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We show an application of supervised deep learning in space sciences. We focus on the
relativistic electron precipitation into Earth’s atmosphere that occurs when
magnetospheric processes (wave-particle interactions or current sheet scattering,
CSS) violate the first adiabatic invariant of trapped radiation belt electrons leading to
electron loss. Electron precipitation is a key mechanism of radiation belt loss and can lead
to several space weather effects due to its interaction with the Earth’s atmosphere.
However, the detailed properties and drivers of electron precipitation are currently not fully
understood yet. Here, we aim to build a deep learning model that identifies relativistic
precipitation events and their associated driver (waves or CSS). We use a list of
precipitation events visually categorized into wave-driven events (REPs, showing
spatially isolated precipitation) and CSS-driven events (CSSs, showing an energy-
dependent precipitation pattern). We elaborate the ensemble of events to obtain a
dataset of randomly stacked events made of a fixed window of data points that
includes the precipitation interval. We assign a label to each data point: 0 is for no-
events, 1 is for REPs and 2 is for CSSs. Only the data points during the precipitation are
labeled as 1 or 2. By adopting a long short-term memory (LSTM) deep learning
architecture, we developed a model that acceptably identifies the events and
appropriately categorizes them into REPs or CSSs. The advantage of using deep
learning for this task is meaningful given that classifying precipitation events by its
drivers is rather time-expensive and typically must involve a human. After post-
processing, this model is helpful to obtain statistically large datasets of REP and CSS
events that will reveal the location and properties of the precipitation driven by these two
processes at all L shells and MLT sectors as well as their relative role, thus is useful to
improve radiation belt models. Additionally, the datasets of REPs and CSSs can provide a
quantification of the energy input into the atmosphere due to relativistic electron
precipitation, thus offering valuable information to space weather and atmospheric
communities.
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1 INTRODUCTION

The radiation belt environment is highly dynamic and it is
governed by acceleration, transport and loss processes (e.g., Li
and Hudson, 2019; Reeves et al., 2003). One of the loss
mechanisms is electron precipitation (EP), which occurs when
the conservation of the first adiabatic invariant is violated (e.g.,
Schulz and Lanzerotti, 1974; Horne and Thorne, 1998): electrons
are no longer trapped by the Earth’s magnetic field and fall into
the upper atmosphere. Not only electron depletion is important
in the radiation belt evolution in time and flux, but electron
precipitation is also known to drive many atmospheric effects
related to space weather. Multiple studies have indeed associated
conductivity variations and atmospheric chemistry changes
(potentially leading to ozone reduction) with electron
precipitation (Robinson et al., 1987; Fytterer et al., 2015;
Mironova et al., 2015; Tyssøy et al., 2016; Khazanov et al.,
2018; Meraner and Shmidt, 2018; Yu et al., 2018; Duderstadt
et al., 2021; Sinnhuber et al., 2021).

It is well understood that electron precipitation can occur as a
result of interactions between plasma waves existing in the
magnetosphere and the trapped electron population in the
radiation belts (e.g., Millan and Thorne, 2007; Thorne, 2010).
Electrons can also be lost if the magnetic field line around which
they gyrate is stretched away from Earth or undergoes a
significant geometry variation such that the curvature radius
of the field line is comparable to the gyroradius of the
electrons (e.g., Büchner and Zelenyi, 1989; Dubyagin et al.,
2021; Sergeev et al., 1983, 1993). This process is called field
line curvature scattering or current sheet scattering (CSS). Under
these conditions, the field line no longer traps the electrons, and
these electrons can precipitate into the atmosphere. The location
where precipitation occurs (called isotropic boundary, IB)
depends on electron energy (Capannolo et al., 2022; Yahnin
et al., 2016; 2017). This phenomenon has also been widely
studied for protons (Ganushkina et al., 2005; Gilson et al.,
2012; Liang et al., 2014; Dubyagin et al., 2018).

A comprehensive understanding of which mechanism (waves
or CSS) dominates the electron precipitation and thus the energy
input into the Earth’s atmosphere is still under active research.
Given the Earth’s magnetic field geometry, one would expect that
on the dayside and at low L shells CSS does not contribute much,
but more quantitative studies are still needed. Overall, while
wave-driven precipitation can occur at all MLT (magnetic
local time) sectors, CSS-driven precipitation is indeed
primarily observed over 20–04 MLT (Yahnin et al., 2016;
2017), and overlaps with precipitation driven by waves (for
the most part, electromagnetic ion cyclotron waves, EMIC) in
the midnight sector (Capannolo et al., 2022).

