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Photometry is an important tool for characterizing the physical properties of asteroids. An
asteroid’s photometric lightcurve and phase curve refer to the variation of the asteroid’s
disk-integrated brightness in time and in phase angle (the Sun-asteroid-observer angle),
respectively. They depend on the asteroid’s shape, rotation, and surface scattering
properties, and the geometry of illumination and observation. We present Bayesian
lightcurve inversion methods for the retrieval of the asteroid’s phase function, the
unambiguous phase curve of a spherical object with surface scattering properties
equal to those of the asteroid. A collection of such phase functions can give rise to a
photometric taxonomy for asteroids. In the inverse problem, first, there are four classes of
lightcurves that require individual error models. The photometric observations can be
absolute or relative and they can have dense or sparse cadence in comparison to the
rotation period of the asteroid. Second, the observations extend over varying phase angle
ranges, requiring different phase function models. Asteroid photometry from the European
Space AgencyGaia space mission extends, typically, over a range of phase angles, where
the phase curve tends to be linear on the magnitude scale. Photometry from ground-
based observing programs can reach small phase angles, where the asteroids show an
opposition effect, a nonlinear increase of brightness on the magnitude scale towards zero
phase angle. We provide error models for all four classes of lightcurves and make use of
linear or linear-exponential phase functions for phase angles below 50°. We apply the
inversemethods to sparse absoluteGaia and dense relative ground-based lightcurves and
obtain absolute magnitudes and phase functions, with uncertainties, for ~500 asteroids.
Finally, we assess the lightcurve inversion problem for dense absolute photometry with the
help of a numerical simulation for a Gaussian-random-sphere asteroid.
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1 INTRODUCTION

Asteroids are small Solar System objects that originate from times
preceding planet formation. Typically, when rotating about its
principal axis of inertia, an asteroid exhibits a periodic change of
brightness caused by the varying part of its surface being both
illuminated by the Sun and visible to the observer. On one hand, a
photometric lightcurve is the result of photometric observations
extending over a time span covering a substantial part of the
rotation period or more. On the other hand, a photometric phase
curve is the result of observations of the change in an asteroid’s
apparent brightness obtained at different epochs during a single
apparition, corresponding to a slowly changing Sun-observer-
object geometry.

Consequently, photometric lightcurves provide immediate
information about the rotation period. Historically, asteroid
lightcurve observations have been the first tool intensively
applied to derive physical properties of these objects. In
addition to the retrieval of the rotation period, lightcurve
amplitudes have been used to derive rough characteristics of
the shape (elongated shapes generally producing lightcurves with
larger amplitudes) and, when lightcurves obtained at different
apparitions were available, to derive estimates of the direction of
the asteroid’s pole orientation (Taylor, 1979; Magnusson et al.,
1989; Kaasalainen et al., 2002; Durech et al., 2015). Some early
statistical analyses of lightcurve amplitudes and periods led also
to the discovery of the existence of equilibrium shapes among
large asteroids (Farinella et al., 1981), and opened the way to the
discovery of the importance of the general phenomenon of
asteroid collisional evolution (Farinella et al., 1982).

Photometric phase curves provide information about the
intrinsic light-scattering properties of the surface that are
intimately related to the regolith composition and structure.
Since the composition and structure determine also the
reflectance properties observed at different wavelengths, phase
curves are strictly related to the taxonomic classification of
asteroids. Phase curves are often represented with the help of
a few parameters. The classical two-parameter H, G magnitude
system has been used for a long time (Bowell et al., 1989).H is the
asteroid’s absolute magnitude, namely the magnitude
(corresponding to unit distance from the Sun and the
observer) measured at zero phase angle, and G is a parameter
describing the overall variation of magnitude at different phase
angles, including a nonlinear brightness surge at phase angles
smaller than 10° (opposition effect). In recent years, it has been
replaced by the so-called H, G1, G2 magnitude system, a three-
parameter model developed by Muinonen et al. (2010) to remove
the caveats of theH, G system in the case of low-albedo and high-
albedo asteroids. Further refinements and applications of the H,
G1, G2 system have been published, among others, by Penttilä
et al. (2016) and Shevchenko et al. (2016).

