 1.746 (Harris et al.
(2017)), the refractive indexes of sapphire at 1064 nmwavelength.

Sapphire, as well as fused silica, are manufactured by cooling
down a melt. During the cooling process, naturally temperature
gradients within the material appear which lead to stress that is
preserved in the material when it crystallizes (or solidifies).
According to Dobrovinskaya et al. (2009), the typical amount
of stress inside a sapphire bulk may range from 1 to 90 MPa (σmin

and σmax), depending on the manufacturing process and whether
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or not annealing has been applied. In the given case of sapphire
substrates for test-masses in KAGRA, the constraints on
refraction index homogeneity are quite strict. Hence, I will
assume an amount of residual stress with a mean
�σ � 1 ± 0.5MPa which would be consistent with the
distribution of stress inside samples annealed at temperature
well above 2300K (Dobrovinskaya et al. (2009)). As noted
above, stress applied to the sample, which is usually described
in form of a tensor σ, affects the indicatrix of the anisotropic
optical system. The (material specific) coefficients which
determine the change of the indicatrix are in turn given by a
fourth-rank elasto-optic tensor (Nye (1985)).

The components of this tensor are known in case of sapphire
(Bradley (1963)) and by using the model of a deformed indicatrix
which is projected on a plane, the following relation can obtained
(see also Iwaki and Koizumi (1989)):

σ1 − σ2( ) + 2σ4 · p14

p11 − p12
� σ‖ � 2Δn

n3o p11 − p12( ) · cos 2θ( )

σ6 + σ5 · p14

p11 − p12
� σ⊥ � 4Δn

n3o p11 − p12( ) · sin 2θ( ),
(8)

where we have used an eigenvalue decomposition of the projected
indicatrix and the reasonable assumption that the stress-induced
birefringence is weak (Δn ≪|no − ne|). Using the assumed
distribution of the stress-tensor’s coefficients, we can derive an
expectation of Δn to be ~ 2.8 · 10−6. Setting Z to be the local
direction of the c-axis and omitting any absorption, we can
express ε from Eq. 3 for a stress-induced sapphire as

ε �
n2o 0 0
0 no − Δn( )2 0
0 0 n2e

⎛⎜⎜⎝ ⎞⎟⎟⎠. (9)

Without limiting generality, the (additional) birefringence Δn
affects the middle component of ε only. As Δn is assumed small,
the resulting polarization of a ray passing a medium with an ε-
tensor as given in Eq. 9 will not change if the left component
becomes (no + Δn)2. In this view, ne is assumed to be constant
which cannot be guaranteed in general. A change, however, will
only negligibly affect the passing beam since α is assumed to
be small.

2.3 Numerical Implementation of the Code
The above given mathematics of polarization ray-tracing are
relatively straightforward. Their implementation into a
numerical code, however, can become quite complex,
particularly if both refracted and reflected rays are to be
tracked. The code that has been written for the here given
problem uses the reference-frame as illustrated in Figure 2
and is accessible on GitHub (https://github.com/Zeidler-
Akiyama/Birefringence). A ray entering the substrate is first
described in global coordinates by its wavevector kinc and its
electric-field vector Einc having a linear polarization. From the
given ε-tensors for both substrate and incoming medium (again
in global coordinates), kinc, and the intercept’s normal N, the
refraction indexes for transmission and reflection are calculated
using SymPy’s symbolic algebra system. Since the incoming

medium is a vacuum, the index of refraction for the reflected
ray does not need to be calculated this way. However, the
algorithm is written with a general application in mind and
will produce results for the reflected ray if desired. At the
same time, the symbolic calculation procedure is the most
time-consuming part, particularly when using SymPy’s “solve”
algorithm with cross-checking enabled. Thus, if not explicitly
needed, the calculation of the reflection should be omitted and
reflection-symmetry used instead. Additionally, the input-
parameters for the SymPy part are converted to rational
numbers where possible to speed up the calculation process
(see also 5).