These studies use data from the constellation of satellites called
POES (Polar Orbiting Environmental Satellites) and MetOp
(Meteorological Operational), described in Section 2. An
example of a wave-driven (REP, relativistic electron
precipitation) event is shown in Figure 1A, together with an
example of a CSS-driven (CSS) event (Figure 1B). REP events
show enhancements in the relativistic (>700 keV) precipitating
electron flux (solid red line) and the precipitation is rather

isolated (gray region) in space (L shell) with little/no
precipitation around the main event. This region generally
matches the location where the wave-particle interaction is
efficient to violate the first adiabatic invariant. CSS events,
instead, show an energy-dependent precipitation with higher
energy electrons precipitating at lower L shells than lower
energy electrons (Figure 1B; green, black, and blue solid
lines). This is a direct result from the fact that the electron
gyroradius depends on electron energy: higher energy
electrons have a larger gyroradius, thus are lost by a stretched
magnetic field line at distances closer to Earth (smaller L shells)
than lower energy electrons. Given such a distinct pattern of
precipitation, we can distinguish the precipitation drivers.

So far, existing analyses aiming to distinguish the precipitation
drivers have either focused on a limited time span (Yahnin et al.,
2016; 2017) or on a limited MLT sector (Capannolo et al., 2022).
Identifying precipitation events and visually inspecting their
precipitation patterns to categorize their driver (waves or CSS)
is a rather time-expensive task. Algorithms that find relativistic
electron precipitation events (based on count rate or flux
thresholds) exist in literature (e.g., Shekhar et al., 2017;
Gasque et al., 2021; Capannolo et al., 2022), but they do not
include the distinction between wave-driven precipitation and
CSS-driven precipitation, which is a much more complex task to
perform using algorithms. The goal of this work is to take

FIGURE 1 | Examples of (A) a wave-driven (REP) precipitation event and
(B) a CSS-driven (CSS) precipitation event. Electron flux observed by POES
n19 (A) and MetOp m02 (B) satellites is color-coded by energy channel (as
indicated in panel (B)), and shown as a function of time and satellite
trajectory expressed in L and MLT. Dashed (solid) lines are relative to the 90°

(0°) telescope, indicating the trapped (precipitating) electrons. The
precipitation events are highlighted by the gray rectangles.
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advantage of deep learning techniques not only to find
precipitation events, but also to categorize them into wave-
driven (REP) and CSS-driven (CSS) events. We use the dataset
of precipitation events analyzed in Capannolo et al. (2022), which
were visually classified between wave-driven (REPs) and CSS-
driven (CSSs) precipitation events (details in Capannolo et al.,
2022). This work is an example of an application of supervised
deep learning classification in space sciences that is able to
provide a large dataset of precipitation events classified by
driver (waves or CSS) after an initial manual classification of
events.

2 SATELLITE DATA DESCRIPTION

We use data from the POES and MetOp network of sun-
synchronous satellites in polar orbits at ~800–850 km of
altitude (Evans and Greer, 2004). The Medium Energy
Proton and Electron Detector (MEPED) provides electron
(and proton) flux in three integral channels with cutoff
energies of >30 keV (E1), >100 keV (E2), and >300 keV (E3)
(Rodger et al., 2010). The P6 proton channel is designed to
measure >6.9 MeV protons, however, it is also sensitive to
electrons at >700 keV (Yando et al., 2011) in absence of high
energy protons. Thus, we use the P6 channel as a fourth virtual
electron channel, E4 (Green, 2013). Additionally, each satellite
is equipped with two telescopes: one oriented along zenith (0°

telescope) and one perpendicular to it (90° telescope), both with
full field-of-view angle of 30°. At mid-to-high latitudes, the 0°

telescope provides measurements of electrons precipitating
deep into the loss cone and the 90° telescope provides
observations of trapped electrons. Strong precipitation
typically occurs when the flux observed by the 0° telescope
approaches the flux observed by the 90° telescope, indicating
that a large percentage of trapped electrons are precipitating.
Precipitation events are marked in gray in Figures 1–3, and

highlighted in brown (REP) and blue (CSS) in Figure 4. The
resolution of the electron flux is 2 s, and the constellation of
satellite covers a rather broad L-shell range and MLT sectors.
Typical observations of POES/MetOp are shown in the
Supplementary Figure S1. Each panel shows ¼ orbit of a
POES/MetOp satellites (one pass through the radiation belts)
and highlights the significant variability of flux during the
satellite trajectory.

