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Geomagnetic disturbance forecasting is based on the identification of solar wind
structures and accurate determination of their magnetic field orientation. For
nowcasting activities, this is currently a tedious and manual process. Focusing on the
main driver of geomagnetic disturbances, the twisted internal magnetic field of
interplanetary coronal mass ejections (ICMEs), we explore a convolutional neural
network’s (CNN) ability to predict the embedded magnetic flux rope’s orientation once
it has been identified from in situ solar wind observations. Our work uses CNNs trained with
magnetic field vectors from analytical flux rope data. The simulated flux ropes span many
possible spacecraft trajectories and flux rope orientations. We train CNNs first with full
duration flux ropes and then again with partial duration flux ropes. The former provides us
with a baseline of how well CNNs can predict flux rope orientation while the latter provides
insights into real-time forecasting by exploring how accuracy is affected by percentage of
flux rope observed. The process of casting the physics problem as a machine learning
problem is discussed as well as the impacts of different factors on prediction accuracy
such as flux rope fluctuations and different neural network topologies. Finally, results from
evaluating the trained network against observed ICMEs from Wind during 1995–2015 are
presented.
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1 INTRODUCTION

Coronal mass ejections (CMEs) are one of many manifestations of our dynamic Sun. CMEs are
responsible for the transport of large quantities of solar mass into the interplanetary medium at very
high speeds and in various directions. CMEs are commonly referred to as interplanetary coronal
mass ejections (ICMEs) after leaving the solar atmosphere and reaching the interplanetary medium.
ICMEs are the main drivers of geomagnetic activity at Earth as well as at other planets and spacecraft
throughout the heliosphere (Baker and Lanzerotti, 2008; Kilpua et al., 2017a). In situ observations of
ICMEs frequently find them to have a combination of an increase in magnetic field strength, low
proton plasma temperature, βplasma below 1, and monotonic rotation of the magnetic field
components (Burlaga, 1988). These characteristics are commonly referred to as a Magnetic
Cloud (MC) (Burlaga et al., 1981; Klein and Burlaga, 1982). CME eruption theories (Vourlidas,
2014) suggest that a twisting internal magnetic signature—referred to as a flux rope—is always
present. While commonly observed, not all ICMEs show the signatures of an internal structure
characterized by a flux rope, perhaps resulting from changes during interplanetary evolution (Jian
et al., 2006; Manchester et al., 2017). Yet, flux ropes are sufficiently prevalent that they can aid in
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space weather forecasting. The observed magnetic field profile
depends on a flux rope’s orientation and where the spacecraft
traverses the structure. The latitudinal and longitudinal
deflections of CMEs happen in the lower corona and are not
expected to change greatly throughout the interplanetary
medium. If flux rope orientation and the spacecraft’s crossing
trajectory can be determined early enough, this can lead to
advanced forecasting as the remaining portion of the flux
rope’s magnetic field structure can be inferred from physics-
based models. The flux rope’s internal magnetic field structure is
prone to couple with Earth’s upper magnetosphere triggering
magnetic reconnection processes and allowing the injection of
solar magnetic energy into the magnetospheric system.
Orientation determines the magnetic field profile observed at
Earth and, thus, the geo-effectiveness of the flux rope making
early determination of a flux rope’s orientation a vital requisite for
space weather forecasting. Amajor challenge to developing such a
forecasting system is that information about the internal
magnetic structure of ICMEs is often limited to 1D
observations of a single spacecraft crossing the structure. This
leaves a considerable amount of uncertainty about the three-
dimensional structure of the ICME.

Various physics-based flux rope models exist [for example,
Lepping et al. (1990) and Nieves-Chinchilla et al. (2019)] that can
be used to reconstruct the internal ICME magnetic configuration
and provide information on orientation, geometry, and other
magnetic parameters such as the central magnetic field. Recent in
situ observations (Kilpua et al., 2017b; Nieves-Chinchilla et al.,
2018; Nieves-Chinchilla et al., 2019; Rodríguez-García et al.,
2021), and references therein] are continuing to complement
earlier studies (Gosling et al., 1973; Burlaga et al., 1981; Klein and
Burlaga, 1982) and enhance our understanding of ICMEs, MCs,
and flux ropes. Meanwhile, an increase of space- and ground-
based data availability has led to more interest in applications of
machine learning within the space weather community [see
(Camporeale, 2019), and references therein]. Nguyen et al.
(2018) have explored machine learning techniques for
automated identification of ICMEs and dos Santos et al.
(2020) used a deep neural network to create a binary classifier
for flux ropes in the solar wind, determining whether a flux rope
was or was not present in a given interval. Recently, Reiss et al.
(2021) use machine learning to predict the minimum Bz value as
a magnetic cloud was sweeping past a spacecraft.

We aim to assess a neural network’s ability to predict a flux
rope’s orientation after an ICME is identified. This work is an
attempt to understand if a neural network can predict a flux
rope’s orientation having only seen a portion of the event. If the
full magnetic field profile of the flux rope can reliably be
reconstructed when the spacecraft is only partially through the
flux rope this can provide advanced warning of impending
geomagnetic disturbance. Yet, as machine learning is relatively
new to space weather, the accuracy of these forecasts, and more
generally, which neural network topologies to utilize, are unclear.
We begin with a set of exploratory experiments to quantify the
capabilities of neural networks in this regard. The results of these
experiments then serve as a baseline to begin exploring
forecasting.

