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A machine learning approach for analyzing data from the Mars Organic Molecule Analyzer
(MOMA) instrument has been developed in order to improve the accuracy and efficiency of
this analysis and serves as a case study for the use of machine learning tools for space
missions. MOMA is part of the science payload aboard the ExoMars rover, Rosalind
Franklin, currently planned to land on Mars in 2023. Most NASA robotic space missions
return only one thing: data. Remote planetary missions continue to produce more data as
mission ambitions and instrument capabilities grow, yet the investigations are still limited by
available bandwidth to transmit data back to Earth. To maximize the value of each bit,
instruments need to be highly selective about which data are prioritized for return to Earth,
as compression and transmission of the full data volume is often not feasible. The
fundamental goal is to enable the concept of science autonomy, where instruments
perform selected onboard science data analyses and then act upon those analyses
through self-adjustment and tuning of instrument parameters. In this paper, we discuss the
motivations, as well as related work on the use of machine learning for space missions. We
also present a first step toward this vision of science autonomy for space sciencemissions.
This proof-of-concept exercise for the MOMA instrument aims to develop tools, used on
Earth, to support Martian operations of the ExoMars mission. We also discuss the
challenges and limitations of this implementation, as well as lessons learned and
approaches that could be used for future space science missions.
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INTRODUCTION

A major focus of planetary and small body missions in our solar system is to search for life beyond
Earth using a variety of sensors and instruments. Planetary missions have been designed to study the
evolution of our solar system and help us understand processes that support habitability and
potentially life. These missions face many challenges, including having to withstand extreme
environments (e.g., temperatures and harsh radiation) and needing to transmit data great
distances back to Earth. For many missions, near Earth or in deep space, high resolution
instruments are capable of data acquisition rates that greatly exceed the available bandwidth.
Communication bandwidth is currently the main constraint on data-collection practices. As
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humanity ventures further into the solar system, data becomes
increasingly precious while scientific and technical challenges
grow. As an example, most current science operations on the
Curiosity Rover on Mars, the current state-of-the-art in planetary
operations, require manual data review and subsequent decision-
making using a ground-in-the-loop workflow, significantly
slowing mission activities and tasks. Such operations are not
compatible with more distant or extreme (e.g., temperature and
radiation) planetary destinations. Science Autonomy—the ability
for instruments to autonomously tune, operate, analyze, and
direct themselves to optimize science return—is necessary as
planetary missions begin to visit thesemore challenging locations.

Past missions to Venus, Mars, and Titan, as well as several
comets and asteroids, have demonstrated the tremendous
capabilities of robots for planetary exploration. One example
on Mars is the Autonomous Exploration for Gathering Increased
Science (AEGIS) system. AEGIS uses machine learning to select
sample locations for ChemCam on the Mars Science Laboratory
(MSL) based on interpretation of images (Estlin et al., 2014;
Francis et al., 2017). Science autonomy has the potential to be as
important as robotic autonomy (e.g., autonomously roving
terrain) for improving the science potential of these missions
because it directly optimizes the returned data. However,
on—board science data processing, interpretation, and
reaction, as well as prioritization of telemetry, adds new
challenges to mission design. As more sophisticated and
precise instruments are being developed, the resulting
increased data volumes necessitate advanced analysis
techniques, such as machine learning (ML), for the full
realization of science autonomy.

We first give an overview of some challenges for space
exploration missions, then introduce the science autonomy
concept, and finally describe a use-case when applied to a
mission to Mars. We present a first step toward this science
autonomy vision: a machine learning approach for analyzing
science data from the Mars Organic Molecule Analyzer
(MOMA) instrument, which is currently planned to land on
Mars within the ExoMars rover, Rosalind Franklin, in 2023.
MOMA is a dual-ionization source (laser desorption/
ionization and gas chromatograph/electron ionization) mass
spectrometer that will search for evidence of past and present
life on the Martian surface and subsurface through analysis of
solid samples (Goesmann et al., 2017; Li et al., 2017). In this
case study, we use data collected from the MOMA flight-like
engineering test unit (ETU) to develop mass-spectrometry-
focused ML techniques that can help scientists perform rapid
sample analysis and make optimized decisions regarding
subsequent operations. After having described the input
data and the overall ML pipeline, we will present first
results from the MOMA ML effort, as well as detail the
operational deployment and challenges.

Such data characterization and categorization efforts are the first
steps toward the longer-term full science autonomy objective → to
enable a spacecraft and its instruments to make real-time instrument
adjustments during operations, and even prioritize analyses, thus
optimizing the complex search for life in our solar system and beyond.

PLANETARY EXPLORATION MISSION
CHALLENGES—SCIENCE AUTONOMY
CONCEPT
Motivations and Challenges
Extraterrestrial science exploration missions feature key data
management challenges, in addition to well-known hardware
engineering and operational constraints. Some of these challenges
include:

Remote Destinations and Shorter at-Target Mission
Lifetimes Limit or Preclude Ground-in-the-Loop
Interactions:
Future exploratory missions will travel to more distant targets
and/or necessitate shorter lifetimes (e.g., missions on Venus’s
surface (Gilmore et al., 2020) may last only a few hours, and
missions to Europa’s surface are expected to be less than 30 days
(Hand et al., 2017). Indeed, the harsh environments these future
missions will face, particularly in the realm of extreme
temperatures, pressures, or radiation environments, greatly
limit how long the mission can be engineered to last. Current
successful surface operational models (e.g., Mars, the Moon) are
using ground-in-the-loop interactions for supervision and
planning to maximize science return, as they benefit from
short communication times with Earth, ample power, and/or
orbiting satellites as relays.