3 METHODS

In this section, we describe how we prepared the dataset of
precipitation events in order to obtain a well-performing
model. We also describe the model architecture and how it
was decided, as well as how we trained the deep learning model.

3.1 Dataset Preparation
Capannolo et al. (2022) analyzed relativistic electron
precipitation events observed by POES/MetOp from 2012 to
2020 over 22–02 MLT and classified these events between
those driven by waves (called REP events in this work) from
those driven by CSS (CSSs hereafter) using their characteristic
precipitation profile (Figure 1). Note that this dataset was
obtained after careful event classification: only events that
clearly belonged to either category (REP or CSS) were
considered, while ambiguous precipitation events were
carefully discarded. More details on the classification are
provided in Capannolo et al. (2022). In this work, we use this
dataset of precipitation events classified over 22–02 MLT with
additional preprocessing to improve the model performance as
explained below.

Our goal is to build a dataset of precipitation events randomly
stacked one after the other. We consider all four POES/MetOp
electron channels and the two look directions (0° and 90°) for a
total of eight inputs at a given time. The model output (or target)

FIGURE 2 | Portion of the training dataset: (A) class of each data point and b) electron flux for different energies. Dashed and solid lines in panel (B) indicate the 90°

and 0° telescope observations, respectively, as in Figure 1. Precipitation events are highlighted in gray in panel (B) and their relative class is shown in panel (A), where
class 0 indicates “no event”, class 1 indicates “REP event” and class 2 indicates “CSS event”.
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is the data point class (or label, used interchangeably hereafter): 0
is for no-event, 1 is for REP, and 2 is for CSS. Given one event, the
data points are labeled as 1 or 2 during the precipitation (gray
regions of Figure 1) and the adjacent data points (to the left and
right of the event) are labeled with 0. Fluxes ≤0 for all channels are

set to 0.01 (100) s−1cm−2sr−1 for the 0° (90°) telescope
measurements (negative values in POES/MetOp data indicate
unreliable fluxmeasurements). We apply the natural logarithm to
the fluxes and normalize the whole dataset using the
normalization parameters of the train dataset.

FIGURE 3 | Three different portions of the test dataset in a similar format as Figure 2. Panels (A), (C) and (E) show the original class of each event in the dashed
gray line and the class of each event predicted by the model in solid black. Panels (B), (D) and (F) show the electron flux in a similar format as Figure 2B, where each
event (originally identified) is highlighted in gray.
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As shown in Supplementary Figure S1, each pass through the
radiation belts highlights a significant flux variability observed by
POES/MetOp, while the precipitation events are rather short-
lived (<30–60 s). As a result, if we use the full day of data when a
given REP/CSS event occurs, we will obtain a label of mostly
zeroes (no-event) and only a few data points at 1 or 2 (indicating
the REP/CSS). This would make the full dataset of stacked events
extremely imbalanced, where only a few percent of the labels are
non-zero. With such dataset, the deep learning model is unable to
perform well and it identifies only the no-events correctly. In
order to overcome this obstacle, we consider a much shorter
window of data for each event: given one event, we label the data
points during precipitation with 1 or 2, but label with 0 only the
data points adjacent to the left and right of the event such that
the total number of data points is 50. In this way, we have

windows of 50-point-long for each event which we stack one
after the other in a random order. Additionally, we ensure that
no other nearby events were occurring within the 50-point-long
window such that in this window there is only one type of non-
zero label (either 1 or 2). Note that if two events of different
classes are adjacent to each other, we rule out both. Instead, if
two REP events are adjacent to each other within the 50-point-
long window, we widen the label of one to include both to ensure
that in each 50-point-long window, there is only one continuous
non-zero label. For the CSS events, we also manually extended
the boundary of the precipitation events to include the full
energy dispersion observed by POES/MetOp because we do not
limit ourselves to the E4 precipitation alone (as done in
Capannolo et al., 2022). This ensures that the full
precipitation pattern (from low to high electron energy) is