Here, we extend the binary classifier work of dos Santos
et al. (2020) and explore a neural network’s ability to predict
the orientation, impact parameter, and chirality of an
already identified flux rope. We extend the capabilities
presented in Reiss et al. (2021) by reconstructing the
entire three dimensional magnetic field profile. The neural
network is trained using simulated magnetic field
measurements over a range of spacecraft trajectories and
flux rope orientations. Moreover, we report on the prediction
accuracy of the neural network as a function of percentage of
flux rope observed. To connect this proof of concept to its
potential for real-world use, we also present results from
evaluating the neural network on flux ropes observed by the
Wind spacecraft. In performing these experiments, we
highlight the multiple ways in which this space weather
forecasting problem can be cast as a machine learning
application and the implications those choices have on
prediction accuracy.

In Section 2we present our methodology.We describe the flux
rope analytical model and the generation of our synthetic data set.
Section 2 also details our neural network designs and training
process. Section 3 presents our results first from the full duration
synthetic flux ropes, then from partial duration flux ropes, and
ultimately from application to flux ropes observed from theWind
spacecraft. We present a discussion of these results in section 4
along with concluding remarks.

2 METHODOLOGY

The task of predicting a flux rope’s key defining parameters from
magnetic field measurements can be cast as a supervised machine
learning problem. This is an approach in which the goal is to learn
a function that maps an input to an output based on numerous
input-output pairs. There are currently not enough in situ
observed flux ropes (inputs) with known key parameters
(outputs) to train a neural network. Instead, we choose to use
a physics-based flux rope model to produce a synthetic training
dataset.

2.1 Synthetic Data
The circular-cylindrical flux rope model of Nieves-Chinchilla
et al. (2016) (N-C model) is used to simulate the magnetic field
signature of flux ropes at numerous orientations and spacecraft
trajectories. The N-C model takes as input the following
parameters:

H, Chirality of the flux rope; right-handedness is designated
with 1, left-handedness with -1
Y0, Impact parameter; The perpendicular distance from the
center of the flux rope to the crossing of the spacecraft
expressed as a percentage of the flux rope’s radius
ϕ, Longitude orientation angle of the flux rope
θ, Latitude orientation angle of the flux rope
R, Radius of flux rope
Vsw, Bulk velocity of the solar wind
C10, A measure of the force free structure. A value of 1
indicates a force free flux rope
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The output of the N-C model is the magnetic field profile (Bx,
By, Bz components) that would be observed for spacecraft
traversing a flux rope with the given input parameters. An
illustration of this is shown in Figure 1 where panel (i) shows
the N-C model output visualized as a time series and panel (ii)
depicts the same output as hodograms. All flux ropes were
simulated using a solar wind speed (Vsw) of 450 km/s, a radius
(R) of 0.07AU, and with poloidal normalization. The C10

parameter was held constant at 1, which imposes a force free
structure. The model was run for all combinations of longitude
(ϕ) ∈ [5°, 355°], latitude (θ) ∈ [ − 85°, 85°], and impact parameter
(Y0) ∈ [0%, 95%]. This is done in 5° and 5% increments and with
both chirality options, H ∈ { − 1, 1}. We exclude combinations
involving ϕ = 180° as the model is not always defined in this
instance. This results in 98,000 combinations.

The fixed bulk velocity of 450 km/s and fixed radius of 0.07AU
describe a “typical” flux rope observed at Earth based on fittings
in Nieves-Chinchilla et al. (2019). Magnetic field profiles of this
“typical” flux rope have been shown (dos Santos et al., 2020) to
scale with changes in speed and size. In other words, magnetic
field profiles are very similar when orientation is held constant
and speed and radius are varied. The only variation in the profiles

is duration, which is not a factor for us as all flux ropes are
interpolated to 50 points. This relationship allows us to only
simulate a subset of all possible speeds and sizes drastically
reducing the training data set size and minimizing training time.

The output from each of these 98, 000 combinations is then
used to generate 10 exemplars of this event in different percentages
of completion - from 10 to 100% in steps of 10%. For example, first
a 50-point trace through a flux rope defined by the parameter
combination is generated (100% completion, Figure 1(i)). The first
5 points are interpolated to 50 points to create the 10% completion
exemplar. Similarly the first 10 points are used to create the 20%
exemplar, the first 15 points for the 30% exemplar, etc. The final
dataset contains 980, 000 exemplars - amixture of full duration and
partially observed events. These simulated partial flux ropes are
useful to understand how much of the flux rope needs to be
observed before reliable autonomous predictions can bemade. The
ability to predict in the absence of the complete flux rope is very
desirable in the context of space weather forecasting.

2.2 Convolutional Neural Networks
Simply put, a convolution is the application of a filter to an input
that results in an activation. Repeatedly applying the same filter to

FIGURE 1 | A synthetic flux rope example generated using ϕ = 45, θ = 45, Y0 = 0, and H = + 1. (i) The total magnetic field and the magnetic field components. (ii)
Three hodograms of the magnetic field components. The dot represents the starting point of the simulated flux rope crossing. Flux rope classification with 2D CNNs
require three images, which can (iii) be combined for a single set of convolutions or (ii) have convolutions applied separately.
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an input–for example, by sliding a small dimensional filter across
an image - results in a map of activations called a feature map.
The feature map then indicates the locations and strength of a
detected feature in the input. Convolutions are the major building
blocks of convolutional neural networks (CNNs) (LeCun and
Bengio, 1995), which use a training dataset to learn a set of highly
specific filters from the input that lead to themost accurate output
predictions. The innovation of the CNN is in not having to
handcraft the filters, but rather automatically learning the optimal
set of filters during the training process.

