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We applied two different techniques to identify high-density structures in global maps of
height-integrated electron density of the Earth’s ionosphere. We discuss benefits and
limitations of these approaches to structure identification. We suggest that they are
complementary and can aid our understanding of the properties of the global
ionosphere. We stress out importance of a consistent definition of large-scale
ionospheric structures.
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INTRODUCTION

Global ionospheric state of the Earth’s upper atmosphere is frequently characterized by the
total electron content (TEC) that is vertically integrated electron density. TEC distribution
over the globe features prominent daytime equatorial ionization anomalies (EIAs), see for
instance (Schunk and Nagy, 2009). Observations and follow-up modeling provide evidence of
multiple regions with elevated TEC (Maruayama et al., 2016; Astafyeva et al., 2016; Astafyeva
et al., 2017) that also include EIAs, i.e., high density regions (HDRs). Physical mechanisms
responsible for HDR formations are not well understood. However, knowledge of HDRs, their
occurrence, morphology, and evolution are important for space weather forecasting. We
suggest that a robust methodology needs to be developed to identify TEC structures,
i.e., HDRs, and create an extensive database of the structure occurrences. Such a database
should contain information on locations of HDRs, TEC magnitude, time and local time of
occurrences, and ancillary information on geomagnetic and solar activity. The data will be
crucial for identifying physical mechanisms, testing physical hypotheses and validating
modeling results.

To illustrate two different approaches to HDR identification, we use a timeseries of global
ionospheric maps (GIMs), a gridded 2D data product for TEC that is commonly used to visualize
global ionospheric state. We used two techniques, a mixture method approach and a computer
vision approach, that can be utilized to address the following questions. How many anomalies
and how many HDRs are present in a GIM? How does the number of the HDRs and their
intensities depend on solar and geomagnetic activity? We used the GIM dataset (binned 1° by 1°

for every 15 min, https://sideshow.jpl.nasa.gov/pub/iono_daily/gim_for_research/jpli/)
produced by Jet Propulsion Laboratory, California Institute of Technology for over 20 years
to demonstrate these two approaches. We would like to note that there are several GIM data
products available (see the reviews by Hernandez-Pajares et al. (2017); Roma-Dollase et al.
(2018)). We chose JPL GIM in this study as a representative GIM dataset with 15-min temporal
resolution. Figure 1 shows an example of JPL GIM with two EIAs over the South America and
several other HDRs. Below we will briefly discuss our approaches. We focus on large-scale
(thousands of km) structuring of the ionosphere.
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MIXTURE METHOD

An unsupervised Gaussian Mixture (GM) method, as
implemented by scikit-learn (Pedregosa et al., 2011) is utilized
to identify unique TEC sub-populations or HDRs (https://scikit-
learn.org/stable/modules/mixture.html#mixture). This approach
is informative and can be used to understand hierarchical layering
of Gaussian clusters. We assume TEC data points arise from a
mixture of a finite number of Gaussian distributions whose
parameters are unknown. Due to the topology of GIMs, we
had to extend scikit’s GM implementation to account for

periodic boundaries, i.e., a high-density region that “wraps
around” the zero meridian will not be counted as two
regions. For each possible number of expected clusters
(one to ten, but no higher, to reduce computational
requirements and match the order of magnitude of the
Computer Vision Method), we compute GM parameters
and identify the associated Bayesian Information Criteria
(BIC) of each fit. The optimal cluster count was then
selected by choosing the knee of the emerging plot of
cluster count vs. BIC. This method is sometimes called the
Elbow method in statistical clustering. Figures 2A,B show
examples of identifications of 2 and 5 clusters,
correspondingly. Here, horizontal axes correspond to
geographic latitude and longitude. The vertical axis shows
the cluster number. This approach is based on statistical
properties of the TEC distribution and is sensitive to
visually small changes in background density. Note that
the GM method designates the background as one of the
clusters. Thus, upon visual inspection there is one HDR on
Figure 2A. However, it is difficult to determine visually
which cluster or clusters correspond to the background
density in Figure 2B. For our purpose of understanding
large-scale structure, we appreciate that this method
accounts for information contained in the data which has
physical significance, whether or not that information is
visually discernible. For this reason, we believe the
following method based on image processing to be
complementary.

FIGURE 1 | Example of GIM on 4 March, 2014. TEC is shown in TEC
units (TECU), where 1 TECU = 1016 electrons/m2. Horizontal and vertical axes
correspond to geographic longitude and latitude, correspondingly.