Gaia Data Release 3 (DR3) is imminent (13 June 2022),
including extensive astrometric, photometric, and
spectroscopic observations of small Solar System objects,
primarily asteroids. It is important to prepare to analyze such
a large amount of new data. In the field of asteroid photometry, in
particular, significant progress has been made recently in what

concerns the capability of obtaining efficient processing and
reliable interpretation of sparse photometric data. Martikainen
et al. (2021) carried out an analysis of photometric data combined
from ground-based lightcurves and observations published in
Gaia Data Release 2 (DR2) in order to invert the data for reliable
estimates of shape, rotational properties, and phase curves for a
large number of objects belonging to a variety of asteroid
taxonomic classes. They derived photometric phase curve
slopes, rates of brightness change on the magnitude scale, for
more than 300 asteroids in the so-called reference geometry of
equatorial illumination and observation (Kaasalainen et al.,
2001). Expanding on the study in Muinonen et al. (2020),
Martikainen et al. (2021) provided unequivocal proof that the
projection to similar illumination and observation conditions was
needed to enable unbiased comparative studies of asteroid phase
curves. It is possible to strive towards minimizing the biases by
incorporating all practical geometries of illumination and
observation (Oszkiewicz et al., 2011). However, for asteroids
with their individual pole orientations and orbits, different
illumination and observation geometries are sampled, and
biases remain. In spite of these biases, Oszkiewicz et al. (2011)
and Mahlke et al. (2021) have successfully related phase curve
parameters from massive observing programs to the taxonomical
classes.

We extend the work by Martikainen et al. (2021) by providing
computational tools for the derivation of asteroid phase functions
using fictitious spherical asteroids with equal surface properties.
In earlier works, we have described these phase functions as being
proper phase functions that describe the intrinsic properties of
the surfaces. We apply the methods to the asteroids studied by
Martikainen et al. (2021), by starting from their results of
Markov-chain Monte Carlo (MCMC) lightcurve inversion for
some 500 asteroids. Furthermore, we generalize the studies by
Martikainen et al. (2021) and Muinonen et al. (2020) by
incorporating a combined linear-exponential model of phase
functions on the magnitude scale.

In earlier work (Muinonen et al., 2020), models of
observational uncertainties were developed for dense relative
photometry and sparse relative photometry. The former
entailed ground-based lightcurves that were treated, in
lightcurve inversion, on a relative magnitude scale. The latter
comprised lightcurves of sparse Gaia photometry that were
incorporated on a relative magnitude scale, too. Martikainen
et al. (2021) then treated the Gaia photometry in the absolute
sense, deriving absolute magnitudes for a large number of
asteroids. In the present work, we provide a complete set of
four models for observational uncertainties, including models for
dense relative, sparse relative, dense absolute, and sparse absolute
lightcurves.

The paper is organized as follows. Section 2 describes the
theoretical framework in asteroid lightcurve inversion. Particular
attention is paid to the different surface scattering models utilized
in the forward and inverse problems. In Sect. 3, error models are
presented for dense and sparse lightcurves (relative or absolute),
and the retrieval of absolute magnitudes and phase functions is
outlined. Section 4 first provides the application of the methods to
~500 asteroids with both sparse absolute Gaia photometry and
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dense relative ground-based photometry. Thereafter, a numerical
forward simulation of dense absolute photometry with a
Gaussian-random-sphere asteroid model (GS-asteroid) is
described, followed by inversion results and their discussion.
Conclusions and future prospects are offered in Sect. 5.

2 LIGHTCURVE INVERSION

2.1 Asteroid Modeling
Consider an asteroid in principal-axis rotation. We denote the
asteroid’s rotation period by P, the pole orientation in ecliptic
longitude and latitude by (λ,β)T (J2000.0, T stands for transpose),
and the rotational phase at a given epoch t0 by φ0. As to the
asteroid’s shape, in the inverse problem, we consider both
ellipsoidal shapes and general convex shapes. In the forward
problem, we incorporate star-like shapes described by the
Gaussian-random-sphere geometry.

