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Rossby waves have been recently recognised for their role in the large-scale spatio-
temporal organisation of the solar magnetic activity. Here, we study the propagation of
magnetohydrodynamic Rossby waves in a thin layer, representing the solar tachocline.
We consider the waves embedded in a meridionally varying background state
characterised by a mean zonal flow, which mimics the differential rotation profile of
the Sun, and a toroidal magnetic field. Two anti-symmetric toroidal magnetic fields are
utilised: one having a global structure with the maximum at around 50o and the other
characterised by a narrow band centered at around 20o. We show that for a global
structure toroidal magnetic field, the MHD Rossby modes undergo significant meridional
propagation, either equatorward or poleward. In addition, the latitude where the waves
exhibit a stationary behaviour is sensitive to the strength of the background magnetic
field. On the other hand, a narrow band toroidal magnetic field is shown to work as a
waveguide for the fast branch of MHD Rossby waves.

Keywords: MHD Rossby waves, solar tachocline, solar differential rotation, background toroidal magnetic field,
WKB (Liouville-Green) approximation

1 INTRODUCTION

Rossby waves are large-scale, primarily vortical, disturbances that are regarded as one of the main
building blocks in the understanding of atmospheric and oceanic dynamics. These waves play an
important role in different climate phenomena such as the El Niño-SouthernOscillation (McPhaden
and Yu, 1999), the intraseasonal oscillation (Stechmann and Majda, 2015; Žagar and Franzke, 2015)
and the Quasi-biennial Oscillation (Raphaldini et al., 2020b; Raphaldini et al., 2021). Among the
most clear signal of Rossby wave propagation in the Earth’s atmosphere refers to the observed
teleconnection patterns, geographically fixed regions of climate anomalies around the globe that
are strongly correlated with each other (Horel and Wallace, 1981; Wallace and Gutzler, 1981;
Blackmon et al., 1984; Hoskins and Ambrizzi, 1993; Boers et al., 2019).

In the recent years, Rossby waves have also been recognised as one of the main contributors
to the solar magnetic activity on several timescales. While the role of Rossby waves in Solar
dynamics has long been proposed on theoretical grounds (Gilman, 1969a; Gilman, 1969b), only
in the last fifteen years there has been a strong resurgence in the interest of the Rossby wave
role in the solar magnetic activity, specially in the solar tachocline, a thin and stratified layer
that provides a favourable environment for the Rossby wave propagation. These works start from
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laying the theoretical foundations, describing the basic physical
aspects of Rossby waves in the Sun, such as their fundamental
frequencies and propagation properties (Zaqarashvili et al., 2007;
Zaqarashvili et al., 2009), instabilities (Gilman andDikpati, 2014;
Gilman, 2015), equatorial trapping (Zaqarashvili, 2018) and
nonlinear interactions (Raphaldini and Raupp, 2015; Raphaldini
et al., 2019; Fedotova et al., 2021). In addition, some works have
made associations between Rossby wave activity and observed
features of the solar magnetic activity, such as short-medium
term (Zaqarashvili et al., 2011; Dikpati et al., 2018a Dikpati
et al., 2018b) and long-term (Raphaldini et al., 2019; Raphaldini
et al., 2020a) periodicities. On the other hand, Zaqarashvili et al.
(2010a) extended the Rossby wave propagation theory to other
stars.

Even more recently, Dikpati and McIntosh (2020) compiled
observational evidences from several sources suggesting that
Rossby waves do play an important role in the spatio-temporal
organisation of the solar magnetic activity. According to
Dikpati and McIntosh (2020), short activity cycles, manifesting
themselves as the occurrence of the strongest (X-class) signals
in the short period spectrum (8 months–2.4 years), have been
linked to retrograde propagation structures due to Rossby waves.

Regarding the role of Rossby waves in the Solar magnetic
activity, an important issue that seems to be under-explored
refers to their relationship with the latitudinal dependence and
meridional propagation of some structures associated with the
solar magnetic activity. The most obvious example of this feature
is the so-called butterfly diagram, which represents the tendency
of sunspots and activity regions to appear closer and closer to
the equatorial region as a given solar cycle progresses (Thomas
andWeiss, 2012).This historical observational record of sunspots
has displayed significant correlation between the amplitude of
a given solar cycle, measured by the number of sunspots,
and its time-varying characteristic latitudes. More precisely,
Leussu et al. (2017) have shown that the latitude of maximum
sunspot appearance (the so-calledH-latitude) is highly correlated
with the strength of the corresponding solar cycle, whilst the
latitude of minimal solar cycle activity (the so-called L-latitude)
presents a weak correlation. Another phenomenon that is shown
to be correlated with the strength of the solar cycle is the
differential rotation profile of the Sun (Zhang et al., 2015).