Remote Destinations and Extreme Environments
Present Communication Challenges
Many future missions are planned deeper in the Solar System
and/or in extreme environments, involving longer
communication delays and smaller data downlink capacities
(e.g., up to 25 min one-way light time for missions to Mars,
and up to 80 min to reach Saturn). Current mission operations
scenarios will not be practical for more distant destinations,
whose time-delay is long enough to miss critical science data
collection windows.

Remote Destinations Introduce Detection Challenges
As these spacecrafts will operate at greater distances from the
Earth, ground-in-the-loop interactions will be limited. Therefore,
scientists will be limited in their ability to guide spacecrafts’
instrumentation in detecting opportunistic features of interest.
When environments or locations of interest can be determined in
advance, pre-planned scripts can be used to automate targeting,
prioritizing science data analysis during real-time operations.
However, for many missions the location of specific features
of greatest scientific interest—for instance: meteorite impacts
(Daubar et al., 2013), lightning on Saturn (Fischer et al.,
2006), icy plumes emitted by Enceladus (Hansen et al., 2006),
etc.—cannot be predicted, and so the location and timing are
unknown.

Data Prioritization Process
Future instruments targeted for destinations beyond Mars (e.g.,
the Europa Clipper mission) will certainly generate more data
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than can be returned to Earth during the nominal mission. The
prioritization of data to transmit is vital for these distant
exploration missions to optimize mission science return.
Ideally, the instruments will run a prioritization process that
will, for instance, discriminate calibration data, data below
detection limits, and data with instrumental artifacts to
identify and preferentially transmit the most compelling data
without missing key scientific discoveries.

Related Work
Due to radiation shielding challenges, space missions already
suffer from limited computing power (e.g., Random Access
Memory (RAM), Central Processing Unit (CPU) limitations).
This is a serious concern when considering implementation of
advanced ML techniques. However, analytical techniques using
ML have previously been deployed in space and demonstrate the
possible balance between performance and computational needs.
For Earth-based investigations, EO-1 (Earth Observing-One
NASA spacecraft) was equipped with software to demonstrate
integrated autonomy technologies using the Autonomous
Sciencecraft Experiment (ASE) (Chien et al., 2005). This
experiment combined a planner (Continuous Activity
Scheduling Planning Execution and Replanning (CASPER))
and a Spacecraft Command Language (SCL) system to modify
spacecraft activities based on detections (Fischer et al., 2006). The
Mars Science Laboratory (MSL) can now autonomously detect
targets of interest based on established mission science priorities,
thanks to the Autonomous Exploration for Gathering Increased
Science (AEGIS) on the ChemCam instrument (Francis et al.,
2015). For the landing of Perseverance rover on Mars in February
2021, NASA used artificial intelligence to scan the site prior to
landing to select the optimum location for Perseverance to target
and safely land on Mars. Moreover, Perseverance is equipped
with scientific instruments (i.e., the Planetary Instrument for
X-ray Litochemistry (PIXL), Supercam) that use AI and ML
during martian operations. Further away, the first
investigations at Europa will be realized during flybys of the
Europa Clipper spacecraft, planned for launch in the mid-2020’s
to explore and characterize the habitability of this icy moon
(Bayer et al., 2019). Here, onboard detection techniques are under
development to enable thermal and compositional anomaly
detection, as well as characterization of plumes and icy matter
from the subsurface ocean (Wagstaff et al., 2019). Recent studies
using multivariate times series for in situ detection of interesting
events have been tested on the magnetosphere observations
collected by the Cassini spacecraft around Saturn (Daigavane
et al., 2020), and could be applied to the Plasma Instrument for
Magnetic Sounding (PIMS) on the Europa Clipper spacecraft
(Westlake et al., 2016). Machine learning and data analysis tools
undoubtedly offer great potential to enhance science exploration,
but are still in their infancy and can therefore benefit from a
comprehensive architecture and operational vision to achieve
their full potential.

Long-Term Goal: Science Autonomy
Recently, significant advancements have been made in the
development of autonomy for space missions within NASA’s

Planetary Science, Heliophysics, Astrophysics and Earth Science
divisions (NASA Science, 2018). The recommendations of the
2013–2022 NASA Planetary Decadal Survey (Committee on the
Planetary Science Decadal survey, 2011) emphasized the need for
mission autonomy development. Most of the recommended
developments focused on robotics autonomy. Yet, this last
planetary decadal survey did not specifically identify the
development of autonomy for science instruments. This
autonomy capability would enable quick analysis and
information extraction from collected data to focus on the
most promising measurements, as its own capability.

Here, we introduce the concept of science autonomy—the
ability for science instruments to autonomously tune, operate,
analyze, and direct themselves to optimize science return. During
real-time operations, the instrument will be able to 1) analyze the
collected data to perform self-calibration, 2) prioritize the data
downlink based on features detected within the data, 3) adjust
operational parameters and 4) make decisions on future
operations based on real-time scientific observations.

This science autonomy concept can be split in two categories:
instrument operational automation and data interpretational
automation. Operational automation will enhance the data
collection process by enabling decisions regarding the
instrument’s functionality and measurement protocols. This
process makes decisions such as selection of sample location,
assessment of sample science value, duration of experiments, and
selection of instrument analytical parameters; thus, greatly
improving the effective sampling rates for in situ missions.
Instrument automation actions will not only enable science
activities in locations where ground-to-space communication
scenarios are limited or impossible but will enhance the
science return when communication is possible.