FIGURE 2 | Results of GM method application to HDR identification for a GIM on 27 October, 2002 (A) and on 19 July, 2001 (B). Corresponding results for the
image processing approach are shown in (C,D). For 27 October, 2002, the GM method identifies 3 HDRs (A), while the image processing approach identifies 3 HDRs
(C). For 19 July, 2001, the GM method identifies 5 HDRs (B), while the image processing approach identifies 6 HDRs (D).
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COMPUTER VISION METHOD

Large scale TEC dynamics was analyzed by Dmitriev (2018) by
applying visual analysis to individual GIMs. This technique
allowed to consider detailed dynamics and provided insight into
corresponding physical processes. We advocate building upon such
visual approaches and develop ways for automated classification of
large-scale TEC features that will be applicable for large datasets.
Alternatively, the image processing library OpenCV for Python
together with edge-enhancing technique was applied to identify
HDRs in a selected GIM dataset with visual inspection. This is an
improvement upon our image classification approach
(Verkhoglyadova et al., 2021). First, for each TEC map,
represented by gridded TEC values, we round the float TEC values
to integer numbers and linearly scale the TEC values to numbers
between 0 and 255. The TEC map is thus converted to a gray-scale
image. Second, we apply the Laplacian operator often used to detect
edges in an image, to the gray-scale TEC image brightness over the 2D
map. Third, going back to the original TEC map, we neglect regions
with TEC values smaller than the half of the TEC global maximum
and regions with the Laplacian values greater than a threshold chosen
after visual testing of a variety of values for the limited number of TEC
maps, and then apply the Dilate, Erode, and medianBlur methods
from OpenCV. Finally, HDRs on the TEC map are identified and
counted by OpenCV’s connectedComponents operator. A minimum
absolute-value threshold for an “edge sharpness” in an image can be
applied in order to focus on regions with significantly higher TEC
than the surrounding area. Wide range of thresholds were tested and
classification results were qualitatively compared to find an optimal
value.We found out that our approach works successfully when there
are visually identified sharp edges to a TEC brightening. We are fairly
confident in selection of an HDR as relatively bright TEC region (by
the TEC magnitude) compared to neighboring regions. Since success
of the automated classification relies partially on sharpness of themain
features of a TEC map, visual inspection is necessary to correctly
identify HDRs. Figures 2C,D show examples of identifications of 3
and 6 HDRs on a latitude by longitude map, correspondingly.
Introducing an additional procedure of image sharpening allowed
to separate two EIAs and identify faint HDRs even if they are not well
separated. However, there is a bias in adapting this algorithm to
accommodate for visual perception. The identification results are not
evident for everyone but for an expert in ionospheric physics and
GIMs. Additional complication is encountered when neighboring
bright regions are not well separated.We suggest that development of
a quantitative criterion of a degree of separation based on statistical
properties of TECdistribution is necessary to determine efficiency and
applicability of the method.

DISCUSSION

The unexpected result of the study is a realization that different
approaches to GIM classification and TEC feature extraction
result in different HDR counts and provide different information,
each with their own utility for identifying large-scale structure.
The GM method is an advanced mixture method that identifies
TEC clusters as sub-populations in a GIM by assuming Gaussian

distribution of TEC within the clusters. Background TEC is also
selected as a separate cluster. GM is a robust method that utilizes
optimization tools to select the most common clustering result
and account for periodic boundaries. However, it does not always
identify visually bright structures inside an extended but less
bright structure as separate clusters. Instead, the image
classification approach allows for a threshold on TEC value to
select the most intense HDRs and ignore the background. The
results were validated by visual inspection. However, the latter
approach is biased towards sharpening edges of bright features in
a map and does not have a selection criterion based on strict
statistical properties of TEC distribution. Inter-comparison
between these two methods showed different clustering results
for several GIMs. Thus, the algorithm based on visual perception
of bright regions and the algorithm based on statistical properties
of TEC sub-populations in a GIM can produce different
outcomes. These results raise an important question of how to
robustly define HDRs in GIMs and calls for further investigation.
How physical is the definition of distinct HDRs and EIAs? Shall
we rely on strict statistics-based approaches or the ones tailored to
human eye? How to determine if bright TEC regions are well
separated? It is likely that a realistic view of global ionosphere
includes HDRs of varying density embedded into backgrounds of
varying density that change with solar cycle phases in long term
and eruptive solar events in short-term. Depending on the
purpose of specific studies, HDRs could be identified using a
universal criterion to allow for cross comparison among different
background TECs, or using different criteria to make the HDRs
outstanding in individual TEC maps. Sharp gradients between
different large-scale ionospheric features may not typically occur.
Addressing these questions and further research will provide
important insights into large -scale ionospheric structure and are
crucial for space weather forecast.
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