FIGURE 4 | Identification and classification of precipitation events on 6 days of POES/MetOp data. Each panel shows the electron flux color-coded in energy
(legend in panel (A)) as a function of L, MLT, and time. Dashed (solid) lines indicate observations of trapped (precipitating) electrons from the 90° (0°) telescope. REP
events identified by the model are highlighted in brown, while CSS events identified by the model are marked in blue.
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identified as a CSS event and used to train the model. Using the
boundaries as in Capannolo et al. (2022) worsens the model
performance because the full extent of the energy-dependent
pattern is not correctly learned by the model. We show a portion
of the dataset in Figure 2: panel A) indicates the label and panel
B) shows the electron flux for all energy channels and look
directions, where the precipitation events are highlighted
in gray.

In order to augment our dataset and provide the model with
a wider variety of precipitation patterns, we also mirror each
precipitation event about its main axis. This does not
introduce data redundancy since each precipitation event
(either mirrored or not) carries a meaningful information.
In other words, a REP/CSS event can be directly observed by a
POES/MetOp satellite following its actual trajectory (e.g., from
low to high L shells), but the precipitation pattern would still
be observed (though symmetrically) if the same POES/MetOp
satellite was travelling along its opposite orbit (e.g., from high
to low L shells) through the precipitation region at the same
time. Note that this is possible since we are only interested in
the profile of the precipitation (i.e., flux evolution as a function
of dataset index) and not its temporal evolution. By using this
methodology, we obtain a dataset of 460 REPs and 348 CSSs for
a total dataset length of 40,400 data points. Although only
~20% of the data points are labeled with 1 or 2 (making this
dataset still imbalanced with respect to the 0 class), the REP
and CSS classes are approximately balanced (~10% data points
are REPs and ~8% data points are CSSs) and the model is able
to identify correctly no-events, REPs and CSSs as we show in
the following sub-sections.

3.2 Model Structure and Training
We adapt a long short-term memory (LSTM; Hochreiter and
Schmidhuber, 1997) architecture (a type of artificial recurrent
neural network, RNN; Rumelhart et al., 1986) for the deep
learning model because it retains input information at much
earlier time steps, making it more efficiently than RNNs for
problems that treat time series. As a matter of fact, the problem of
our work is a time series classification. Although the time variable
is not explicitly used, it is instead intrinsically represented by the
shape of the precipitation. It is indeed the evolution of the
precipitation pattern (isolated vs energy-dependent) that
differentiates between the two drivers of precipitation, as
mentioned in Section 1.

The input format required by LSTM is a tensor, which is
composed of a stack of snapshots of the dataset identified by a
sliding window with stride one and length 7. The label in each
snapshot is assigned as the most probable one (i.e., if the majority
of data points have label of 0, the label assigned to that snapshot is
also 0) and is one-hot encoded. The length of seven is set after
trying different sliding window lengths and choosing the one that
provided the best model performance.

The metrics we use are those of a standard classification
problem and we focus on the F1 score (calculated as the
weighted average of the precision and recall; it expresses how
many events the classifier identifies correctly quantifying also
how many are missed or mislabeled), the AUC (area under the

ROC (Receiver Operating Characteristic) recall vs false-positive-
rate curve) and the AUPRC (area under the precision vs. recall
curve). We perform a k-fold cross validation with k = 10: the
whole dataset is split into 10 portions of which one is used as a test
set and the remaining nine are used as training set. We also
consider a validation set that is 15% of the training set in each
k-fold. The k-fold cross validation consists in training the model
on k different datasets (described above) and estimating the
model performance for each of the k iterations. The final
model performance is the average of the k performances and
the final model weights are obtained by training the model on the
whole dataset (with the exception of 15% of the dataset used for
testing purposes). During training, we use early stopping (with
patience of 10 epochs) on the AUC calculated for the validation
dataset.