The main goal of interpretational automation is to enable
data prioritization, and to only send back the most “valuable”
data to Earth. Currently, the data collected during missions
are processed and interpreted by science and engineering
teams on Earth. Not only does this process require
significant effort from multiple experts (brain power), but
it is a time-consuming task that affects mission operational
schedules. The reason for this is that data interpretation is
highly specialized. It requires unique expertise as the
interpretation is dependent on the instrument, the context
of the measurement, and can remain somewhat subjective.
While no onboard automation could replace the scientific
expertise needed for full analysis and interpretation of the
returned data, establishing some autonomous pre-processing,
including selection algorithms, is an achievable goal that will
lead to enhanced science return.

COMPUTER SCIENCE FOR EXOMARS
MISSION

Our proof-of-concept data processing technique is intended for
use on Earth to support Martian operations during the ExoMars
mission. The developed tools are based on data science and
machine learning techniques.
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ExoMars Mission and Mars Organic
Molecule Analyzer Instrument
In the past decades, various missions have been sent to Mars, and
while no evidence of life has been found, we know now that this
neighbor planet had all the necessary conditions to support life in
the distant past (liquid water, a thicker atmosphere, organic
material, and other critical nutrients) (Freissinet et al., 2015).
However, Mars lost its magnetic field early in its evolution, and
thus it has been under constant bombardment by cosmic
radiation for at least three billion years. Mars currently has a
thin atmosphere (pressure is ~1% of Earth’s) that is 96%CO2, and
there is evidence of abundant subsurface ice and possibly liquid
water. Studies suggest that if molecular evidence of life is to be
found, we should include sampling depth profiles to at least 2 m
to reach materials less damaged by radiation (Pavlov et al., 2014).

ExoMars (Exobiology onMars) is an astrobiology program led
by the European Space Agency (ESA) and the Russian Space
Agency (Roscosmos). The ExoMars goals (Goesmann et al., 2017)
are to search for signs of past and present life on Mars, investigate
the water and geochemical environmental variations, and
examine Martian atmospheric trace gases and their sources.
The 2022 ExoMars Rosalind Franklin rover will carry a drill
for martian subsurface sampling to a depth of up to 2 m, and a
suite of instruments for geochemistry research.

One of the primary instruments onboard the rover is the Mars
Organic Molecule Analyzer (Goesmann et al., 2017): an
instrument suite with a primary goal to detect and
characterize organic matter within the samples provided by
the rover drill and sampling system. The MOMA instrument
is centered around a linear ion trap mass spectrometer that is
interfaced to two “front-end” techniques: laser desorption/
ionization (LDI) and pyrolysis-gas chromatography (py-GC).
MOMA represents a notable advance in space mass
spectrometry as it is the first to utilize the LDI technique, and
the first to feature both tandem mass spectrometry (MS/MS) and
selective ion accumulation (SIA) using the stored waveform
inverse Fourier transform (SWIFT) technique. MS/MS
promises the capability to characterize and potentially identify
unknown species detected in a standard mass spectrum via
analysis of fragment ion masses. Selective ion accumulation is
accomplished through the application of a complex
multifrequency waveform generated with SWIFT, which allows
conversion of a frequency domain profile into a time domain
signal. SIA provides improved signal-to-noise ratio (S/N) and
limits of detection when analyzing complex samples by focusing
the trapping capacity on selected ions of interest.

During martian operations, MOMA will nominally first study
a sample using laser desorption mass spectrometry (LDMS)
mode, with data returned to Earth for science team analysis
and determination/confirmation of the operation to be
performed on the next sol (a Mars day) (Goesmann et al.,
2017). It will be possible to run further experiments on the
same sample, with optionally adjusted parameters (including
relocating the laser analysis spot on the sample, or running
SWIFT and/or MS/MS), move on to gas chromatography mass
spectrometry (GCMS) analysis (with its own options/

parameters), or to wait to examine a new sample delivered by
the rover’s sampling drill. This tactical science planning process is
technically challenging. Because of space missions’ operations
schedules, the team will have as little as 24 h to decide how to
further investigate a sample. Anything that could make the
analysis more efficient and effective would be beneficial.
Scientists need techniques that can quickly extract the
information of interest from new data to focus on the salient
features for interpretation and tactical planning. Machine
learning techniques that utilize the growing body of mass
spectrometry knowledge most pertinent to MOMA have the
potential to help this time-limited decision-making process
during operations, as well as to serve as a proof of concept for
inclusion in future instruments and mission designs
(Figures 1, 2)

Data Science and Machine Learning Brief
Overview
Today, AI is defined as a sub-discipline of computer science that
aims at imitating human intelligence. Machine learning is a
branch of AI based on the idea that systems can “learn” from
data, identify trends and patterns, and make decisions with
minimal human intervention. Machine learning can be defined

FIGURE 1 | ExoMars rover Rosalind Franklin developed by ESA hosting
a suite of analytical instruments dedicated to geochemistry research
(credit: ESA).
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as a method of data analysis that automates analytical model
building. The overall goal of ML is to build algorithms (through
iterative process) that receive input data, use statistical and
mathematical analysis to understand the data and fit that data
into models to predict an output. Based on the input data and the
task to solve, different types of ML exist. In this project we mainly
focus on two types of learning:

- Supervised: In supervised learning, algorithms are trained
using labeled data (meaning that input and output are known).
The algorithms are designed to learn by example to predict the
correct output from the input data. The algorithm learns by
comparing its results to the correct outputs and modifies the
model to minimize the error. The two main objectives are
predictive goal (make a prediction of the output label for a
new sample) and informative goal (help to understand the
relationship between input and output).