The apparent V-band magnitude (in mag) of a fictitious
spherical asteroid (diameter D in km and geometric albedo
pV) at a given phase angle α is

mV α( ) � H − 2.5lgΦ α( ) + 5lg rΔ( ),
H � 2.5 6.259 − 2lgD − lgpV( ), (1)

where H is the absolute magnitude (in mag), r and Δ are the
asteroid’s heliocentric and topocentric distances (in au), Φ is the
phase function (Φ(0°) = 1), and lg denotes the 10-based
logarithm. The corresponding reduced V-band magnitude is
projected to r = Δ = 1 au:

V α( ) � H − 2.5lgΦ α( ). (2)
Scattering of light from a surface element on an asteroid is

described by the diffuse reflection coefficient R that relates the
incident solar flux density πF0 to the emergent, scattered
intensity I:

I μ, ϕ; μ0, ϕ0( ) � μ0R μ, ϕ; μ0, ϕ0( )F0,
μ0 � cos ι, μ � cos ϵ. (3)

Here ι and ϵ are the angles of incidence and emergence as measured
from the outward normal vector of the element, and ϕ0 and ϕ denote
the respective azimuthal angles. For a geometrically isotropic surface,
it is unnecessary to specify ϕ0 and we set the coordinate system so
that ϕ0 = 0°. Consequently, the backscattering direction, the direction
for the source of light, is with ϕ = 0°.

The Lommel-Seeliger surface reflection coefficient (subscript
LS) derives from radiative transfer (e.g., Lumme and Bowell,
1981):

RLS μ, μ0, ϕ( ) � 2pΦ11 α( ) 1
μ + μ0

, (4)

where p is the geometric albedo for the wavelength band
considered.

The diffuse reflection coefficient for dark particulate media
(subscript PM)—such as planetary regoliths of low-albedo
asteroids—can be expressed in the form (Muinonen et al.,
2011; Wilkman et al., 2015)

RPM μ, μ0, ϕ( ) � 2pΦ11 α( )ΦS μ, μ0, ϕ( ) 1
μ + μ0

,

Φ11 � P11 α( )
P11 0°( ),

p � 1
8
~ωP11 0°( ),

(5)

where p is the geometric albedo, α is the phase angle, and ~ω and
P11 are the single-scattering albedo and single-scattering phase
function (different from the phase function of the asteroid). The
functionΦS represents the corrections to radiative transfer due to
the dense packing of the particulate medium, for example, the
corrections due to shadowing among the particles typically much
larger than wavelength. Φ11 and ΦS, as all functions Φ of the
present study, are normalized to unity at backscattering:

Φ11 0°( ) � 1,
ΦS μ0, μ0, 0°( ) � 1.

(6)

The reflection coefficient in Eq. 5 belongs to a class of
photometric models consisting of a Lommel-Seeliger-type
volume-element part and a part describing scattering among
volume elements in a particulate medium (e.g., Lumme and
Bowell, 1981; Muinonen and Lumme, 1991).

Wilkman et al. (2015) provide an extensive set of numerical
computations of the dense-packing correction ΦS using
particulate media of opaque spherical particles. They complete
the modeling with the help of a fractional-Brownian-motion
model for the roughness of interface between the medium and
free space. There are altogether three parameters: the packing
density of the particles v, the fractal Hurst exponentHfBm, and the
amplitude σfBm. Smaller HfBm and higher σfBm imply rougher
interfaces with stronger effects of interface roughness. The
function ΦS is an unknown function for asteroid surfaces. In
what follows, as inMuinonen et al. (2015), we utilizeΦS estimated
for the lunar mare regolith by Wilkman et al. (2014).

Consider next the function Φ11 in Eqs 4, 5 and the large
numbers of existing phase curve observations of asteroids.
Indeed, we may consider that the principal form for the phase
function of a fictitious spherical asteroid is already known to be
described by, for example, the H, G1, G2 phase function.
Consequently, we introduce denominators in Eqs 4, 5 that
cancel the inherent phase function that would result from the
assumption of Φ11 = 1 (isotropic scattering):

RLS μ, μ0, ϕ( ) � 2p
Φ α( )
ΦLS α( )

1
μ + μ0

,

RPM μ, μ0, ϕ( ) � 2p
Φ α( )
ΦPM α( )ΦS μ, μ0, ϕ( ) 1

μ + μ0
,

(7)

where Φ represents an unknown function that should
nevertheless be close to the empirically known phase functions
of asteroids. In other words, the functions ΦLS and ΦPM are the
phase functions for a spherical asteroid with reflection
coefficients RLS and RPM assuming Φ11 = 1, respectively.
Figure 1 depicts the lunar disk-integrated phase function with
the help of the H, G1, G2 phase function as well as the phase
function ΦPM derived for the lunar mare regions by Wilkman