The CNN is the basis of the neural network architectures
explored in this work. The training phase consists of showing the
network the input-output pairs of simulated flux rope magnetic field
vectors (input) and the corresponding key parameters used to create
this simulated data trace (output). The key parameters represented
in this training are ϕ, θ, Y0, andH. From repeated exposure to input-
output pairs the network learns the filters that lead to the most
optimal predictions. These neural networks require all inputs to be of
the same size, which does not pose a problem when working with
synthetic data. In situ observations from spacecraft, however, reveal a
diverse set of events ranging from a few hours to multiple days.
These need to be thoughtfully processed for use as input to the CNN.
One could average or interpolate in situ events to ensure all input
magnetic field time series are of the same length. Alternatively, dos
Santos et al. (2020) showed an innovative technique of representing
flux ropes as hodograms. Flux ropes of any duration can be cast as a
set of three consistently sized images (see Figure 1(ii)), which can
then serve as input to a CNN. This technique also leverages a wide
swath of existing literature in the computer vision field (particularly
in the area of handwritten digit classification) that can be helpful in
fine-tuning the CNN architecture. Over the next several sections, we
present a series of experiments evaluating multiple CNN
architectures. Specifically, we compare the predictions from
convolutions applied directly to magnetic field time series to
predictions made from convolutions applied to hodograms of
those magnetic field time series. We do so under two scenarios.
First, we develop a baseline for a CNN’s capability to predict flux
rope orientation by training the architectures with only the 98,000
exemplars of full duration flux ropes. We separately train another
copy of each of the three aforementioned architectures with the
complete set of 980,000 full and partial duration flux ropes to assess
CNN usage in a time-predictive capacity.

2.2.1 CNN Architectures
Representing flux ropes as hodograms was inspired by work in
handwritten digit classification (dos Santos et al., 2020). Yet, flux
ropes provide a more challenging version of this computer vision
problem. The input for handwritten digit classification is always a
single image; however, flux ropes require a set of three images
(hodograms) to capture the entirety of their magnetic field
configurations. An initial research question is then how to feed
three hodograms as input to a CNN. In the approach chosen for
our first architecture, we stack the images (Figure 1(iii)) and do a
single two-dimensional convolution across the resulting tensor. In
our second tested architecture, we apply two-dimensional
convolutions to each of the three hodograms separately
(Figure 1(ii)) and then concatenate the resulting feature maps.

The architecture schematic for the stacked approach is shown in
Figure 2(i). An input layer of dimension [100, 100, 3] passes through
two rounds of 2DConvolution with a 3 × 3 kernel size. The resulting
layer of dimension [100, 100, 64] undergoes a 2 × 2 Max Pooling to
transform to dimensions [50, 50, 64]. This layer is then Flattened and
Fully Connected to each of four output layers. This 2D CNN with
one input ends up with 979,398 trainable parameters.

The architecture for applying two-dimensional convolutions
to each of the three hodograms separately and then concatenating
the resulting feature maps is shown in Figure 2(ii). Each prong of
the initial part of this network involves the same transformations
as in the previously described network, with the exception that
each of the three input layers is of dimension [100, 100, 1].
Additionally, the Flattened layers at the end of these individual
pipelines are then concatenated before being Fully Connected to
the four output layers. This architecture has the advantage that
salient features in specific hodograms can become more apparent
in the feature maps. Yet, this comes at the cost of a more complex
neural network. With 2,936,454 trainable parameters, this CNN
has significantly more weights that need training.

Finally, we tested an architecture that did not rely on hodogram
images. Instead we apply 1D convolutions directly to magnetic field
time series. This approach is depicted in Figure 2(iii) and results in
the smallest CNNwith 216,518 trainable parameters. The input layer
of size [1, 50, 3] has a 1DConvolutionwith kernel size 5 applied twice,
resulting in a layer of dimension [1, 50, 64]. Max Pooling with a
kernel size 2 then creates a layer of dimension [1, 25, 64] before this is
flattened to a vector of size 1,600. This layer is then Fully Connected
to a layer of size 128 and then to each of the four output layers.

Hyperparameters for all of these architectures were found by
doing a simple grid search. Our focus was on comparison of
architectures and we acknowledge there may still be room for
hyperparameter optimization.

2.2.2 CNN Tuning and Training
Neural networks learn byminimizing a loss function, which typically
involves some measure of difference between current predictions
and expected outputs. Angles can challenge neural network
predictions in that loss functions, such as mean squared error
(MSE), completely miss the circular nature of angles. For
example, if a flux rope’s longitudinal value is 0°, then predictions
of 350° and 10° are both off by 10°. Yet, MSE will miss this relation
and penalizes the 350° prediction more than the 10° prediction. To
combat this, we predict (sin(;), cos (;)) with tanh activation to
enforce outputs to be in [ − 1, +1]. We then post-process the CNN’s
predictions with arctan to convert to degrees. This approach is
applied across all three CNN architectures when predicting ϕ and θ.

A challenge also arises in that predicting the real-valued
parameters ϕ, θ, and Y0 is a regression problem while
determining the binary parameter, H, is a classification problem.
We address this by training four separate loss functions in each
CNN. For ϕ and θ we predict the pair (sin(;), cos(;)) and train
using the MSE loss function. Impact parameter is also trained using
MSE while chirality is defined as a two class classification problem
and trained using binary cross entropy.

In our first experiment, the 98,000 full duration synthetic flux
ropes were randomly divided into 60% training, 20% validation,
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and 20% testing sets. This resulted in 58, 800 synthetic flux ropes
used for training, 19,600 used for validation, and 19, 600 used for
testing. The training set was used in a supervised learning fashion
with the Adam optimizer (Kingma et al., 2015) with the validation
set used during the training process to avoid overfitting. All
networks were set to train over 500 epochs, but the 2D CNNs
had early stopping from criteria on the validation set at around 35
to 50 epochs. The 1D CNN had a training time of 12min and both
the one input and three input 2D CNNs had training times
approaching 4–6 h.