- Unsupervised: In unsupervised learning, the input data is not
labeled, so there are no known correct values of the target
variable. The main goal is to explore all the data and study
the intrinsic and the structure of the data to either cluster the
datasets in similar groups (clustering) or to simplify the datasets
(dimensionality reduction). The algorithms learn inherent
structure from the input data.

When starting an AI/ML project, a crucial first step is to
carefully define the goal such that it is realistic and achievable.
Based on the problem to solve and on the available data, the
questions, and the strategy to deploy will vary. Moreover, it is
essential, during the whole process, to maintain a close
collaboration between data scientists and the clients, i.e., end-

users of the tool or science experts in the field (in our case, mass
spectrometry experts). Here, we present the need for ML
processing in the analysis of future planetary science data. We
mainly focus on mass spectrometry data, but similar techniques
could be developed for other planetary science instruments’ data.

Machine Learning Development on MOMA
Data
The tools developed using MOMA test bed data is a proof-of-
concept aiming at supporting the scientists in their decision-
making process during martian operations.

Input Data: MOMA ETU and XINA Database
In this study, we used data collected from the MOMA ETU
(Engineering Test Unit) in operation at NASA’s Goddard Space
Flight Center. This flight-analog instrument has been a
workhorse that scientists and engineers used to characterize
instrument performance and analyze analog samples. During
the last several years, over 300 solid samples were tested on
the ETU and over 500,000 LDMS spectra were generated.
Although MOMA has a GCMS mode and an LDMS mode,
for this case study only LDMS data are being studied. In
LDMS mode, the laser fires on the surface of the solid sample,
desorbing and ionizing atomic and molecular species for mass
spectrometry measurements. The analysis of LDMS spectra is
notoriously complex and can be time-consuming, thus ML
approaches have the potential to supplement existing analysis
strategies, making analysis quicker and more accurate. As with

FIGURE2 | The different parts of MOMA instrument with the country contributing [United States (USA), France (F), Germany (D)] are illustrated. The sample carousel
(SC) is composed of 32 ovens (represented in yellow on the figure) for pyrolysis and derivatization. The refillable sample container (holding the sample for LDMS,
represented in light pink) and the sample carousel are not part of MOMA (credit: Max-Planck Institute, NASA).
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most ML projects, collecting a coherent, well-formatted and
complete dataset was the first challenge. The raw data
collected from ETU are mass spectra (x-units: m/z, y-units:
relative intensity) combined with several experimental
parameters.

MOMA maintains a detailed cloud-based database “XINA”
that captures every mass spectrum and associated metadata. The
metadata have been critical to implementing a working ML
model. Firstly, each mass spectrum in the database is
associated with a specific sample. However, many of the ETU
mass spectra were affiliated with engineering calibration,
mechanical checks, or performance tests, and as such are not
useful for Mars analog sample classification as their main goal
was engineering-oriented rather than science-oriented. Directly
admixing these spectra would strongly bias the results and render
useful ML impossible. Database queries select the useful science
data and eliminate potentially deceptive engineering test data.
Our end goal is to develop algorithms will learn from these data to
build generalizable models giving classifications -- or find novel
patterns -- in new data from Mars of direct use to scientists. This
project is structured in three main steps shown in Figure 3: data
pre-processing, filtering (using unsupervised algorithms), and
matching (using supervised training).

Customer-Also-Liked Interface Development
Data Preprocessing
Simple preprocessing “Goldilocks” algorithms, identifying mass
spectra with too little or too much signal that degraded spectral
quality, enabled removal of many scans. However, there were still
many less-pertinent spectra present in the input set from
engineering (e.g., mechanical, electrical) tests. We identified
and excluded these less-pertinent spectra using querying tools

on spectrum’s metadata. The selected spectra were then
transformed into unidimensional arrays by indexing data to
rounded, “integerized” (transformed into integers
corresponding to the nominal unit mass) values ranging from
1 to 2,000. Selected metadata was then appended to the end of the
array for use as ML input data. After completing these data
reductions on an original set of more than 500,000 spectra, the
pre-processing stage provided a dataset containing 40,000
relevant LDMS mass spectra in a standardized format for
further processing.

Filtering Stage
Despite the above-described cultivation, the pre-processed
dataset still contained many “misleading” (inapplicable)
spectra due to operational errors or test hardware
configurations of the ETU. The filtering stage removes these
spectra by applying unsupervised learning algorithms from the
Scikit-learn (sklearn) library, a ML library available in the Python
programming language (Pedregosa et al., 2012). These algorithms
have no prior knowledge of the data and simply separate the data
into several clusters based on patterns and similarities. Each
algorithm has a different pattern-matching method and
different input parameters to define the algorithm’s behavior.