Frontiers in Astronomy and Space Sciences | www.frontiersin.org June 2022 | Volume 9 | Article 8211253

Muinonen et al. Asteroid Photometric Phase Functions

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


et al. (2015). Their ratio is also given. By approximating thatΦPM

can be valid for the higher-albedo lunar highland regions, too, the
ratio points to the part of the lunar opposition effect at small
phase angles unexplained by shadowing and rather explained by
the coherent backscattering mechanism (Muinonen et al., 2002).
Significantly different single-scattering phase functions Φ/ΦLS or
Φ/ΦPM result from utilizing RLS or RPM: as RPM assigns a
significant part of phase curve steepness to shadowing, the
resulting single-scattering phase function is shallower.

In order to model the function Φ in Eq. 7 for lightcurve
inversion, we make use of a linear-exponential model on the
magnitude scale:

−2.5 lg Φ α( ) � −m0 exp − α

α0
( ) +m0 + β0α, 0°≤ α≤ 50°,

(8)
where m0 and α0 are the amplitude and angular width of the
opposition effect, respectively, and β0 is a slope parameter. In the
linear-exponential model of Eq. 8, the photometric slope at α =
20° (the phase angle chosen for comparative studies) equals

βS 20°( ) � β0 +
m0

α0
exp −20°

α0
( ). (9)

For phase angles outside the angular regime of the opposition
effect, 10° ≤ α ≤ 50°, a linear model can be utilized:

−2.5 lg Φ α( ) � β0α, 10°≤ α≤ 50°,
βS 20°( ) � β0.

(10)

The H, G12 phase function is a two-parameter phase function
developed for scarce photometric data (Muinonen et al., 2010).
As in Martikainen et al. (2021), we rule out increasing brightness
with increasing phase angle and enforce the absence of an
opposition effect for G12 values that would result in negative
weights 1 − G1 − G2:

G2 �
10
3

G1, G12 ≤ − 0.53784,

1 − G1, G12 ≥ 1.23728.

⎧⎪⎨⎪⎩ (11)

The extension does not affect theH, G12 phase function within its
approximate nominal range of 0 ≤ G12 ≤ 1.

FIGURE 1 | Phase functions and their ratios on the magnitude scale. The red curves (top left and right) correspond to the lunar phase function Φ (lowermost solid
line), the ratioΦ/ΦLS (middle dashed line), and the ratioΦ/ΦPM (uppermost solid line; see Eq. 7). The blue curves (bottom left and right) denoteΦPM (lowermost solid line),
ΦLS (at α = 120°, middle dashed line), andΦPM/ΦLS (at α = 120°, uppermost solid line). The raggedness at small phase angles is an artefact deriving from the interpolation
of ΦPM.
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2.2 Inverse Problem
Consider the free parameters (unknowns) of the asteroid forward
model. In the case of the ellipsoid shape model, the parameters
are described by the vector

P � P, λ, β,φ0, b/a, c/a,m0, α0, β0( )T, (12)
where the NP = 9 free parameters are, respectively, the rotation
period, ecliptic pole longitude, ecliptic pole latitude, rotational
phase at a given epoch t0, two ellipsoid axial ratios (with a > b > c
denoting the semiaxes), and three parameters of the linear-
exponential phase function. In the case of the convex shape
models, the parameters are

P � P, λ, β,φ0, s00, . . . , slmaxlmax, m0, α0, β0( )T, (13)
where the shape is described by the (lmax + 1)2 − l2min spherical
harmonics coefficients s00, . . . , slmaxlmax for the Gaussian surface
density. Here φ0 and the real-valued s00 can be fixed as the
rotational phase is immersed in the spherical harmonics
coefficients and the asteroid size information is omitted. Thus,
the total number of parameters equals

NP � lmax + 1( )2 − l2min + 5. (14)
Let pp be the a posteriori probability density function (p.d.f.)

for the parameters. Within the Bayesian framework (cf.
Muinonen et al., 2020), pp is proportional to the a priori and
observational uncertainty p.d.f.s ppr and pϵ+υ, ϵ and υ referring to
random and systematic uncertainties. pϵ+υ is evaluated for the
“Observed-Computed” (O-C) residual magnitudes ΔM(P),

pp P( ) ∝ ppr P( )pϵ+υ ΔM P( )( ),
ΔM P( ) � Mobs −M P( ). (15)