Once n and k for each refracted ray is known, the set of
homogeneous linear equations according to Eq. 4 is constructed
and solved via singular value decomposition of the matrix-part
which can be conveniently done in NumPy. Since each
transmitted (or reflected) beam belongs to one of two possible
eigenstates, we can expect that there is at least one zero singular-
value with a corresponding singular-vector Ei (i = (tf, ts, rf, rs))
that marks the desired solution (only for degenerated n, two
solutions will be produced corresponding to the S- and
P-polarization states with respect to the intercept). From the
eigenstates of the electric-field directions and the k-vectors, we
can derive the magnetic-field eigenstates and further the Poynting
vectors which are generally not parallel to k. The actual
transmitted field in each eigenstate is calculated according
to Eq. 7.

In general, this procedure needs to be done three times if we
want to trace a beam going through the sample: for the incoming
beam and for each fast/slow beam exiting the sample (see also
Figure 3). For the exiting beams, however, the refraction indexes
as well as k are given and do not need to be calculated. In
reflection, we can further assume symmetry with the eigenstates
already calculated. Thus, a convenient simplification can be
made. Once the exiting ray’s fields are determined (there will
be two), their phase-shift with respect to each other needs to be
calculated. This can be done by deriving the optical-path length
(OPL), given by

OPLi � nili · k̂i · Ŝi( ), (10)
where li is the path-length of the energy-flux inside the sample
which is defined by Si and the sample’s thickness. Both exiting
rays are generally separated and a direct superposition is thus not
applicable. However, a light-field in form of a laser, for instance,
possesses a certain diameter which can be imagined as a manifold
of parallel rays entering the sample. An existing ray of the, e.g,
fast-mode will thus superpose with another ray’s exiting slow-
mode which leads to a change in the ray’s polarization if both
superposing fields are different in direction. In addition to the
OPL, another phase-shift ϕ needs to be taken into account
arriving from the initial separation of the two rays from which
fast and slow mode will overlap upon exiting. This phase-shift
may be calculated via

ϕ � ltsŜts − ltf Ŝtf( ) · Ŝinc (11)
and used for either the fast ray or the slow ray exiting the sample.
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3 APPLICATIONOF THENUMERICAL TOOL
FOR LARGE SUBSTRATES

If we are going to analyze the polarization effects of birefringent
sapphire samples, we would need an adequate way to present the
results from the mere ray-trace. A possible solution can be a time-
tracing of the resulting electric-field vector. The basic output of

such a time-trace can be depicted from Figure 4, where a ray
having an inclination of α = 1° in the x-y-plane is inserted into a
sapphire sample having a thickness of 0.15 m with three different
(linear) polarization directions (γ = 0° (S-polarized), 30°, and 60°),
in case ofΔn = 0 andΔn = 2.8 · 10–6, respectively. In both cases, an
otherwise perfect crystal is given with axes orientation according
to the left sketch in Figure 2 and θ = 0°. The tips of the exiting

FIGURE 3 | Process chart of the code-implementation. From the two initial settings of input-ray and intercept, the refraction indexes and wavevectors of refracted
and reflected rays are calculated. The derivation of the field-vectors is separately done for the fast and slow solution and serves as input for the exit-intercept (for details
regarding F, please refer to the Supplementary Appendix). From both fast and slow solution after the exit-intercept, the field-vectors are calculated (“end-ray
calculation”) and their overlap interference determined.

FIGURE 4 | Effect of birefringence in a thick sapphire substrate for a beam entering it with 1° inclination and varying input polarization (γ = 0°, 30°, 60°). In the top row,
the effect for Δn = 0 is given while the bottom row shows the effect for Δn = 2.8 · 10–6 (refer to Eq. 9).
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superposed field-vector as well as the incoming field-vector are
subsequently drawn for a full 2π-cycle in the time-domain,
whereas the two exiting fields are described with

Eexit,i t( ) � R |Einc| · Eexit,i · exp j
2π
λ
· OPLi[ ] · exp j2πωt + jϕ[ ]{ }.

(12)
Here, ϕ from Eq. 11 is used only for i = ts.
Unsurprisingly, a S-polarized beam will not experience any

change by passing the substrate, regardless the birefringence or
inclination angle as the transmitted field-component is only non-
zero in x-direction which, according to Eq. 9, acts as the slow-ray
due to the higher refraction index in case Δn ≠ 0. For any other
input polarization, however, we see non-negligible deviations.
The exiting beam will become elliptically polarized whether or
not Δn is zero. That is foremost the effect of the inclination angle,
due to which the passing beam experiences the refraction index ne
to a certain extend even thoughΔn = 0. The birefringence changes
the polarization in addition to the inclination, thus leading to a
different ellipticity and orientation of the exiting field.