An ideal algorithm would separate the applicable “science”
data into one set of clusters and the inapplicable data into another
set of clusters. To determine which algorithm came closest to this,
each algorithm was run against this pre-processed dataset over an
array of input parameters, resulting in a two-dimensional search
space. To find the optimal separation, two methods were used:
mathematical ML performance measures, such as the Davies-
Bouldin and Calinski indices, and scientist-based subjective
interpretations. These two indices capture both the separation

FIGURE 3 | Illustration of the 3-stage machine learning pipeline LDMS ETU data. These three steps are divided into: 1) a pre-processing stage where LDMS raw
input data are transformed into a ML-readable format; 2) a filtering stage using unsupervised ML algorithms aiming at clustering the data into different clusters based on
their patterns similarities; 3) a matching stage using supervised ML algorithms aiming at predicting the type of the samples studied (predictions are composed of
“category” label and “sample” label, discussed below).
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and the compactness of the clusters. Good clusters should be 1)
very compact themselves, and 2) well-spaced from each other. To
accomplish the second approach, a series of in-person workshops
allowed the MOMA mass spectrometer scientists and the data
scientists to sit side-by-side to study the different clustering
algorithm outputs, determining which algorithm(s) best
clustered the scans according to MOMA science goals.
Additional software was written to allow visualization and
comparison of the clustering algorithm output.

The most effective algorithms were determined through an
iterative process of workshops involving science team feedback
and continuously improved algorithm optimization. Figure 4
illustrates an example output from an algorithm configured to
group spectra into 10 clusters. The final output of the filtering
stage is a subset of the pre-processed dataset comprising the
clusters containing vetted “science” data to be used as a ML
training dataset. We will call this dataset the filtered dataset.

This second stage aims at filtering the most interesting data
(from a scientific view) from calibration data, noisy data, data
with no signal. By clustering similar data together, scientists will
be able to focus their attention on unknown and novel data after
having checked that the calibration was done correctly and that
the instrument was working nominally.

Matching Stage
In the third stage, supervised learning methods were developed
using the filtered dataset. Supervised learning starts with training
data that are tagged with the “correct answers” or “target values”

where those can be provided. Eachmass spectrum is labeled in the
database with the name of the sample that the laser targeted to
generate the spectra. The first order approach was to take new
mass spectra and find the closest mass spectra that the algorithm
has been trained to recognize. When a new spectrum is viewed,
the software provides a “Customers Also Liked . . . ” (CAL)
interface that surfaces samples from the database most similar
to the spectrum including the quality of the match (this is
analogous to what many web-based shopping sites provide to
their customers). The algorithm is then further trained on the
labelled dataset to identify categories as well as specific samples.
After having trained our algorithm, the final model, with a tuned
set of weights, would be able to predict answers for similar data
that have not already been tagged (i.e., new, and unknown
samples analyzed on Mars). New mass spectra fed into our
algorithm will return the predicted category, the best match
analog sample within the category, and the most similar
known scans, providing the scientists all the information about
the experiments that generated the known data (instrument
parameters and sample information). Several classic supervised
algorithms were applied to the tagged dataset. Logistic regression,
K-Nearest Neighbors (KNN), decision tree, random forest, Linear
Discriminant Analysis (LDA), and MultiLayer Perceptron (MLP)
classifier which gave the most accurate results on the input
training and testing sets. After this proof-of-concept and based
on the superior results from the MLP classifier (a simple neural
network (NN) algorithm), we developed customized neural
networks models to best fit the MOMA science goals using

FIGURE 4 | Examples of mass spectra (x-axis: m/z, y axis: relative intensity) from a six-cluster clustering algorithm (using agglomerative clustering method). Each
subplot represents several mass spectra that were clustered together. Some of these clusters are clearly identifiable. The first one (top left) represents mass spectra of
the calibration data. The bottom left one represents a mass-range selection experiment. Themiddle right one gathers highly noisy data. The goal of this first filtering phase
is to select the most “interesting” data that scientists will then focus on during their limited time between martian operations.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org April 2022 | Volume 9 | Article 8486697

Da Poian et al. Science Autonomy and Space Science

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


models of neural networks with Keras, an open-source neural
network library written in Python. The results of these algorithms
are presented below.

EXPERIMENTAL RESULTS AND
IMPLEMENTATION

Our streamlined mass spectrometry data processing tool aims
at providing two types of decisional information to the
scientists. The first, that has been demonstrated and
implemented with the methods mentioned in this paper, is
to determine if a given spectrum contains data that is similar
to other data in the existing dataset. This first step can be used
as a preliminary measure of potential scientific relevance and
interest. The second type of decisional information is
generated after additional training and expert evaluation
(currently underway), and will suggest how to tune the
instrument to fully analyze the sample’s contents. This will
help the scientists considerably during the time-limited
decision-making process dictated by the Mars surface
operations plan. Moreover, this tool could be deployed for
other types of spectral data analysis and could expand access
to streamlined ML techniques across scientific investigations.

Evaluation of machine learning Techniques
The performance evaluations of our pipeline used two methods:
mathematical ML performance measures (example of
performance metrics results used for the matching part are
listed in Table 1) and scientist-based subjective interpretations.
The different performance metrics we used to analyze the neural
networks results were:

- Accuracy, the count of predictions where the predicted value
equals the actual value (the closer to one the better);

- Log loss, the logistic loss measures the performance of a
classification model. The loss value mainly represents the
prediction error of the neural network, and the goal of the
ML model is to minimize this value (the closer to 0 the
better);

- Mean absolute error (MAE) is the sum of the “absolute
differences” between the predicted and the actual values (the
lower the better);

- Average precision score, the average of the precisions (the
precision measures how accurate your predictions are,
i.e., the percentage of your predictions that are correct)
(the closer to 0 the better).

Our preliminary efforts have leveraged collaborative
workshops between MOMA mass spectrometer experts and
data scientists to analyze different algorithm’s performance
using custom online visualization tools. The tool we entitled
(the) “Customer Also Liked” interface is presented in the
following subsection. Overall, these visualization tools enabled
the scientists 1) to compare several clustering algorithms and
identify the best one for the filtering stage, as well as for the
matching stage, 2) visualize most similar spectra to new,
unknown spectra and get label predictions to what the
analyzed spectra are the most likely to be.