Even though pϵ+υ is here related to the observations, it can also
describe the uncertainties deriving from the shortcomings in the
physical model. It is currently assumed that pϵ+υ is Gaussian and
that ppr will describe, for example, the regularization needed in
convex inversion. The final a posteriori p.d.f. is thus

pp P( ) ∝ ppr P( )exp −1
2
χ2 P( )[ ],

χ2 P( ) � ΔMT P( )Λ−1
ϵ+υΔM P( ),

(16)

where χ2 measures the O-C distance in terms of the model for the
uncertainties. The observation vector is composed of a number of
lightcurves with their varying numbers of magnitudes, and the
uncertainties are assumed to be uncorrelated between the
lightcurves. We may thus rephrase χ2(P) as

χ2 P( ) � ∑K
k�1

ΔMT
k P( )Λ−1

ϵ+υ,kΔMk P( ),
ΔMk P( ) � Mobs,k −Mk P( ),

(17)

where Mobs,k, Mk(P), and Λϵ+υ,k pertain to the observations,
computations, and the covariance matrix for the uncertainties
in lightcurve k, the total number of lightcurves being K.

In detail, we simplify the χ2-value in Eq. 17 to the form

χ2 P( ) � ∑K
k�1

1
σ2ϵ,k

∑Nk

j�1
Mobs,kj −Mkj P( )[ ]2, (18)

where the σϵ,k values describe the uncertainty (and weight) of the
Nk observations in lightcurve k, and Mobs,kj and Mkj(P) are the
observed and computed magnitudes. For small relative
uncertainties in brightness, the χ2-value can be approximated
by (Muinonen et al., 2020)

χ2 P( ) ≈ ∑K
k�1

2.5lg e( )2
σ2
ϵ,k

∑Nk

j�1

ℓobs,kj − ℓkj P( )100.4ΔMk0 P( )

ℓobs,kj
[ ]2

, (19)

where ΔMk0(P) denote the O-C difference of the mean
magnitudes in lightcurve k, and ℓobs,kj and ℓkj(P) are the
observed and computed brightnesses relative to the
brightnesses corresponding to the lightcurve mean magnitude
lg~e 0.43429. Thus, in Eq. 19, the χ2-value is computed using the
differences in the observed and computed relative brightnesses,
relative to the observed relative brightnesses.

3 NUMERICAL METHODS

The MCMC inverse methods are based on proposal probability
densities characterized with the help of the so-called virtual least-
squares solutions and are described in detail by Muinonen et al.
(2020). In what follows, we introduce the error models for the

FIGURE 2 | Example photometric lightcurves for asteroid (167) Urda (blue circles) on the magnitude scale. We show the ground-based dense lightcurve #8 (left)
and theGaia sparse lightcurve (middle and right). Red crosses stand for the best-fit convex model lightcurves with the 1-σ uncertainties (red bars), and the red points are
the uncertainty envelopes using 5,000 MCMC sample solutions. The symbols t, α, and k denote the time, phase angle, and lightcurve observation counter.
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observations and the algorithm for the retrieval of absolute
magnitudes and phase functions from DR2 photometry.

3.1 Error Models for Observations
We define dense lightcurves as having photometric points timed,
on average, less than the asteroid’s estimated rotation period
apart. For dense relative lightcurves, the points are calibrated
against each other but not against absolute standards. We set
(Muinonen et al., 2020)

σϵ,k �
�����
Nk

Nk,eff

√
max σ0,k, σpr,k( ),

Nk,eff � ΔT~k

ΔTk
, k � 1, . . . , K,

(20)

where σ0,k denotes the rms-value and σpr,k denotes the a
priori threshold value for the uncertainty in the lightcurve k,
obtainable, for example, from cubic spline fits to the lightcurves.
Furthermore, ΔTk is the mean sampling time interval of the
lightcurve k,

ΔTk � Tk

Nk − 1
,

ΔT~k � maxk�1,...,K ΔTk,
(21)

where ~k marks the lightcurve with the lowest sampling rate in
time and Tk stands for the time span of the lightcurve k. Equation
20 can be interpreted in the following way. The lightcurve ~k
contributes a χ2-value of unity in the inverse problem, whereas
each other lightcurve k is considered to split into approximately
Nk,eff independent lightcurves.