The setup of the second experiment, in whichwe train over all full
and partial flux ropes, was similar. A 60/20/20 split was used, with
validation criteria used for early stopping and evaluation on the
testing set. Again, the 1D CNN trained over all 500 epochs while the

2D networks reached early stopping within 50 epochs. The 1DCNN
took just over 2 h to train, while the 2D CNNs completed in 6–10 h.
It should be noted that all percentages of a particular flux rope
configuration were included in an input batch. Also, an important
consideration in this scenario is that the networks will be seeing
multiple inputs that share the same output. All neural networks were
constructed, trained, and tested using Python 3.8.10, Keras 2.4.3
(Chollet, 2015), TensorFlow 2.3.1 (Abadi et al., 2015), Numpy 1.18.5
(Harris et al., 2020), and Scipy 1.7.1 (Virtanen et al., 2020).

2.3 Wind Spacecraft
The final segment of this work is to evaluate the trained CNNs on flux
ropes observed by the Wind spacecraft. This application of the CNNs
on non-synthetic data helps us understand the limitations of the flux

FIGURE 2 | CNN architecture schematics. (i) 2D CNN with one input which uses stacked hodograms; (ii) 2D CNN with three inputs, which performs individual
convolutions over each of the three hodograms, and (iii) CNN architecture for 1D convolutions over time series.
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rope analytical model and the transition to actual space weather
forecasting. Nieves-Chinchilla et al. (2018) carried out a
comprehensive study of the internal magnetic field configurations of
ICMEs observed by Wind at 1AU in the period 1995-2015. In this
analysis, the termmagnetic obstacle (MO) is adopted as amore general
term than magnetic cloud in describing the magnetic structure
embedded in an ICME. The authors used the Magnetic Field
Instrument (MFI) (Lepping et al., 1995) and Solar Wind
Experiment (SWE) (Ogilvie et al., 1995) to manually set the
boundaries of the MO through visual inspection. All MO events
were sorted into three broad categories based on the magnetic field
rotation pattern: events without evident rotation (E), those with single
magnetic field rotation (F), and those with more than one magnetic
field rotation (Cx). More recently, Nieves-Chinchilla et al. (2019)
presented an in-depth classification, which further classified the F
types events into F-, Fr, and F+ based on the angular span of the
magnetic field rotation. These events were then manually fit with the
Circular-Cylindrical N-C model by a human expert. Of the events
cataloged and fit, those that were classified as the Fr type tended to be
the ones that could best be fit with the N-C model. Because we
restricted out training set of synthetic data to flux rope cases with aY0>
0, we also restrict ourWind test event cases to this criteria. We use this
subset of 75 Wind Fr type events to evaluate our neural network
predictions on actual flux rope observations. We compare the human-

fit key parameters to the neural network predictions. While we have
high confidence in the human expert’s fit values, we acknowledge that
they are not definitive. Other experts may parameterize the event
slightly differently. Instead of using the human expert as ground-truth,
we are interested in seeing if a neural network, trained on the same
physical model that the human expert used, will arrive at similar flux
ropeorientations. The average correlation coefficient is used to compare
human and neural network fits to the Wind magnetic field profiles.

As noted earlier, the 1D CNN is configured to input vectors of
size 50 and trained on normalized synthetic data, requiring some
pre-processing for use with real-event data. We begin with the 1-
min resolution MFI data for each the 75 Wind events and apply a
5-point moving average smoothing followed by interpolation to
50 points evenly spaced in time.

3 RESULTS

3.1 Full Duration Synthetic Flux Ropes
Results of applying the neural networks trained on full duration
flux ropes to the testing set of full duration flux ropes are shown in
Figure 3. The ϕ, θ, and Y0 panels display histograms of the
difference between the neural network’s predictions and the true
values used to create the simulated instance for longitude,

FIGURE 3 | The parameter prediction error for the synthetic test set of full duration flux rope crossings. The first three columns show histograms of the differences
between predicted and modeled ϕ, θ, and Y0 values. The last column displays the number of correct and incorrect chirality predictions. The 1D CNN predicted all angles
within 10°, all Y0 within 10% and achieved 100% accuracy for H. While the 2D CNNs perform this well in most cases, they exhibit a much wider range in error.
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latitude, and impact parameter, respectively. The H panel shows
the number of correct and incorrect chirality predictions.
Subsequent figures use the same color scheme (2D CNN with
1 input in orange, 2D CNN with 3 inputs in green, and 1D CNN
in purple) for clarity. Table 1 lists the median values of these
difference distributions. The 2D CNNwith a single input channel
has the highest median difference across all three of the real-
valued key parameters, as well as the most skewness. The 1D
CNN shows the least skewness and the lowest median difference
values across the parameters. The 2D CNN with three inputs falls
in between, but with median difference and skewness more
similar to the other 2D network than the 1D. A similar trend
is seen in the H predictions, with the one input 2D network
having the most incorrect classifications and the 1D network
making no incorrect classifications. Taken together, it is evident
that the 1DCNN, which is applied to the time series directly, gives
more accurate predictions across all four output parameters.

While the 1D CNN gives the most accurate predictions, all
three architectures give reasonably useful predictions for the vast
majority of cases. The bulk of the prediction errors are less than
15° for ϕ and θ and under 10% for Y0 for both of the 2D CNNs.
Figure 4 illustrates the prediction errors as a function of Y0. The
2D CNNs using hodograms as input have the most significant ϕ
and θ prediction errors, which occur at large Y0. In contrast, the
1D CNNmore accurately predicts ϕ and θ over the entire range of
simulated Y0. Clearly, the architecture of the neural network plays
a role in prediction accuracy and leads to an important trade off.
The two-dimensional networks, by using hodogram input,
remove time from the training process. This makes little
difference with the synthetic training data but is an advantage
when working with data from time-varying, real ICME events, as
the data can be used with less manipulation in pre-processing.
Yet, this comes at the cost of less accurate predictions at large
spacecraft impact parameters (Y0). The trade off is that the
simpler and more accurate 1D network comes with the added
complexity of determining the most appropriate data
transformations to fit the measured time-series to the
prescribed input array dimensions of the network.