Software Tools Developments
The goal of the matching stage is to identify the most similar
known scans to newmass spectra fed into the algorithm.With the
prediction of the best match (part of the training dataset),
scientists will have access to information about the
experiments that generated the known data, such as the
instrument settings and the sample information. All this
information is summarized in the “Customer Also Liked”
interface (Figure 5). The user selects a specific dataset (Test
ID, TID, rectangle 1) to study as well as specific scans (rectangle
2) and visualizes the generated scan on the top right of the
interface (rectangle 3). In the ML section (rectangle 4), the user
selects the NN model to use (two models are currently
implemented, model 0 and model 1 from the previous table).
For each scan, information about the predictions of the category
and the sample are shown on the right of the interface (rectangle
5) and the closest match to this selected known scan is shown
(rectangle 6). In the example below, scans 211 and 212 of the
dataset “8528-BakedHematite” are studied with the NN model 1.
The category prediction for the first scan is “Pure Mineral: 94.8%”
and the sample prediction is “Hematite: 100%”, both highlighted
in green. This information is shown for each scan in the interface.

The different tools on this interface aim to 1) show similar
spectra (closest match), and 2) give predictions on the category
(i.e., pure mineral in that case) and the sample (i.e., hematite here)
classes. Once the scientists get this information, they can go back
to the matching data and experiment journal/notes and take that
into consideration when deciding what they want to do next with
this sample from Mars.

For the longer-term goal of science autonomy, this process of
clustering and matching would occur onboard the spacecraft will
be followed by a decision regarding the next operations to run.
For instance, an autonomous instrument could adjust the
experiment settings based on decisions scientists previously
made when encountering similar spectra, rather than wait for
that decision to come from Earth.

Implementation for Future Missions
Future mission and instrument designs should consider the
potential benefit of autonomy techniques using AI (ML, data

TABLE 1 | Performance metrics used for two different NN models on category-
labeled and sample-labeled datasets.

Category Sample

Model 1 Model 2 Model 1 Model 2
Accuracy 0.91057 0.94948 0.89797 0.90929
LogLoss 0.84711 0.91482 0.86699 0.87602
MAE 3.08879 1.74477 3.52376 3.13277
Average PrecisionScore 0.089429 0.05051 0.10202 0.09070

The first model (model 1) is a simple 1-dimensional CNN (convolutional neural network).
The second model (model 2) is more complex with more layers implemented. This
summary of performance shows that model 2 has a better accuracy in both cases (label
being a category or being a sample), nevertheless it is important to do a trade-off
between accuracy, other performance, and computation time.
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science, etc.). For instance, the Dragonfly mission, a rotorcraft
exploring Titan, will be equipped with an instrument similar to
MOMA, the Dragonfly Mass Spectrometer (DraMS) (Lorenz
et al., 2018) and could greatly benefit from the tools developed
during this case study. Mission design stakeholders (engineers,
scientists, and mission planners) that choose to utilize AI also
need to consider if there are similarities to commercial
instruments to take advantage of vast training datasets
available, or if additional ground-based instances of flight-like
instruments are needed to enhance the data collection process
(such as our MOMA ETU). Secondly the mission and instrument
architecture need to be designed to support more powerful
processors (CPUs) to implement on-board ML. Achieving
breakthrough science in extreme environments will likely
require strategic instrument control and optimization,
necessitating advanced processing.

Not only does the mission and instrument design need to
accommodate the implementation of ML techniques, but the
calibration dataset must also be well defined from the beginning
of the mission concept to support the development of effective
and accurate algorithms, including “Discovery” detection.
Instrument scientists will have to establish a clear sample
acquisition strategy based on the science goals of their mission
and develop test campaigns with the proper balance of samples in
mind. During this project, the data science team had to
preprocess data multiple times and reorganize it to remove
bias from the large amount of calibration or other unsuitable
data. If ML needs are considered and accounted for early in the
instrument development cycle, scientists could collect data in a
concerted and comprehensive manner, simplifying data science
analysis and implementation.

The up-front organization and annotation of the MOMAETU
data made this focused project feasible. However, the actual set of
analog samples which have been tested are relatively small and
not optimal for direct application of ML approaches. Initial
understanding of the range of data expected and the broad
categories they would fit in (i.e., data type heterogeneity) is
recommended. Research is planned to identify the
characteristics of real-world samples that should be analyzed
to aid ML algorithms, and to not arbitrarily constrain the
planetary applicability of the sample set. Defining clusters and
categories in the field of mass spectrometry can be further
complicated due to both intrinsic data complexity and
subjectivity or bias of expert analysts, which introduces
uncertainty into the supervision process. We are investigating
ways to remove the subjectivity by employing larger numbers of
experts, standardizing expert assignment criteria, and through
additional unbiased computational methods.