For dense absolute lightcurves composed of K lightcurves, the
points are calibrated both against each other and absolute
standards. We start by setting

σϵ,k �
�����
Nk

Nk,eff

√
max σ0,k, σpr,k( ),

k � 1, . . . , K,

(22)

where σ0,k and σpr,k are defined as for Eq. 20. The definition of
Nk,eff is the key point of the error model. For simplicity, consider
the case σ0,k ≥ σpr,k. First, if we set Nk,eff = 1, each lightcurve
obtains an equal weight of unity. This is the most conservative
model with systematic errors dominating over the random errors.
Second, we may set Nk,eff = 1 for the lightcurve ~k that has the
minimum number of observations and consider the other
lightcurves as composed of an effective number of

Nk,eff � Nk

N~k

, (23)

lightcurves like lightcurve ~k, balancing the weights of lightcurves
with drastically different numbers of observations. We recall that
the systematic errors include, in addition to the observational
errors, the effects of simplified forward modeling, in particular,
for the phase function in Eqs 8–10.

We define sparse lightcurves as having photometric points
timed, on average, more than the estimated rotation period apart.
For sparse relative lightcurves, as for dense relative lightcurves,
the points are calibrated against each other but not against
absolute standards. In accordance with Muinonen et al.
(2020), we set Nk,eff � N~k in an error model coinciding with
the form in Eq. 22, the index ~k now denoting the sparse lightcurve
with the smallest number of observations. Finally, for sparse
absolute lightcurves, we introduce a model that coincides with the

FIGURE 3 | Histograms of the derived βS(20°) and βref values (both in mag/rad), obtained using 358 asteroids.

FIGURE 4 | Comparison of the derived βS(20°) and βref values using 358
asteroids. The blue line represents perfect correlation. Two noticeable outliers
(5902) Talima and (15172) 3086 P-L are marked with blue crosses.
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one for the sparse relative lightcurves. Now the observations are,
however, calibrated against absolute standards.

The complete a posteriori p.d.f. is the product of the p.d.f.s for the
four classes so that the corresponding χ2-values are added together:

χ2 P( ) � ∑4
i�1

∑Ki

k�1

1
σ2ϵ,ik

∑Nik

j�1
Mobs,ikj −Mikj P( )[ ]2 (24)

or

FIGURE 5 | The topmost graphs depict σβS(20°) as a function of βS(20°) using 358 asteroids (left) and highlighting 13 new asteroids presently processed (right). The
middle graphs show σβS(20°) as a function of βS(20°) for 97 asteroids with known Tholen classes (left), highlighting six new asteroids (right). The bottom graphs provide a
zoom-in of the middle graphs.

FIGURE 6 | Comparison of the derived equal-sphere G-band absolute magnitudes G(1,0) and the V-band absolute magnitudes H based on the Jet Propulsion
Laboratory Small-Body Database for 358 asteroids (left), the right panel highlighting the 13 new asteroids. The blue line represents perfect correlation of the absolute
magnitudes. Two noticeable outliers (446) Aeternitas and (1368) Numidia are marked with blue crosses.
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ℓobs,ikj
[ ]2

,

(25)
where the index i describes the dense relative (i = 1), sparse
relative (i = 2), dense absolute (i = 3), and sparse absolute
photometry (i = 4). For dense and sparse relative lightcurves,
the relative brightnesses ℓobs,ikj and ℓikj(P) are computed using
the mean-magnitude brightnesses of each lightcurve. However,
for dense and sparse absolute lightcurves, they are computed
using the mean magnitude of the entire absolute lightcurve
data. Note that the sparse relative lightcurves are weighted
equally to the absolute photometric data but they enter the

inverse problem separately with no regard to the absolute level
of brightness.

3.2 Absolute Magnitudes and Phase
Functions
We refine the algorithm in Martikainen et al. (2021) for the
derivation of absolute magnitudes and phase functions from
Gaia photometry. As in their study, first, we start from the phase
function slope parameter βS retrieved from MCMC inversion,
recalling that βS describes the intrinsic surface-element
properties of an asteroid. Second, using the full asteroid
model available from the inversion, we move to the reference

TABLE 1 | Example asteroids with photometry in Gaia Data Release 2. Tholen
stands for the Tholen taxonomic class, B-DM stands for the Bus-DeMeo
taxonomic class, N is the total number of Gaia and ground-based observations,
K − 1 is the number of observed ground-based lightcurves, NGaia is the number of
observed Gaia points, and α denotes the phase angle coverage for each
asteroid using Gaia data.