By changing the orientation of the birefringent crystal axes (θ
≠ 0°), we see that the exiting rays become prone to polarization
changes even with zero inclination (Figure 5). The effect would
be thus similar to a non-zero input polarization-angle γ (note,
however, that the similarity ends once the inclination becomes
non-zero too). In Figure 5, example figures for Δn = 2.8 · 10–6 at
inclinations 0°, 1°, and 2° are shown for γ = 0° and θ = 20°. In all
three cases, the linear polarization from the input-beam changes
to an elliptic polarization after exiting.

All above examples have been calculated for a sample with
thickness of 0.15 m, typical for a KAGRA ITM (Akutsu et al.
(2019); Aso et al. (2013)). With such thicknesses, even a small
birefringence as of the order 10–6 (which is already in the range of
mere thermal inhomogeneities) can have a severe impact on the
polarization. The left graph in Figure 6 pictures the ellipticity of
the exiting field as a function of thickness d and birefringence (θ =
0°, γ = 45°). We can clearly observe a gradual decrease towards
both increasing d and Δn, reaching 0 (circular polarized) for d ≈
9 cm and Δn = 3 · 10–6 and subsequently increasing again (by
flipping orientation of the ellipse). The right graph in the same
figure shows the effect of a changing θ-angle with d = 0.15 m.

FIGURE 5 | Effect of birefringence in a thick sapphire substrate for a beam entering it with 0°, 1°, and 2° inclination (from left to right) and S input polarization. Δn has
been set to 2.8 · 10–6 while θ = 20°.

FIGURE 6 | Ellipticity of the exiting field as a function of sample-thickness andΔn (A), and θ and Δn (B), respectively. The input polarization is linear with γ = 45° and α

= 0° inclination.
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As can be observed from Figures 5, 6, an important parameter
for the question whether or not polarization-changes occur is the
orientation of the birefringence and hence the θ-angle (or, more
generally, the ε-tensor). As will be presented in an upcoming
paper, measurements with a polariscope on spare ITMs show a θ-
angle distribution ranging from 3 ~ 88°. Hence, it can be assumed
that the ellipticity-map in Figure 6 presents a realistic image of
the distribution of ellipticity in any of such large substrates.

Another important parameter is the orientation of the c-axis
inside the crystal. Up to this point, the c-axis has been assumed to
be normal to the (non-wedged) input intercept. It is however
exactly this parameter which is hard to control in large sapphire
substrates. Accuracy margins given by manufacturers are
typically of the order 0.5°. Within this order the ellipticity can
change over more than a cycle (from 1 to 0 and back to 1) even
though Δn = 0, as can be observed from Figure 7. Additionally, in
this figure, the orientation of the ellipse is given as an overlying
stream-line plot. As already mentioned, the minimum across the
graph marks the turning-point where the exiting field’s
polarization becomes perpendicular to the incoming field. In
the same figure on the right-side, the ellipticity-plot for varying θ
as from Figure 6 is shown again but together with the respective
stream-line plot of the orientation.

4 IMPACTS ON GRAVITATIONAL-WAVE
DETECTORS

In the preceding section, the principal effects on the
polarization of a transmitted beam through thick sapphire
crystals have been presented. The most obvious observation up
to this point is the non-negligible influence of even slight
distortions in the crystal properties on the resulting electric-
field. The main question for gravitational-wave detectors,
however, is how much do these effects impact the
sensitivity using a realistic ITM model.