LIMITATIONS AND CHALLENGES

Data Volumes
As is the case with any AI and ML application, large amounts of
data are essential to properly train and tune these powerful
techniques. During mission development, scientists use both
commercial instruments and flight instrument analog models
(such as the Engineering Test Unit, ETU). While all these analog
instruments collect spectral data, each instrument’s unique
tunable parameters can produce slightly different spectra for
identical samples. Moreover, flight spare models, which are
designed and built to reproduce the data most accurately from

FIGURE 5 | The “Customer Also Liked” (CAL) interface is the resulting software used by the scientists. It shows the information about the mass spectra under study
[name (rectangle 1), selected spectra (rectangle 2), and visualization of the mass spectra (rectangle 3)]. It also shows the outputs of the NN (selected model [rectangle 4),
predictions (rectangle 5)], as well as the closest mass spectra that was already in our dataset (rectangle 6). With this information, the scientists can make a first brief
analysis of the newly studied sample and potentially use previous operations in their decision-making process.
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the flight instrument, are often reserved for mission-critical
science activities and thus, the samples that can be tested are
very limited. Testing on analog instrumentation can also be
constrained due to limited project resources, logistics, sample
availability, requirements to stay within hardware operational
lifetimes, and complex or time-consuming sample loading and
analysis procedures. In the case of MOMA, the amount of data
collected with flight analog instruments (i.e., the ETU) is
insufficient for more comprehensive ML algorithm
development. It is therefore essential to develop methods to
appropriately expand our data volume in this and future
projects. Data augmentation is a challenging task, as we want
to be sure that the generated data will be representative of the
analytical mechanisms present and the instrumentation dictating
these mechanisms is quite complex.

Artificial Data Generation
The performance ofMLmodels (e.g., neural networks) depend on
the quantity and quality of the input data. When data is limited,
one approach is to use data augmentation techniques to generate
more data as input to theMLmodels. In short, data augmentation
aims to create new, representative, and consistent data by adding
slight modifications to the original dataset. Data augmentation is
widely used for image classification. Classic image based data
augmentation methods include: random rotation, re-scaling,
padding, vertical and horizontal flipping, translation (image is
moved along x,y direction), cropping, zooming, gray-scaling,
adding noise, changing contrast, color modification. Data

augmentation improves model prediction accuracy as it adds
more training data into the models, helps resolve class imbalance
issues, and reduces the costs of collecting and labeling more data.

In our case, data scarcity is the main reason to look at data
augmentation techniques. The different data augmentation
algorithms we developed are listed below:

- Average five real mass spectra from the same sample and the
same experimental set up (same test ID (TID)) (Figure 6).
o Input: five real mass spectra from the same sample and
same experiment.
o Output: 1 mass spectrum averaging these five inputs.

- Add Gaussian noise (Figure 7).
o Inputs: 1 mass spectrum, noise factor parameter.
o Output: 1 mass spectrum with added noise.

- Randomize intensity by adding or subtracting a percentage
of the intensity value.
o Inputs: 1 mass spectrum, intensity factor parameter.
o Output: 1 mass spectrum adding or subtracting a
percentage of the intensity based on the intensity
parameter (maximum value that can be added/removed).

- Shift all the peaks (of a maximum of 3 AMU) to the left or to
the right.
o Inputs: 1 mass spectrum, shift factor parameter.
o Output: 1 mass spectrum shifting to the left/right all the
peaks of the mass spectrum.

- Stretch the mass range (x-axis) of the real mass spectra
around the base peak (highest peak).

FIGURE 6 | Artificial mass spectrum (bottom right) created averaging five real mass spectra of the calibration sample CsI (cesium iodide sample). The five selected
mass spectra were chosen from the same run of experiments in order to have the same instrument’s parameters and sample’s conditions.
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o Inputs: 1 mass spectrum, stretch factor parameter.
o Output: 1 mass spectrum stretching the mass spectrum
around the highest peak (the peaks on the left of the base
peak will be shifted to the left and vice versa).

By increasing our input datasets using these augmentation
techniques, we hope to improve our models’ performance.We are
currently studying the impacts of combining real and artificial
data on our neural networks’ algorithms.

Transfer Learning Techniques
Another possible approach to face data volume challenges is
to apply “transfer learning” techniques. Transfer learning
leverages the knowledge acquired from algorithms
developed on large datasets to then tunes those algorithms
to adapt them to smaller datasets. In our planetary science
study case, we would be looking at leveraging the knowledge
gained from commercial instruments used on Earth to
develop algorithms for planetary science missions. For
example, commercial instruments (such as mass
spectrometers) and flight instruments spare models (e.g.,
ETU models) are instruments that collect chemical spectra
data and have many tunable parameters that can produce
slightly different results when studying the same sample.
Flight spare models are often reserved for mission-related
activities and thus commercial instruments are used to collect
large amounts of data from relevant samples (e.g., laboratory
simulants or Earth-based analogs). Using transfer learning
techniques, we will first use these larger commercial
instruments datasets to train ML models. Secondly, the
learned algorithms will then be tuned and adjusted for the
more limited flight instrument dataset ultimately benefiting
missions’ preparation and operations. This technique is
currently being studied and developed on the Sample
Analysis at Mars (SAM) datasets. SAM is one of the
instruments onboard the rover Curiosity on Mars since
2012. For this study case, we are using commercial GCMS
instruments used for years during the pre-mission
preparations, the SAM testbed at NASA Goddard Space
Flight Center, as well as the planetary data from the SAM

flight instrument on Mars. The results of this proof-of-
concept will be published in a following paper.