4 MODEL PERFORMANCE

We tried different model configurations, all made of a LSTM
layer followed by a fully connected (i.e., dense) layer, ending
with a dense layer of three neurons that outputs one predicted
class. There are two dropout layers (with 0.5 dropout rate)
after the LSTM layer and after the first dense layer. We
validated each model configuration using the k-fold cross-
validation (mentioned above) and we selected the model
configuration with the highest F1 score, AUC and AUPRC.
Out of all the configurations we tried (64 LSTM cells + 256
dense cells; 128 LSTM cells + 128 dense cells; 128 LSTM cells +
256 dense cells; 64 bidirectional LSTM cells + 256 dense cells;
64 bidirectional LSTM cells + 64 bidirectional LSTM cells +
128 dense cells) the model with the best performance is the one
with a layer of 64 bidirectional LSTM cells followed by a fully
connected layer of 256 cells (total number of free parameters is
71,171). The metrics resulting from the k-fold cross-validation
for this model are: F1~0.948, AUC~0.995, and AUPRC~0.990.
Note that the performance among the different model
configurations is similar and differs only on the second or
third decimal figure. Supplementary Table S1 shows the
performance scores (F1, AUC, AUPRC) resulting from the
k-fold cross-validation for each architecture tested. As an
example, Supplementary Figure S2 (panels a–e) shows the
metrics as a function of epoch for the k = 3 fold. Panel f) shows
the confusion matrix averaged from all the confusion matrices
of each k-fold: the highest values are focused along the
diagonal, indicating that the model performs well in
assigning the correct class to each snapshot.

To highlight that the model appropriately identifies and
classifies precipitation events, we show in Figure 3 three
examples of how the model performs on three portions of
the test dataset. Panels A), C), and E) present the model (solid)
and original (dashed) labels and panels B), D), F) show the
electron fluxes in a similar format as Figure 2. The
precipitation events (originally assigned) are highlighted in
gray and their associated class is reported in the panels A), C),
E). Not only the model identifies all precipitation events, but
each event is categorized in the class originally assigned. Note
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that the indices where the labels are non-zero only indicate
that nearby that region the probability of finding an event is
higher than the probability of a no-event, but these indices do
not necessarily represent the exact precipitation event
boundaries (as the original class does). Nevertheless, the
labels predicted by the model are in good agreement with
the original location and class of the events highlighted in gray.
The model labels seem to be shifted to the left by a few data
points compared to the original classes, due to the fact that we
assign a class to each snapshot of length 7 (described in Section
3.1). In other words, the very first snapshot is classified with
the most probable label in the first seven data points. As the
sliding window progresses with stride 1, each label is
associated with the following seven data points resulting in
anticipating the snapshot classification.

4.1 Model Application on Several Days of
POES/MetOp Data: Preliminary Results
As we showed in Section 3.1, the dataset used for training has
been significantly shrunk to only 50 data points for each
precipitation event observed by POES/MetOp. In this section,
we explore the model performance on longer time periods (full
day of POES/MetOp data, the significant flux variability of which
is shown in Supplementary Figure S1 to test its generalization
ability.

We apply the model to several POES/MetOp days and show
the results in Figure 4 and Supplementary Figure S3. Each
panel in these figures is from a different date and none of the
events shown belong to the dataset prepared in Section 3.1
(they are all out-of-sample). Here, we are only considering
events occurring in the outer radiation belt, thus we filter out
any events occurring at L < 2.5 or L > 8.5 (L is expressed using
the International Geomagnetic Reference Field, IGRF, model
in POES/MetOp data). The panels on the left column of
Figure 4 show REP events (highlighted in brown), whereas
the events on the right column are CSSs (highlighted in blue).
This classification is accurate because the classified REPs
indeed show isolated E4 precipitation, while the classified
CSSs display an energy-dependent precipitation. During
REP events (Figures 2–4), although the low-energy
electrons (E1, E2 and E3 channels) appear to precipitate as
well, their flux is likely the result of proton contamination,
which is known to affect the electron measurements onboard
POES/MetOp satellites (e.g., Evans and Greer, 2004; Yando
et al., 2011; Capannolo et al. 2019, 2021). Note again that the
location where these events are identified by the model differs
from the exact event location by a few data points. This is not a
major concern as this shift appears to be systematic and can be
corrected in the post-processing by shifting the predicted
model class by a few data points.