Asteroid Tholen B-DM N K − 1 NGaia α(°)

(55) Pandora M Xk 1,126 37 18 14.2–24.1
(95) Arethusa C Ch 180 5 30 11.6–16.6
(97) Klotho M Xc 429 26 9 17.0–26.1
(122) Gerda ST L 1,485 18 13 14.5–18.1
(245) Vera S S 121 4 16 12.5–21.5
(246) Asporina A A 81 7 15 14.4–22.2
(376) Geometria S Sl 870 40 13 17.5–24.2
(377) Campania PD Ch 1,088 35 11 16.9–21.6
(404) Arsinoe C Ch 2,332 50 9 19.6–28.7
(596) Scheila PCD T 358 8 26 11.9–18.8
(731) Sorga CD Xe 620 10 16 11.9–18.7
(1251) Hedera E X 343 11 10 16.7–24.1

TABLE 2 | The photometric slope βS (mag/rad) of the phase function retrieved
using convex inversion by Martikainen et al. (2021) (CXI), together with the
mean-magnitude reference phase curve slope βref (mag/rad) and the slope βS
(mag/rad), both computed for the phase angle of 20°. All the slope parameters
represent the means from MCMC sampling. The uncertainties are given in
units of the last digit shown.

Asteroid Tholen βS (CXI) βref(20°) βS(20°)

(55) Pandora M 1.434 (86) 1.456 (76) 1.446 (77)
(95) Arethusa C 2.10 (10) 1.920 (69) 1.910 (69)
(97) Klotho M 1.957 (80) 1.988 (86) 1.982 (86)
(122) Gerda ST 1.54 (15) 1.54 (11) 1.53 (11)
(245) Vera S 1.683 (56) 1.646 (41) 1.643 (41)
(246) Asporina A 1.425 (67) 1.454 (54) 1.442 (53)
(376) Geometria S 1.572 (66) 1.574 (69) 1.572 (69)
(377) Campania PD 2.398 (81) 2.344 (78) 2.340 (78)
(404) Arsinoe C 2.096 (61) 2.258 (80) 2.247 (80)
(596) Scheila PCD 1.995 (69) 1.833 (54) 1.831 (54)
(731) Sorga CD 1.754 (69) 1.739 (49) 1.709 (49)
(1251) Hedera E 1.635 (87) 1.666 (88) 1.637 (87)

FIGURE 7 | Photometric phase functions with H,G1,G2 -fits for asteroids (55) Pandora (95) Arethusa (245) Vera (596) Scheila (731) Sorga, and (1251) Hedera. For
illustration, the phase functions are presented on a relative magnitude scale with 0.5-mag offsets (left) and normalized at 20° (right).

Frontiers in Astronomy and Space Sciences | www.frontiersin.org June 2022 | Volume 9 | Article 8211258

Muinonen et al. Asteroid Photometric Phase Functions

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


geometry of equatorial illumination and observation at the
epochs and phase angles of the individual photometric
points. Third, by computing the asteroid model brightnesses

over one full rotation for each epoch, we determine the
magnitudes of lightcurve brightness maxima. Martikainen
et al. (2021) then carried out linear least-squares fitting to
determine their phase curve slope parameter βmax, from
which they derived the full H, G12 phase function. As a small

TABLE 3 | The Tholen classes, the derived G-band absolute magnitudesGRG(1,0) andGEQ(1,0) for the reference geometry and equal-sphere case, respectively, the derived
absolute magnitudes HG using the H, G1,G2 fit, and the derivedG1 and G2 parameters for the equal-sphere photometric phase functions. The uncertainties are given in
units of the last digit shown.