Technology Limitation
Outer solar system missions present technological challenges
along with operational ones. A spacecraft must survive the
vacuum of space as well as extreme temperatures changes,
preventing the use of common electronics components and
requiring advanced thermal management. Also, other harsh
environmental conditions, such as the high radiation (e.g., the
region around Jupiter) constantly bombarding the spacecraft, can
lead to interruption of data collection or downlink, data
corruption, and noisy data that will challenge the quality of
on-board analysis. All these issues severely constrain the type
of hardware and architectures that can be used onboard a
spacecraft (e.g., computing power is highly limited). While
NASA is working on improving processors for use in high
radiation environments, the current state of the art radiation
hardened processors are many orders of magnitude slower than
processors available for use on Earth. Any space-based algorithm
needs to be able to run using lower computing power. Some
hybrid designs have been successfully deployed where rad-hard
chips provide mission critical functions while faster, but less
hardened chips provide data processing functions. Algorithms on
these chips would need to be fault tolerant in the case of data
upsets or corruption. These environmental factors are being
considered during the development of the ML tools and
models. However, due to the nuances of each planetary target,
additional testing and operational verification will need to be
performed once the specific mission architecture is known.

ML Novelty and Trust Issues
Despite all the possible improvements and capabilities ML
techniques can offer for space science missions, deploying
onboard ML techniques is still considered novel and therefore
high-risk. All space agencies are (rightfully so) risk adverse and
require that any technology implemented for space use to be fully
tested, proven, and vetted. Future missions to distant and more
extreme targets will provide fewer opportunities to capture a
particular event or measure a sample, and while ML could

FIGURE 7 | Artificial mass spectrum (right) created by adding Gaussian noise on the real mass spectrum (left). Noise for mass spectrometry experiments can either
be from 1) the instrument’s noise or from 2) the chemistry noise. For ML training it is often useful to add noise to the input data to reduce overfitting (e.g., when the
algorithm is able to learn the training data too well).
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provide the flexibility to make such an observation possible, we
also need to ensure that it will not lead to false identifications or
incorrect conclusions. The reliability of ML techniques will need
to be demonstrated via well-established testing protocols before
being approved for deployment on future missions. Similar to the
“Technology Readiness Level” (TRL) used in engineering for
hardware maturity classification, an analogous “Trust Readiness
Level” system to assess the maturity level of technology using AI/
ML tools is proposed and currently being developed. Such a
system would utilize a similar structure to the current TRL system
where higher levels indicate further verification and validation of
the techniques operating under more realistic mission conditions
and constraints (i.e., algorithms running on real flight like
hardware, software operating autonomously end-to-end and
with time limits, and using and processing true unknown
data). Properly structuring this testing and making it realistic,
particularly in terms of the unknown data to be processed, will be
difficult but with vigorous analog studies using available
instrument test platforms we believe it will be possible to fully
vet and prove these systems are robust and ready for
implementation in future missions. The development of this
Trust Readiness Level scale is complex as it will not only
depend on the target of interest (i.e., Mars, Europa, Venus,
etc.), but also on the types of instruments [i.e., laser
desorption mass spectrometers, gas chromatography mass
spectrometers, Laser Induced Breakdown Spectroscopy (LIBS),
etc.]. This project using LDMS MOMA instrument will be a first
step to develop our Trust Readiness Level for LDMS instruments
aimed at Mars exploration.

CONCLUSION

In this paper, we introduce some challenges facing future space
exploration missions and we emphasize the need for developing
science autonomy tools. Upcoming missions, targeting Earth, other
planets, the Sun, or deep space, will need greater autonomy. Indeed,
by increasing quality science return and reducing the space-to-
ground interaction in decision making, more complex and
potentially illuminating data collection opportunities will be
possible. Our team is investigating data analytics and AI
technologies like ML to support onboard data analysis as input
for onboard decision-making systems that will generate plans/
updates/actions. Increasing the presence and capability of on-
board autonomy will redistribute the processes between space and
ground tomaximize the scientific value of data collected and returned
during these constrained missions.

We used MOMA ETU data to develop initial ML algorithms
and strategies as a proof of concept and to design software for
supporting intelligent operations for autonomous systems. First
results of this study show that 1) the preliminary categorization

achieved using the filtering stage could permit autonomous
operations such as prioritization of data to be sent to Earth
and 2) the prediction made using the matching stage could assist
the scientists in their decision-making process during space
operations. These initial results illustrate a path where on
board processes can make decisions about re-tuning
parameters specific for the studied sample, and therefore
enable first generation science autonomy. Full science
autonomy, which is our ultimate goal, will minimize ground-
to-space interactions and similarly maximize the science return
from future missions to challenging locations in our solar system
and beyond (Mitchell, 1997).
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GLOSSARY

AEGIS autonomous exploration for gathering increased science

AI artificial intelligence

ASE autonomous sciencecraft experiment

CAL customer also liked

CASPER continuous activity scheduling planning execution and
replanning

CPU central processing unit

DraMS Dragonfly Mass Spectrometer

EO-1 Earth observing-one

ESA european space agency

ETU engineering test unit

ExoMars exobiology on Mars

GCMS gas chromatography mass spectrometry

KNN K-Nearest Neighbors

LDA Linear Discriminant Analysis

LDI laser desorption/ionization

LDMS laser desorption mass spectrometry

LIBS laser induced breakdown spectroscopy

MAE mean absolute error

ML machine learning

MLP MultiLayer Perceptron

MOMA Mars organic molecule analyzer

MSL Mars science laboratory

MS/MS tandem mass spectrometry

NN neural network

PIMS plasma instrument for magnetic sounding

PIXL planetary instrument for X-ray litochemistry

py-GC pyrolysis-gas chromatography

RAM random access memory

SAM sample analysis at Mars

SCL spacecraft command language

SIA selective ion accumulation

sklearn Scikit-Learn

S/N signal-to-noise ratio

SWIFT stored waveform inverse Fourier transform

TID test ID

TRL Technology Readiness Level
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