Any change of the desired polarization will in principle affect
the power that cycles inside the cavities due to coating design of

the mirrors. That eventually leads to contrast losses at the
detector-port due to imperfections in the interference fringes.
The dependence of these imperfections on Δn can be estimated
after Winkler et al. (1991) to

Pmin

Pmax
≈ 10−3 · dΔn

λ/100( )2

, (13)

where Pmin and Pmax are the power of the dark- and the bright-
port, respectively, and d the ITM thickness. Given the constraints
for KAGRA (contrast: ~ 99%), Δn is required to be of the order
10–7 or less (Tokunari et al. (2010)) which currently appears to be
difficult to achieve (Dobrovinskaya et al. (2009)). It is, however,
not the birefringence-value itself but rather its variance and
different orientation (θ-angle) over the entire sample that is
problematic. A constant value may be addressed by a proper
design and orientation of the sample but without this possibility,
polarization may vary within the wavefront passing through the
substrate. This is illustrated in Figure 8 where the results of a
simulation given a set of 25 collimated rays representing the path
of a Gaussian wavefront are presented. The graph in the center
shows the situation 1m after the sample in case the c-axis bears an
offset of 0.5°. The dots represent the position of each ray while the
red-line indicates the initial polarization-direction and the blue
ellipse the exiting field. Using a birefringence of Δn = 2.8 · 10–6,
the ellipticity is close to 1, which is expected according to
Figure 7, but at the same time we observe an orientation
misalignment particular for outer rays. The maximum
misalignment towards the input polarization is ~ 4.1° meaning
that almost 9% of the incoming field changes its polarization. For
comparison, the situation without c-axis misalignment is given in
the right graph. Please note that all graphs in Figure 8 have been
calculated assuming θ = 0° with the incoming field aligned. Hence,
any additional influence from θ is neglected. If we add a rotation
of ε with θ = 20°, we arrive at a situation as given in Figure 9,
where we observe a change in polarization throughout the whole
set of rays. Again, the left graph pictures the situation with c-axis
misaligned in the y-z-plane and therefore shows a non-symmetric

FIGURE 7 | Ellipticity and ellipse-orientation plots as a function of an offset-angle between c-axis and surface-normal (A) and θ for different Δn. The (B) plot’s
ellipticity graph is the same as in Figure 6. In both graphs, γ is set to 45° while α = 0°.
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effect. These simulations have been performed with an assumed
beam-waist of 50 μm at z = 0.5 m for a λ = 1064 nm laser and are
therefore extremely exaggerated (beam divergence here vs.
KAGRA ≈ 258/1). That does not change, however, the
principle effects to be expected.

Up to this point, three different aspects influencing a beam’s
polarization have been discussed: the expectation on Δn, the
variance in θ, and the misalignment of the c-axis. Another
important point, however, is the non-parallelism of the input
and output surfaces, where “input” means facing the beam-
splitter in a laser-interferometer and “output” means facing
the cavity. The input surface possesses a wedge (~ 0.025° for
ITM in case of KAGRA (Akutsu et al. (2020))) to reduce the
coupling with scattered light (Aso et al. (2014); Tokunari et al.
(2010)), while the output-surface is curved with a radius of
1900 m (Akutsu et al. (2020)) to mimic the shape of the
wavefront reflecting into the cavity (see sketch in

Figure 10). For a non-birefringent sapphire substrate (Δn =
0), the ray-splitting effect from the wedged surface given a
misalignment of the c-axis in the plane of incidence can be
determined analytically, as pointed out by Tokunari et al.
(2010). Using the numerical tool presented in this paper, we
can indeed get similar results as presented in their paper
regarding internal ray-splitting (see the graph in
Figure 10). For a purely S-polarized wave with respect to
the input-wedge, ray-splitting doesn’t matter as long as Δn = 0
and c-axis misalignment is in the plane of incidence, since the
refracted fast-ray will not gain any power. But, as pointed out
above, both cannot be guaranteed for any sapphire substrate
and either an input polarization γ ≠ 0 or θ ≠ 0 needs to be
assumed to get the results of Tokunari et al. (2010). It should
be noted that a similar calculation-run by the presented
numerical tool with an arbitrary c-axis misalignment
changes the results as given in Figure 10 only negligibly.

FIGURE 8 | Result of polarization ray-tracing with a Gaussian beam as input (λ = 1064 nm, waist: 50 μm at z = 0.5 m). Shown are 25 rays as representative of the
passing Gaussian wavefront through a substrate with 0.5° c-axis misalignment in y-z-plane (A): 3D illustration of the process; (B): situation of the exited field in 1 m
distance; (C): same as center but without c-axis misalignment)).