While the sunspot activity shows a tendency of propagating
towards the equator, other magnetic structures seem to
have an opposite behaviour. For instance, crown filaments
are observed to have poleward movements throughout the
solar cycle in the so-called “rush to the poles” phenomena
(Webb et al., 2018; Xu et al., 2021). Coronal holes, on the other
hand, can exhibit both poleward and equatorward propagations
(Hewins et al., 2020).

In this way, these two observed correlations mentioned
above, namely 1) the one between the characteristic latitude and
the strength of the Solar cycle and 2) the other between the
differential rotation profile and the strength of the Solar cycle,
suggest a common physical mechanism responsible for these
correlations, or a relationship between both aspects of the Solar
magnetic activity. A natural question that arises from the above
considerations is: what is the role of MHD Rossby waves in the

latitudinal dependence and meridional propagation of magnetic
activity structures?

In order to answer this question, we employ the so-
called asymptotic ray tracing theory. This theory has been
widely used in the solar and stellar dynamics for other wave
modes as a tool to investigate their internal structure through
helio/stellar seismology. Lignières and Georgeot (2008) studied
the propagation of acoustic waves in a self-gravitating and
uniformly rotating star with a polytropic equation of state,
showing the existence of chaotic trajectories in this context.
Detailed studies of the ray tracing theory for inertio-gravity
modes are presented in Prat et al. (2016) and Prat et al. (2018),
including the effects of density stratification and differential
rotation, providing the properties of the spectra and domains of
propagation of these waves as a function of the rotation rate and
differential rotation profile. The effect of strong magnetic fields
on the inertio-gravity modes and the application of this theory
to red giant stars are investigated in Loi (2020a) and Loi (2020b),
who showed that, even being embedded in strongmagnetic fields,
some wave trajectories remain similar to the hydrodynamic case,
while others exhibit a more Alfvén-like character.

We introduce in the next section the simplest model capable
of reproducing the meridional propagation of MHD Rossby
waves, namely the quasi geostrophic MHD equations derived by
Zeitlin (2013), which consist of a straightforward generalisation
of the well-known quasi-geostrophic equations of the ocean
and atmosphere (Pedlosky, 2013). We linearize these equations
around a background state characterised by a zonal flow and
a zonal (toroidal) magnetic field, both meridionally varying
functions. The meridional variation of the background zonal
flow is chosen in order to realistically depict the differential
rotation profile. In this set of two linear PDEs with variable
coefficients, to analyse the ray tracing of MHD Rossby waves,
these waves are obtained as asymptotic solutions by considering
the so-called WKB (Wentzel-Kramers-Brillouin) approximation,
in which the background state parameters are assumed to be
slowly varying functions. In this context, the wave phases are
obtained as solutions of an eikonal equation, while the wave
amplitudes satisfy a transport equation.Therefore, the amplitudes
of wave packages are “carried” by their corresponding group
velocities, and the wave rays behave in a similar fashion to what
occurs in the Snell Law of optics, in which light rays refract when
the refractive index of the medium is variable.

2 MODEL EQUATIONS

Let us consider the simplest model supporting the existence
of MHD Rossby waves, namely the quasi-geostrophic MHD
equations derived by Zeitlin (2013) as a strong rotation
limit of the MHD shallow-water equations (Gilman, 2000;
Zaqarashvili et al., 2007).Thismodel is described by the potential
vorticity conservation and the induction equation as follows:

∂q
∂t
+J (ψ,q) = (μ0ρ)−1J (A, j) (1a)
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∂A
∂t
+J (ψ,A) = 0 (1b)

where q = ∇2ψ+ βy− Fψ is the potential vorticity, ψ the
streamfunction, A the magnetic potential, j = ∇2A the magnetic
current, ρ the medium density and μ0 the magnetic permeability
of the vacuum; F is the inverse of the Rossby deformation radius
squared, and the latitude dependent parameter β refers to the
derivative of the Coriolis parameter with respect to latitude.
In this context, the spherical coordinate equations are adapted to
their popular Cartesian “beta-plane” version bymaking use of the
Mercator projection (see Appendix A2). In Eq. 1, J represents
the Jacobian operator