Our CNNs were each designed with four loss functions and
our analysis up to this point has looked at each predicted
parameter individually. We now turn our attention to
evaluating the predictions as a set. To do so, we use the
predicted ϕ, θ, Y0, and H to reconstruct the magnetic field

TABLE 1 | Median of the parameter differences shown in Figure 3.

Median difference

CNN 2D (1) 2D (3) 1D

ϕ(°) 3.65 2.67 0.54
θ(°) 1.86 1.31 0.37
Y0 (%) 2.13 1.93 0.34

FIGURE 4 | Latitude and longitude predictions vs. true values as a function of spacecraft impact parameter when evaluated on synthetic data test set. The 1D CNN
performs similarly well across the entire range of Y0 while the 2D CNNs show a larger discrepancy in parameter predictions at high impact parameters of Y0 > 80%.
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time series with the analytical model and correlate it with the
simulated magnetic field used as input for the CNN. For analysis,
we use the average correlation coefficient, r, defined as:

r � rx + ry + rz
3

(1)

where rx is the Pearson’s correlation between the simulated and
reconstructed bx components, ry is the Pearson’s correlation
between the simulated and reconstructed by components, and
rz is the Pearson’s correlation between the simulated and
reconstructed bz components.

Figure 5 shows the average correlation values for each of the
three CNN architectures. While the bulk of the simulated data
predicted by the 2D CNNs have high average correlation, over
0.75, there is a long tail of predictions with much lower
correlation. The single input 2D CNN even makes some
predictions that lead to negative correlations. As in the
individual key parameters, we see the 1D CNN applied to the
time series outperforming the 2D CNNs. In the case of the 1D
CNN, we find only one correlation value below 0.75. Further
analysis reveals that this event occurred at a simulated ϕ value of
175°. The 1D neural network predicted a ϕ value of 181°.
Although the neural network predictions were fairly accurate
(within 5°, 5%, and correct H), this small deviation in ϕ changed
the spacecraft’s trajectory through the flux rope leading to a
negative correlation in the bz component. Because the 2D CNNs
are impacted by their difficulties making predictions at large
spacecraft impact parameters, we see many of the poor average
correlation coefficients in the 2D CNNs at large spacecraft impact
parameters.

3.2 Partial Duration Synthetic Flux Ropes
In our second experiment, we retrained a second version of each
of the three neural networks, this time using the full set of 980,000
full and partial duration flux ropes. Like the difference
comparisons shown in Figure 3 and Table 1, Table 2
provides summary statistics of ϕ, θ, and Y0 prediction error as
a function of percentage of flux rope observed. All three models
make fairly accurate predictions even when seeing just 10% of the
flux rope and then continue to improve their prediction accuracy

up to a point. After this point, the key parameter accuracy gets
worse as higher percentages of the flux ropes are fed to the
networks. The level of observation giving the lowest median
errors for each CNN is highlighted in yellow, with the next
lowest medians highlighted in green. Additionally, all three
models were able to predict the correct H over 99% of the
time at all percentages of flux rope observed.

It is worth noting that all three networks perform worse at
100% duration when trained with partial duration flux ropes as
compared to these same networks trained only with full duration
flux ropes. The introduction of partial flux ropes into the training
produces more error (see Table 1 and Table 2). We suspect this is
due tomultiple inputs now producing the same output. It remains
for future research to conduct a more in depth analysis into how
to combat this.

As with the networks trained only with full duration flux
ropes, the 1D CNN gives better predictions across all parameters.
We see a familiar pattern emerge in the 2D CNNs; they have
difficulty predicting spacecraft impact parameter and more often
predict chirality incorrectly. This in turn leads to greater
inaccuracies in ϕ and θ predictions. Given that the 1D CNN
out performed the 2D CNNs in both training experiments, we
focus only on the 1D architecture when evaluating network
performance on actual spacecraft measurements.

3.3 Application to Wind Catalog Flux Ropes
To assess the transfer-ability of this technique to real-time use,
we applied the 1D CNN trained on full duration flux ropes to
the 75 selected Wind events described in Section 2.3 with the
data processed in two ways. The first approach, which we label
Full Resolution, is where we simply use the window smoothing
before interpolating the event down to 50 points. The second
approach, called Downsampled, first applies 15 min averaging
before smoothing and interpolation. The idea being that the
Downsampled approach would further reduce fluctuations
found inside Wind flux ropes. Comparing Full Resolution
and Downsampled would help us isolate the impacts of
fluctuations. The difference histograms in Figure 6 show
the result of comparing the fit parameters from Nieves-
Chinchilla et al. (2019) (N-C) with the neural network

FIGURE 5 | Correlation coefficient histograms on full duration, synthetic data test set for each neural network architecture. Each set of parameters {ϕ, θ, Y0, H}
model a spacecraft’s traversal of a flux rope. In these comparisons, the magnetic field tracemodeled by the predicted parameters is correlated with the trace modeled by
true parameters. Again, we see that all three architectures predict highly correlated results in the vast majority of cases but with the 2D CNNs exhibiting a significantly
wider distribution.
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predicted parameters. We note that our neural network was
trained with force free synthetic flux ropes (C10 parameter
equal to 1). The N-C fittings allowed for deviations from a
force free flux rope. This difference likely played a role in the
discrepancies between neural network predictions and the
human expert’s fits.