FIGURE 9 | Same as Figure 8 but with θ = 20°. The (A) graph shows the situation with c-axis inclination of 0.5° in the y-z-plane while the (B) is a reference for zero
c-axis inclination.
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5 CONCLUSION

In this paper, a numerical tool has been presented for
polarization-sensitive ray-tracing inside large birefringent
media used in current gravitational-wave detectors like
KAGRA. The tool is completely written in Python (version
3.8) and can be thus easily applied on any modern PC. While
its main scope is the utilization in research and development for
the construction of gravitational-wave detectors, the code is
general enough to work for any other application in science or
education. As indicated in the previous section, the code
generates results which are comparable with those calculated
analytically (if applicable) and hence can be used with confidence.
Current limitations, however, appear wherever the numerical
implementation becomes difficult. That is particular the case for
problems where a precise floating-point representation of
parameter values does not exist whereas precision is of utmost
importance. In such cases, numerical errors appear which affect
the result. Since the SymPy-solver relies on the correct
transcription between floating-point numbers and its symbolic
algebra, also fake-solutions or simply no solutions at all are likely
to happen. Applying its internal cross-check algorithm helps in
most cases but can become extremely time-consuming for
solutions of n requiring precision beyond the ppm scale.
Currently, there is a plan to involve other symbolic languages
like “SAGE” or “symengine” for which Python-wrappers exist but
meanwhile only SymPy is used for this task. The use of floating-
point numbers does also lead to numerical errors which appears
through their limiting accuracy. In basically all calculation steps
double-float numbers (64 Bit) are used for which a limiting
accuracy (round-error) of > 1.1 · 10−16 can be found. In this
study, a more conservative approach is being utilized and the
general accuracy estimated to be 1 · 10–14. The most crucial effect
of this limitation can be expected from the refractive indexes and
the field-vectors, which basically determine all other parameters.
The exact impact of the accuracy limitation on the main results
like ellipticity of the exiting field or its directional misalignment

relative to the input field depends on the specific problem, but can
be estimated to be < 4 · 10−11 for ellipticity and < 3.5 · 10−11 for
the misalignment (in radians).

For gravitational-wave detectors like LIGO, Virgo or KAGRA,
the here presented tool can in any case support the evaluation of
polarization effects and hence could give insights in how the
sensitivity will develop when in operation, which may thus help
understanding possible issues in the beam reflected from the
cavities. As of now, however, the impact of a laser beam with
inhomogeneous polarization on the sensitivity of the detector is a
matter of ongoing investigation and cannot be discussed in details
here. In KAGRA, particularly, the utilization of sapphire is a core-
feature due its remarkable thermal properties at low
temperatures. On the other side, we see the difficulties in
sapphire’s optical behavior as birefringent crystal when
assuming realistic conditions. The large thickness of ITMs is a
key-aspect in this regard but not the only one. In fact, given the
beam-radius at an ITM in KAGRA (~ 35 mm), we could
minimize polarization effects if the substrate is chosen so that
the most homogeneous distribution in Δn and θ is in its center,
and that θ is aligned with the incoming polarization. That,
however, requires knowledge on both Δn and θ in advance
which is currently not measured as standard. A forthcoming
paper on this problem is currently being written and expected to
be published in the near future.

KAGRA has been chosen in this work as a prime example
since it uses sapphire as TM material which is inherently
birefringent and prone to affect the polarization of
transmitting light. However, as mentioned in the introduction,
even optical isotropic materials like silica can become anisotropic
if internal stress resides which is likely the case given its
manufacturing procedure. We can expect, however, that the
stress is one order of magnitude smaller than for sapphire
(evaluated from own unpublished data) so that the issue may
not be urgent for LIGO or Virgo. With the dawn of the next
generation gravitational-wave detectors like Einstein-Telescope
or Cosmic-Explorer, however, the optical properties of mirror

FIGURE 10 | (A): distribution of the separation-angle ψ as a function of c-axis misalignment and input wedge-angle. (B): sketch of a wedged ITM (not to scale) with
passing beam. The beam is split into a fast and a slow part whereas the slow part refracts perfectly in cavity-direction (curved surface) and the fast part exits with a
separation-angle ψ.
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substrates will become an issue for which research in improving
the material’s properties is mandatory, and for which this work is
supposed to contribute.
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