On the contrary, Supplementary Figure S3 shows examples
when the model does not perform very well and identifies two
adjacent precipitation events belonging to different classes
(panels a and b), mislabeled events (panel c) or false positive
events (panel d). The cases in panel a) only last one data point
and could be potentially disregarded since the model does not

identify a long enough non-zero label. The event in panel d)
shows a precipitating E4 flux that is higher than the others,
which could indicate a potential issue in the recorded POES/
MetOp data. Events in panels b) and c) instead must be
appropriately ruled out or inspected further (e.g., what is the
probability of each class? Is the probability of the CSS class
comparable to that of the REP?). Handling false positives is
beyond the scope of this work and we are aware that post-
processing on the model output is needed before using these
results for scientific research. The post-processing should rule
out events lasting only one data point, adjacent events belonging
to different non-zero classes, and events in the South Atlantic
Anomaly, as well as improving the L shell calculation for each
event (using Tsyganenko models such as the T89 (Tsyganenko,
1989) or T05 (Tsyganenko and Sitnov, 2005)) used to consider
events occurring only in the outer radiation belt.

5 CONCLUSIONS AND DISCUSSION

In this work, we showed an example of an application of
supervised deep learning to space sciences. Understanding
when, where and why relativistic electrons precipitate into the
Earth’s atmosphere has a longstanding relevance for a variety of
reasons (from improving our knowledge on plasma dynamics to
study the space weather impacts of electron precipitation). In this
work, we focused specifically on relativistic electron precipitation.
Our goal was to classify the relativistic electron precipitation
events depending on their spatial precipitation pattern, which in
turn corresponds to their magnetospheric driver (waves or
current sheet scattering). We used data from the POES/MetOp
constellation of low-Earth-orbit satellites. Our task was
supervised because we used the list of events studied by
Capannolo et al. (2022), which were visually classified. Note
that these events were classified only in a limited MLT sector
(22–02); however, their MLT value was not used as input in the
model, and in fact, our model is able to identify precipitation
events at any MLT.

The dataset preparation was key to obtain a satisfying model
performance. By considering only a short time window around
each event instead of the full day of POES/MetOp data, using
non-zero labels to indicate REPs (class of 1) or CSSs (class of 2)
and labels at 0 to indicate the no-event, and including electron
fluxes observed at different energies and look directions, we were
able to obtain an appropriate dataset to use for training. We
found that the LSTM architecture is suitable for identifying
precipitation events and classifying them by precipitation
pattern given its ability to consider the data history (in our
case the precipitation pattern profile evolution along the
satellite trajectory).

Our model is composed of one layer of 64 bidirectional LSTM
cells, one layer of 256 fully connected neurons, and one layer of
three dense cells. The inputs are the electron fluxes at different
energies and look directions, and the output is the class of each
data point. We obtained the model metrics (F1~0.948,
AUC~0.995, and AUPRC~0.990) by conducting a k-fold
cross-validation (k = 10). Our model is able to learn the
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dataset properties correctly. The model is not only able to identify
the electron precipitation events, but it also appropriately
classifies them by their drivers.

Since the dataset used for training and testing purposes has
been specifically designed to obtain a good model
performance, it shows less variability than that typically
observed by POES/MetOp over an entire orbit.
Nevertheless, our model is still able to identify and classify
the precipitation events when applied to a full day of data
(Figure 4), though some false positives might still be identified
(Supplementary Figure S3). Post-processing of these results is
needed before being able to use the model outputs for scientific
research; however, this is beyond the scope of this paper and
left for future investigation. Once the post-processing routine
is developed, this model could be easily used as a tool to
produce lists of relativistic electron precipitation events in a
very short amount of time, overcoming the complex task of
developing deterministic algorithms based on flux thresholds
to delineate the precipitation patterns and the time-expensive
task of visually classifying these events by driver. In this way,
we would be able to extend the study conducted in Capannolo
et al. (2022) to the whole MLT range and statistically
investigate on where the CSS effects should be considered
for radiation belt and precipitation modeling, as well as
compare them with the precipitation driven by waves. Such
event dataset would also potentially open additional avenues of
machine learning applications to space sciences; for example,
from a space weather point of view, we could investigate if the
electron precipitation events can be predicted by using solar
images, solar wind data and/or geomagnetic indices.
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