J (f ,g) =
∂f
∂x

∂g
∂y
−
∂f
∂y

∂g
∂x

(2)

for any two differentiable functions f and g. We consider a
background magnetic field in the toroidal direction, B0(y), and
a background zonal flow represented by U(y). In this way,
assuming that A = A(y) +A′, and ψ = ψ(y) +ψ′, with dA(y)

dy
=

−B0(y) and
dψ(y)
dy
= −U(y), and neglecting the terms arising from

products of perturbations, the linearized version of Eq. 1 can be
written as follows:

( ∂
∂t
+U ∂

∂x
)[∇

2ψ
A ] =
[[

[

β∗ ∂∂x
B0 (y)
μ0ρ

∂
∂x∇

2

B0 (y)
∂
∂x 0

]]

]

[ψA] (3)

where the superscript prime has been omitted for simplicity. In
the equation above,

β∗ = β+ FU − d
2U
dy2

is the gradient of the background potential vorticity. Wavelike
solutions of Eq. 3 are obtainable in the asymptotic limit where
the spatial scale of the perturbations is assumed to be much
smaller than the spatial scale of the background state, the so-
called WKB approximation1. In this context, the wave phases
satisfy the following eikonal equation

∂ϕ
∂t
= −ω(y,ϕx,ϕy) (4)

where ϕ(x,y, t) represents the wave phases, and ω refers to the
MHD Rossby wave dispersion relation:

ω(k⃗,y)|
k⃗=∇ϕ
= U (y)k −

(β∗ ±√(β∗)2 + 4va (y)2 |k⃗|4)k

2(|k⃗|2 + F2)
(5)

In the equation above, k⃗ = (k, l) is the vector wavenumber,

va (y) =
B0 (y)
√μ0ρ

1A thorough reference on the WKB method for dispersive wave systems of PDEs
can be found in the Chapter 5 of Majda (2003).

the Alfvén wave speed, and the ± sign distinguishes the fast
hydrodynamic and slow magnetic branches.

On the other hand, the wave amplitudes satisfy the following
transport equation

∂A
∂t
+∇kω •∇xA = 0 (6)

dx⃗
dt
= ∇kω = C⃗g (7)

where C⃗g = (Cgx,Cgy) represents the group velocity vector.

3 RAY TRACING FOR MHD ROSSBY
WAVES

By using the method of the characteristics (John, 1982), the
eikonal Eq. 4 can be expressed in terms of the ray tracing
equations:

dk
dt
= −∂ω

∂x
= 0 (8)

dl
dt
=− ∂ω

∂y
= −U ′k + k

×(±
4(k2 + l2)2 vav′a + β∗β∗′

√4 (k2 + l2)2 v2a + β∗2
+ β∗′)/(2(F2 + k2 + l2))

(9)

dx
dt
= ∂ω

∂k
= U +

k2(β∗ ±√4 (k2 + l2)2 v2a + β∗2)

(F2 + k2 + l2)2
∓

4k2v2a (k
2 + l2)

(F2 + k2 + l2)√4 (k2 + l2)2 v2a + β∗2
∓
±β∗ +√4 (k2 + l2)2 v2a + β∗2

2(F2 + k2 + l2)

(10)

dy
dt
= ∂ω

∂l
= kl

β∗(±β∗ +√4 (k2 + l2)2 v2a + β∗2)∓ 4F2v2a (k2 + l2)

(F2 + k2 + l2)2√4 (k2 + l2)2 v2a + β∗2
(11)

The ray tracing equations above show that at any given point
of the domain the trajectory of a particular wave-mode is parallel
to its group velocity given by ∇kω. Consequently, from Eq. 6, it
follows that the correspondingmode amplitude (energy) will also
be transported by the groups along its path.We therefore calculate
the group velocity from the dispersion relation (5), and then
integrate the ray tracing equations to determine the trajectory of
thewave energy froman initial point.The curves that characterise
the rays can then be parameterized by:

dx
dy
= dk

dl
=
Cgx

Cgy
. (12)
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For the integration of the ray tracing equations above for each
specified zonal wavenumber k, the meridional wavenumber l
was determined by solving a bi-quadratic algebraic equation that
follows from the assumption that the phase speed of the waves are
much smaller than the background zonal velocity (|ω| ≪ |U |k).
Details of these calculations are presented in Appendix A1.