Most ϕ predictions were within 50° of the hand-fit value but
the maximum error was over 150°. The θ errors tend to be less
than 25° with a maximum around 80°. Most Y0 predictions are
within 30% of the comparison values with a maximum near 80%.
Across all these real-valued key parameters, the predictions made
from the Downsampled input display a less skewed error
distribution with a higher percentage of the predictions having
relatively small error. The network produced similar results
predicting chriality (H) when fed with Full Resolution and
Downsampled input.

We extend this comparison with analysis of average
correlation coefficient. We display correlation between the
interpolated Wind observations and the magnetic field
vectors generated using the N-C fit parameters as well as

the correlation between interpolated Wind observations and
magnetic field vectors generated from neural network
predictions. Figure 7 column 1 shows the distribution of
average correlation between the human-fit model and Wind
data. Column 2 is the distribution of average correlation
between the CNN fit and Wind data. Displayed in column
3 is the difference histogram showing the neural network
correlation minus the hand-fit correlation for each of the
Wind flux rope events. Positive values indicate the neural
network produced a statistically more reliable fit. Panel 7(i)
shows these distributions for all of the 75 events. Panel 7(ii)
shows the distributions when we consider only the events in
which the CNN predicted the same chirality as the human-fit.
We see good agreement in average correlation coefficients
when the predictions are used to reconstruct the magnetic
field time series. The shape of the distributions are similar to
those from the comparison with human expert fits and an
event by event comparison with human expert fits leads to a
difference histogram nearly centered at zero. When we look
at the Downsampled neural network predictions with

TABLE 2 | Median parameter differences by percentage of flux rope observed for the neural network architectures when trained using partial duration crossings. Cells
highlighted in yellow indicate the lowest error for each (CNN, parameter) pair and cells highlighted in green, the next two lowest errors. The overall performance of the 1D
CNN continues to be significantly better than the 2D CNNs. The 2D CNNs make their best predictions when seeing less of the flux rope crossing.

2D (1) 2D (3) 1D

% Observed ϕ θ Y0 ϕ θ Y0 ϕ θ Y0

10 7.67° 5.85° 7.33% 5.49° 3.92° 5.61% 2.10° 1.23° 1.28%
20 6.62° 4.89° 6.62% 4.94° 3.47° 5.15% 1.58° 1.02° 1.08%
30 6.25° 4.58° 6.20% 4.70° 3.28° 4.98% 1.37° 0.90° 0.94%
40 6.29° 4.38° 5.99% 4.60° 3.24° 4.96% 1.23° 0.84° 0.84%
50 5.96° 4.28° 5.87% 4.61° 3.24° 4.95% 1.14° 0.81° 0.79%
60 6.02° 4.22° 5.75% 4.70° 3.31° 4.96% 1.11° 0.80° 0.76%
70 6.17° 4.23° 5.79% 4.74° 3.33° 5.06% 1.04° 0.76° 0.72%

80 6.13° 4.36° 5.89% 4.83° 3.37° 5.10% 1.01° 0.75° 0.71%

90 6.38° 4.45° 6.13% 4.93° 3.41° 5.25% 1.04° 0.76° 0.75%

100 7.07° 4.81° 6.52% 5.17° 3.61° 5.51% 1.10° 0.79° 0.83%

FIGURE 6 | The 1D CNN parameter prediction error for the Wind event test set of full duration flux rope crossings. Two sets of predictions were generated: One
from processing 1 min Wind MFI measurements and the second from processing the Wind MFI measurements down-sampled to the 15 min averages. The human-fit
parameter values from the published ICME catalog were compared against neural network predictions. The overall error magnitude is greater than when tested on
synthetic input but shows the same trend. Predictions improve when the down-sampled input is used.
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chirality prediction matching the chirality of the human
expert (Figure 7(ii)) we see no negative correlations.

We next applied the network trained on full and partial
duration flux ropes to the aforementioned subset of 75 Wind
Fr events. A summary of the results are shown in Table 3 where
we list median differences between network predictions and
hand-fit values as a function of flux rope observed. Also
shown are the percentage of events where predicted chirality
and hand-fit chirality match. The median difference in longitude
ranges from 58° to 89°; in latitude from 31° to 50°; and in impact

parameter from 36 to 53%. The network predicted the chirality
correctly between 52 and 65% of the time.

3.4 Number of Wind Events to Train a
Network
Experimenting with synthetic and real flux ropes raised an
interesting question: How many real flux ropes are needed to
train a neural network and how many suitable flux ropes are
available for such a study? We can not answer this question

FIGURE 7 |Correlation distributions and comparisons for theWind event test set of full duration flux rope crossings. Column 1 shows the correlation score between
the human-fit parameters and theWind measurements. Column 2 shows the correlation between the 1D CNN prediction and theWindmeasurements. The third column
displays the difference between the human-fit correlations and the CNN prediction correlations. (i) Includes all 75 Wind test cases. (ii) Includes cases where the CNN Y0
prediction matched human expert’s chirality only. When the CNN predicts Y0 correctly, the correlation to Wind data is similar to that of the human-expert.
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conclusively. As discussed in a previous section, and elaborated
on below, neural networks trained on synthetic events do not
transfer perfectly to Wind. However, we can perform one
additional experiment to roughly gauge an answer.

We re-used the train-validation-test split of our synthetic flux
ropes mentioned in Section 2.2. We then set up a loop of nine
iterations. In each iteration, we randomly selected a diminishing
subset of the training data, trained a 1D CNN with that subset,
and then evaluated the trained model on the testing set of 19,600
synthetic flux ropes. The subsets were selected at random to
simulate what happens in practice where we cannot dictate the
orientation of flux ropes observed by a spacecraft. The testing
consisted of using the trained CNN to make orientation
predictions for each of the 19,600 test flux ropes, use those
orientation predictions to create the corresponding magnetic
field profiles, and correlate those magnetic field profiles with
the magnetic field profiles of the test flux rope. As an evaluation
metric, we computed the percentage of the test correlations
greater than or equal to 0.75. Within each iteration, the
subsetting-training-prediction-correlation workflow was
repeated three times to investigate how the random sub-
setting might impact the results.