4 RESULTS

In this section we describe the solutions of the ray tracing
Eqs 8–11 for two types of equatorially anti-symmetric toroidal
magnetic fields B0(y). The first one follows Dikpati et al. (2021)
and corresponds to a narrowly banded/concentrated magnetic
field profile (Figure 1, right panel); the second one (Figure 1,
left panel) corresponds to a banded magnetic field profile with
a slower decay with latitude, which is reminiscent of the global
simulations of Passos et al. (2017). The background zonal flow
utilised here is defined byU(y) =Ω(θ)a, with a corresponding to
the tachocline solar radius, and Ω(θ) represents the differential
rotation profile defined according to the following truncated
series:

Ω (θ) =Ω0 +Ω2 cos
2 θ +Ω4 cos

4 θ, (13)

where θ represents the latitude.The resultingmeridional profile of
U(y) obtained from the standard values of the coefficients given
by Ω0 = 0.0588, Ω2 = −0.1264 and Ω4 = −0.1591, is illustrated in

Figure 2. This profile was utilised in the integrations displayed in
Figures 3–5.

Apart from the two aforementioned latitudinal structures for
B0(y), we also test the sensitivity of the solutions to the strength
of the toroidal magnetic field by considering the following
values for its maximum: B0 = 0G, B0 = 7500G, B0 = 15000G and
B0 = 30000G. The integrations are performed for a 500-day
period, with a small black circle on the curves for a 100-day
window.

Figure 3 displays the solution for the waves with zonal
wavenumber k = 10 embedded in the broad toroidal magnetic
field. For this zonal wavenumber, the wave phases are
highly oscillatory such that the WKB approximation seems
reasonable. One observes that, for B0 = 0, in which only the fast
hydrodynamic branch exists, there is a tendency for the wave
generated near the equator to propagate towards mid-latitudes
(around 30°). This tendency is reduced as the strength of the
magnetic field is increased for both branches of the MHD Rossby
waves. The two branches present some differences regarding
the propagation speed and the latitudinal range for which the
Rossby waves present prograde propagation with respect to the
Carrington rotation. This difference becomes more evident for
stronger magnetic fields (e.g., for B0 = 15,000G), for which there
is an overall tendency of the fast branch to present retrograde
propagation, while the slow branch exhibits a predominantly
prograde propagation. Another interesting feature to be noticed
from Figure 3 refers to the latitudinal location of the stationary
waves that may differ between the two branches. This is the

FIGURE 1 | Toroidal magnetic field profiles used in this study with varying maximum field strengths of B0 = 0G, B0 = 7,500G, B0 = 15,000G and B0 = 30,000G. On
the left is a slowly decaying (as a function of the latitude) Gaussian profile; on the right is a narrow profile centred at 25o of latitude.
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FIGURE 2 | Mean zonal flow profile used in this study, mimicking the solar differential rotation profile.

FIGURE 3 | Energy trajectory (initiating at zero degrees of longitude) of the zonal wavenumber-10 wave mode embedded in the broad band toroidal magnetic field,
for different initial latitudes. The figures show the trajectories for the magnetic field strengths of 0G (A), 7.5 kG (B,C), 15 kG (D,E) and 30 kG (F,G). The left panels
refer to the fast hydrodynamic branch of the dispersion relation, whereas the right panels refer to the corresponding slow magnetic branch dispersion relation. For all
the panels, the blue (red) curve refers to the “+” (“−”) branch of the meridional wavenumber.
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FIGURE 4 | Similar to Figure 3, but for the narrow band toroidal magnetic field.

latitude where the Rossby wave propagation changes from
prograde to retrograde and vice-versa. For even stronger fields
(e.g., B0 = 30000G), the difference becomes even more evident,
with the latitude of the stationary waves being around 20° for
the fast branch and around 60° for the slow branch. Stationary
Rossby waves might be associated with the so-called active
(preferential) longitudes for the Solar magnetic activity (Dikpati
and McIntosh, 2020).

The solution referred to the zonal wavenumber-10 wave
mode embedded in the narrowly banded toroidal magnetic
field is illustrated in Figure 4. Since the toroidal magnetic field

band is narrow, the region where the Rossby wave propagation
is affected by the background magnetic field corresponds to
a smaller latitudinal range. In particular, for mid to high
latitudes where the background magnetic field is weak, the
propagation of the MHD waves is very similar to that of
the purely hydrodynamical waves (B0 = 0). Unlike the broad
band toroidal field case displayed in Figure 3, for the solution
displayed in Figure 4, there is a very distinctive propagation in
the center of the toroidal band at around 20°. This is because
for a narrow enough band toroidal field, the wave modes
become trapped and the background magnetic field works as a