Table 4 lists the results. Over ninety percent of testing events
have an average correlation coefficient above 0.75 as long as the
training set size is over 200 events. Put another way, a 1D CNN
trained with roughly 200 events produces average correlation
coefficients on par with the 2D 3-input CNN (middle panel of 5).
We do note, however, that our experiment is based on training
the network with a specific flux rope model and simulated
(synthetic) flux ropes. The specific flux rope model chosen will
play a role as more complex descriptions of flux ropes (i.e., taking
into account compression/expansion) will have more output
parameters, which in turn will impact accuracy. In addition,
these synthetic flux ropes do not take into account the turbulent
fluctuations found in real flux ropes - a further source of
prediction error. Nevertheless, it is interesting to note that we
may be tantalizingly close to a neural network trained on real
observations. There are 151 Wind events in Nieves-Chinchilla
et al. (2019) that could potentially be used in training. The
HELIO4CAST ICME catalog version 2.1 (Moestl et al., 2020)

has over 1,000 ICMEs identified from multiple spacecraft. It is
unknown how many of these ICMEs have associated flux ropes.
Once identified, assuming there are enough, those flux ropes will
need to be fit by human experts to provide labeled data for
supervised learning. Nevertheless, our experiment provides the
intriguing result that a few hundred more events may be all that is
needed. Existing ICME catalogs may hold enough events that a
concerted effort could lead to training set of real flux ropes in the
coming years.

4 DISCUSSION AND CONCLUSION

Our experiments have demonstrated that convolutional neural
networks are capable of providing extremely reliable
characterizations of flux ropes from synthetic data. A trained
network can use the structure of simulated magnetic field vectors
to learn filters that map to accurate flux rope key parameter
predictions; successfully inferring large scale, 3D information
from single-point measurements.

When trained only on examples of full duration flux ropes, all
three architectures predict key parameters of a flux rope which
correlate well with the input data; however the best performing is
the 1D network that feeds on time series data. Although the 2D
networks that use hodogram style input do not see the same,
perfect accuracy in predicting the chirality as the 1D network, the
difference is statistically minor. The biggest weakness in the
hodogram-input CNNs is when interpreting flux rope traces
generated with a high spacecraft impact parameter. It is
possible that similarities in hodogram shape profile between
low- and high-valued Y0 are activating similar filters in the 2D
networks and leading to poor predictions in these cases.

When we extend the synthetically trained networks to include
both partial and full duration traces through flux ropes, we still
find this approach highly accurate. The CNNs are capable of
making reliable predictions having only seen a fraction of the full
flux rope. Although the overall discrepancy between the true and
predicted values is higher than when done with only full duration
traces, all median differences are well within a tolerable limit. In

TABLE 3 |Wind event summary statistics as a function of percentage of flux rope
observed for the 1D network trained with both full and partial duration flux
ropes. Human-fit parameters are compared to neural network predictions and the
ϕ, θ, and Y0 columns are median differences between the two. TheH column is the
percentage of events where the chirality prediction matches hand-fit value.

% Observed ϕ θ Y0 (%) H (%)

10 89° 50° 36 63
20 66° 42° 39 52
30 69° 32° 53 60
40 64° 37° 39 60
50 70° 33° 37 60
60 69° 37° 51 60
70 73° 31° 44 64
80 73° 34° 53 65
90 73° 33° 47 56
100 58° 42° 44 60

TABLE 4 | Percentage of synthetic flux rope predictions with an average
correlation coefficient of 0.75 or greater as a function of training set size. The
1D CNN was used for training. Each training set size was repeated three time,
each time taking a different random sample. The percentages reported are the
average of the three repetitions. The SD column lists the standard deviation of
the three repetitions.

# Flux ropes in
training

% ≥ 0.75 SD

29,440 99 0.5
14,592 99 0.4
7,168 98 0.05
3,584 97 0.4
1,792 97 1.3
1,024 97 0.6
512 95 0.3
256 93 0.6
128 88 0.88
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these idealized, synthetic, circular-cylindrical flux ropes even
the poorest performing network is able to predict orientation
angles with a median error under 8° after only observing 10% of
a simulated spacecraft crossing. The 1D network here, at only
10% observed, is able to give predictions with lower median
difference than the 2D networks do when trained and tested
with only full flux ropes. All three models show a peak
performance at some point prior to seeing 100% of the flux
rope crossing, perhaps due to some similarity in shape between
low percentage of observation and high percentage. It is
interesting to note that the 2D networks hit their peak
predictive point earlier than the 1D CNN, 2D one input at
50–60% and 2D three input even earlier at 40–50%. This
suggests that research into where the convolutional network
is looking (for example, with the Grad-CAM method (Selvaraju
et al., 2017)) can help us further understand the benefits and
limitations of hodograms and time series as inputs. Future
research will examine where the network is focusing its
attention and if this can be exploited for more accurate
predictions earlier in the forecasting process.

With the success of the 1D CNN in real-time forecasting
from idealized synthetic data, we evaluated this trained 1D
network on partial Wind event data. Overall, the neural
network struggles to reproduce the accuracy achieved on
the synthetic data set. Unlike the synthetic case, we see no
trend towards a peak performance point dependent on the
amount of flux rope observed. When looked at on a case-by-
case basis, there are a few specific events in which the neural
network is able to make accurate predictions after only seeing a
fraction of the flux rope. In general, however, the median
difference in angle and impact parameter prediction falls well
outside any tolerance levels for useful prediction and the
chirality is only correct approximately 60% of the time.
Clearly, the partial-trained CNN cannot be transferred as-is

to real-time application, but insight can be found by examining
the results of the full duration network evaluated with Wind
events.