FIGURE 5 | Fast hydrodynamic branch wave energy trajectory embedded in the narrow band toroidal magnetic field, for a narrow latitudinal range around the
maximum of the background magnetic field.
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waveguide for the MHD Rossby waves. This trapping effect of
the narrow band toroidal magnetic field on the MHD Rossby
wave mode is more clearly noticeable in Figure 5, which shows
the fast hydrodynamic branch wave energy trajectory in a
narrow latitudinal range around themaximumof the background
magnetic field. It is clearly noticeable from Figure 5 that, after
oscillating around the initial latitude of ≈20°, the corresponding
wave ray is refracted toward the final latitude of ≈20.6°, which
refers to the latitude where the strength of the magnetic field is
maximal.

The sensitivity of the Rossby wave rays to variations of the
differential rotation coefficientsΩ2 andΩ4 inEq. 13 has also been
investigated. The differences obtained for the wave trajectories
were very small for perturbations up to 25%of the standard values
of these coefficients (figures not shown), suggesting that either
inter-cycle or intra-cycle fluctuations in the differential rotation
profile probably do not significantly affect the MHD Rossby
wave propagation in the solar tachocline. This is in contrast to
the effects of the shape and strength of the toroidal magnetic
field that, as shown by the results presented in Figures 3–5, do
significantly affect the wave trajectories.

5 DISCUSSION AND CONCLUSIONS

In this study we have investigated the MHD Rossby wave
propagation embedded in a background state characterised a
zonal flow and a toroidal magnetic field, both meridionally
varying functions. The zonal flow has been prescribed to mimic
the differential rotation profile of the Sun, whilst two meridional
structures have been considered for the toroidal magnetic field: a
narrow band one centered at around 20° and a global structure
field with maximum centered at around 50° of latitude, both
having an odd symmetry about the equator. We have shown
that the MHD Rossby wave trajectories are sensitive to both the
meridional structure and the strength of the toroidal magnetic
field.

For a global structure field, the MHD Rossby waves exhibit
a significant meridional propagation, either poleward or
equatorward. Moreover, the latitude where the waves exhibit an
inversion from prograde to retrograde propagation with respect
to Carrington rotation is shown to be highly dependent on the
strength of the background toroidal magnetic field. These critical
latitudes correspond to a stationary regime of the wave modes.
As highlighted by Dikpati and McIntosh (2020), stationary or
very slowly propagating Rossby waves might be relevant to
the so-called active longitude phenomenon, since these waves
no longer exhibit significant propagation for long periods.
The active longitudes refer to longitudes at which persistent
solar magnetic activity is observed throughout several solar
rotations.

For a narrow band magnetic field, the MHD Rossby wave
propagation is unaffected by the strength of the toroidal magnetic
field for trajectories initiating far away from the latitude where
the magnetic field is maximum. In this case, the MHD Rossby
waves behave similarly to purely hydrodynamic Rossby modes.
In contrast, for trajectories initiating close to the latitude of the

toroidal magnetic field maximum, the fast hydrodynamic branch
mode becomes trapped at this latitude, with the narrow band
magnetic field working as a wave guide.

This role of the narrow band toroidal magnetic field as a
waveguide forMHDRossby waves at the solar tachocline appears
to be similar to the role of the upper troposphere subtropical
jet streams at the Earth atmosphere, which work as waveguides
for hydrodynamic Rossby waves (Hoskins and Ambrizzi, 1993).
Rossby wave disturbances in the Earth atmosphere are known
to be responsible for the weather systems characterised by
an alternate sequence of large-scale propagating cyclonic and
anticyclonic vortices. These cyclonic (anticyclonic) vortices are
associated with rainy (dry) weather conditions. In addition,
for longer time-scales, forced Rossby waves are responsible for
establishing the teleconnection patterns that are responsible for
extreme climate events in the Earth atmosphere. An example is
the one responsible for the ElNiño impact on the North America
(South America) climate during the boreal (austral) winter (e.g.,
Horel and Wallace, 1981; Karoly, 1989).

In this scenario, an interesting analogy can be made with
MHD Rossby waves in the Sun as their propagation might
be responsible for the spatio-temporal organization of more
localized explosive events of the solar magnetic activity. Dikpati
and McIntosh (2020) discuss several aspects of this relationship
between solar Rossby waves and their role in organizing solar
flares and other phenomena related to the solar magnetic activity.
Some of the aspects presented here such as themeridional Rossby
wave propagation as well as the stationarity of MHD Rossby
modes may play a role in this context.

MHD Rossby waves embedded in a realistic differential
rotation profile and a large-scale toroidal magnetic field at the
solar tachocline have also been studied by Zaqarashvili et al.
(2010a) by using the eigenmode method, which consists of
numerically solving the full eigenvalue problem. The authors
found an instability of global-scale Rossby waves (zonal
wavenumber 1) whose periods of the order of 155–160 days
are compatible with the short-term solar oscillations of Rieger-
type. A similar analysis also suggests that solar quasi-biennial
oscillations could be generated by global-scale unstable Rossby
modes (Zaqarashvili et al., 2010b). These studies differ from
our analysis in that they focus on global-scale modes (zonal
wavenumber k = 1), while we focus here on wave modes with
spatial scales one order ofmagnitude smaller (zonal wavenumber
k = 10) to be consistent with the WKB approximation.

In a recent observational analysis, Dikpati and McIntosh
(2020) showed that, depending on the phase of the solar
cycle, the Rossby wave signatures shift from a global scale
(mainly zonal wavenumber k = 1) at the solar minimum to a
smaller scale (k = O(10)) at the solar maximum. This suggests
that some type of nonlinear process might be responsible for
the energy transfer between Rossby waves with these two
distinct spatial scales during the evolution of the solar cycle,
possibly the nonlinear interactions studied by Raphaldini and
Raupp (2015) and Raphaldini et al. (2019). This kind of non-
local mode interaction has also been demonstrated in the context
of torsional oscillations in red giant stars (Loi and Papaloizou,
2017). Therefore, in the solar dynamics, the interaction of
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MHD Rossby and inertio-gravity wave modes can also play
some role during the transition to the maximal phase of the
solar magnetic activity. Indeed, for more realistic models of the
solar dynamics, MHD inertio-gravity modes have also been
obtained as linear eigenmodes (see, for instance, Zaqarashvili
et al., 2009; Dhouib et al., 2021a; Dhouib et al., 2021b;
Dhouib et al., 2022).
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APPENDIX A1: STATIONARY
WAVENUMBER APPROXIMATION AND
DETERMINATION OF THE MERIDIONAL
WAVENUMBER

The latitudinal dependence of the dispersion relation given
by Eq. 5 suggests that one can describe the meridional wave-
number of a Rossby wave locally as l = l(y). In such a case, an
useful approximation that enables us to identify the propagation
regions of a Rossby wave train is the so-called stationary
wave-number approximation (Hoskins and Ambrizzi, 1993). This
approximation is applicable for slow waves, for which the
frequency of the background mean flow is much larger than that
of the wave itself (|Uk| ≫ |ω|). In this case, Eq. 5 now reads:

U (y) −
β∗ ±√β∗2 + 4v2a|k⃗|4

2(|k⃗|2 + F2)
= 0, (A1)

Taking the square of both sides of the equation above andmaking
some algebraic manipulations, we get:

U2 (|k⃗|2 + F2)2 −Uβ∗ (|k⃗|2 + F2) − v2a|k⃗|4 = 0 (A2)

Recalling that |k⃗|2 = k2 + l2, equation above is a bi-quadratic
algebraic equation for l, whose roots are:

l = ±√
1

2(U2 − v2a)
(−2F2U2 − 2k2 (U2 − v2a) +Uβ∗ +√U (4F2v2a (F2U − β∗) +Uβ∗2))

(A3)

The other pair of roots is spurious and has been disregarded.

APPENDIX A2: MERCARTOR
PROJECTION

In considering the equations ofmotion on the sphere in a latitude-
longitude coordinate frame (θ,ϕ), one wishes to convert the
equations to Cartesian form while keeping the effects of the
variation of the Coriolis force and the mean flow with latitude. A
simple way to do this is to make use of the Mercartor projection,
which consists of considering the following transformations:

x = aϕ (A4)

y = a
2
1+ sin θ
1− sin θ

(A5)

with a representing the radius of the sphere. In this context, the
derivatives become:

∂
∂x
= 1
a

∂
∂ϕ

(A6)

1
cos θ

∂
∂y
= 1
a
∂
∂θ

(A7)

Equations above therefore take the form of the beta-plane
equations, with the β coefficient taking into account variations
of both the Coriolis parameter and the mean flow with latitude:

β∗ = cos θ(2Ω
a
+ 1
a
∂ζ
∂θ
) (A8)

where

ζ = ∇⊥U (A9)
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