Applying the 1D CNN trained only on full duration synthetic
flux ropes to in situ Wind events, we again see the individual
parameter predictions show significant deviation from hand fit
values. However, we note lower median differences and higher H
accuracy than when the network trained on both full and partial
events was applied to Wind. Using down-sampled input
improves this even further. Yet, by looking at the average
correlation scores we see that the flux rope analytical model is
robust to small deviations - small changes in longitude in
particular do not lead to significant differences in
reconstructed time series. We also find the neural network
robust to variation in solar wind speed, expansion/
compression, duration, and to some degree, magnetic field
fluctuations. The neural networks were trained on synthetic
data that was all generated with a simulated solar wind
velocity of 450 km/s and simulated flux rope radius of 0.07
AU; yet, are able to offer reasonable predictions for Wind Fr
events having significant differences in solar wind speed,
expansion/compression, duration, and magnetic field
fluctuations.

The neural network gives reliable predictions in a number of
events and exhibits a distribution of average correlations that is
qualitatively similar to those from the human expert. As evident
in the right-most column of Figure 7, the neural network results
in better average correlation in nearly half of the 75 events. When
we consider only cases in which the network prediction for H
matches the human-fit H the correlation to Wind data is even
greater.

Analysis reveals two primary reasons the neural network
performs less accurately on Wind events; incorrect physical
model (Wind flux ropes not fitting the circular cylindrical

FIGURE 8 | Wind MFI measurements for September 18–19, 2004 overlaid with simulated spacecraft flux rope crossings. The left panel shows the crossing
described by the human-fit parameters. The right panel shows the crossings described by the CNN predictions when it is given both the Full and Downsampled input.
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assumptions) and internal physical processes (such as
fluctuations and discontinuities) that alter the expected
magnetic field profile of a smooth flux rope. An example of a
flux rope with magnetic field fluctuations and a discontinuity is
shown in the event with MO beginning on 18 September 2004 in
Figure 8. Down-sampling the Wind magnetic field data from 1-
min to 15-min prior to interpolating to 50 points reduces the
difference between neural network predictions and hand-fit
values. The down-sampling further smooths out the magnetic
field time series removing small-scale fluctuations. However,
down-sampling cannot account for all observed internal
physical processes that lead to a deviation from the expected
smooth flux rope profile. The September 2004 event illustrates
how differences in data processing can have a strong effect on the
resulting prediction. In this particular example, the predictions
made from the Wind data without prior averaging match the
hand fit predictions well, while those from the down-sampled
input clearly lost important information. The choice of 15-min
averaging was arbitrary and is presented here to highlight how
data pre-processing can have both positive and negative impacts
on prediction accuracy. It remains for future research to
systematically address fluctuations and determine an optimal
input resolution.

Of the total 151 Wind Fr events in Nieves-Chinchilla et al.
(2019), only 41% were classified as a flux rope by the neural
network developed in dos Santos et al. (2020) when trained with
no fluctuations. This same network classified 84 and 76% as flux
ropes when trained with synthetic data augmented with 5 and
10% Gaussian fluctuations, respectively. In other words, some of
the Wind events on which we do poorly finding good
parametrization, would not have been considered a flux rope
by the first step of an automated fitting workflow. At present,
magnetic field fluctuations are not fully accounted for in flux rope
analytical models and pre-processing of neural network input
data does not fully address the discrepancy between synthetic and
spacecraft observed flux ropes. Accurately accounting for
fluctuations in measured data appears to be a significant factor
for improving an automated space weather forecasting pipeline.
Early experimentation with 5% Gaussian fluctuations in our
study did not lead to significant improvement. Solar wind and
flux rope turbulence is known to be non-Gaussian. Yet, at present,
a complete understanding of turbulence leads analytical models
lacking in this regard. We choose to not introduce non-realistic
fluctuations and instead will explore physics-based turbulence
enhancements to the analytical model in future research.

The ultimate source of prediction error in any CNN is in the
inputs not matching any of the learned filters. In the case of Wind
events, we notice that the neural network trained with only full
duration flux ropes incorrectly predicts chirality in nearly 20% of
Wind events. This leads to poor correlation coefficients as the
reconstructed time series do not match the Wind observations.
Yet, across all implementations of the CNNs with synthetic data
the CNNs overwhelmingly identify the correct chirality. This
indicates that the convolutional filters the network learned to
predict chirality do not transfer to Wind events; that the filters

learned to focus on a quality in the synthetic data that is not
shared in the real observations. Interestingly, down-sampling has
no effect on chirality predictions. We believe this source of error
is related to the physical model chosen to simulate the flux ropes.
Wind flux ropes show deviations from the circular cylindrical
assumption. This opens the door to tantalizing future evaluations
of physics-based flux rope models using an ensemble of neural
networks, each trained with a different physical model.

Partial duration predictions and real-time forecasting are
not really feasible at this time due in large part to features in
the real data that are not present in the training set, though
the concept of using CNNs to infer 3D geometric parameters
from an in situ measurement have been borne out.
Additionally, the neural networks have helped highlight
the limitations of the physics-based model and even
suggested better fittings of some Wind flux ropes. Future
work will include implementing a single, physics-based loss
function into the CNN to replace the four separate loss
functions in the current design as well as enhancing
analytical flux rope models to produce training data that
includes more realistic turbulence and asymmetry.
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