Asteroid Tholen GRG(1,0) GEQ(1,0) HG G1 G2

(55) Pandora M 7.976 (67) 7.762 (69) 7.768 (69) 0.192 (54) 0.512 (73)
(95) Arethusa C 7.9151 (58) 7.892 (19) 7.899 (19) 0.626 (71) 0.159 (45)
(97) Klotho M 7.639 (18) 7.466 (23) 7.475 (24) 0.674 (85) 0.123 (54)
(122) Gerda ST 7.634 (80) 7.590 (76) 7.597 (76) 0.276 (88) 0.420 (98)
(245) Vera S 7.644 (29) 7.592 (17) 7.597 (18) 0.346 (40) 0.345 (28)
(246) Asporina A 8.377 (53) 8.410 (48) 8.412 (48) 0.163 (47) 0.532 (60)
(376) Geometria S 9.371 (45) 9.292 (47) 9.295 (47) 0.264 (48) 0.408 (52)
(377) Campania PD 8.8774 (98) 8.772 (38) 8.776 (38) 1.046 (64) −0.105 (41)
(404) Arsinoe C 8.967 (19) 8.721 (55) 8.733 (55) 0.958 (79) −0.050 (51)
(596) Scheila PCD 8.712 (29) 8.684 (29) 8.686 (28) 0.528 (63) 0.223 (40)
(731) Sorga CD 9.7093 (93) 9.5560 (92) 9.5681 (95) 0.432 (46) 0.282 (31)
(1251) Hedera E 10.732 (71) 10.773 (69) 10.788 (69) 0.357 (56) 0.373 (74)

FIGURE 8 | The distributions of the different Tholen classes (black dots)
and their range (black crosses) in the G1 and G2 parameter space based on
the equal-sphere phase functions. The grey dots represent single asteroids
and the green line shows how theG12 parameter maps intoG1 andG2 in
the H, G12 magnitude system.

TABLE 5 | Lightcurve characteristics for the simulated GS-asteroid. First, we give
the lightcurve identifier (k), time span (Tk), mean sampling time interval (ΔTk),
and number of observations (Nk). Second, we give the number of nodes for the
cubic spline fit based on the Bayesian information criterion (NBIC) and the rms-
value of the spline fit in relative magnitude (rms(m)). In the third column, for
example, 0.9674 (−3) stands for 0.9674 × 10–3.

k Tk ΔTk Nk NBIC rms(m)

(d) (d) (mag, ini)

1 0.3560 0.9674 (−3) 369 22 0.0096
2 0.3799 0.1076 (−2) 354 25 0.0101
3 0.3796 0.1078 (−2) 353 26 0.0102
4 0.4232 0.1096 (−2) 387 24 0.0098
5 0.4307 0.1297 (−2) 333 19 0.0102
6 0.2521 0.9233 (−3) 274 16 0.0101
7 0.3741 0.1140 (−2) 329 21 0.0104
8 0.3229 0.1228 (−2) 264 25 0.0094
9 0.2363 0.1041 (−−2) 228 9 0.0091
10 0.2303 0.1061 (−2) 218 10 0.0095
11 0.1995 0.1187 (−2) 169 13 0.0101
12 0.3140 0.5925 (−2) 54 18 0.0067
13 0.2461 0.4171 (−2) 60 12 0.0094
14 0.2083 0.1894 (−2) 111 12 0.0104
15 0.3135 0.1479 (−2) 213 20 0.0088
16 0.3181 0.8552 (−3) 373 14 0.0100
17 0.3178 0.9184 (−3) 347 13 0.0097
18 0.2375 0.1484 (−2) 161 16 0.0081
19 0.3321 0.8260 (−3) 403 15 0.0106
20 0.2375 0.9063 (−3) 263 11 0.0099
21 0.2836 0.8103 (−3) 351 14 0.0098
22 0.2797 0.8250 (−3) 340 12 0.0104
23 0.2170 0.2973 (−2) 74 10 0.0094
24 0.1456 0.3033 (−2) 49 7 0.0118
25 0.0169 0.7046 (−3) 25 4 0.0084
26 0.0851 0.1576 (−2) 55 8 0.0089
27 0.1154 0.1538 (−2) 76 5 0.0110
28 0.3833 0.1645 (−2) 234 15 0.0100
29 0.3757 0.1917 (−2) 197 11 0.0102
30 542.7794 0.1428 (2) 39 — 0.0100

TABLE 4 | Lightcurve characteristics for the simulated Gaussian-sphere asteroid
(GS-asteroid). “Class” denotes the Tholen taxonomical class, N and K denote
the numbers of observations and lightcurves, respectively, and Tobs is the time
span of the observations. The uppermost numbers refer to the simulated dense
ground-based observations, the ones in the middle to the simulated sparse
observations, and the lowermost ones refer to the combined observations.

Asteroid Class N K Tobs (d) Tobs (a)

GS-asteroid S 6,664 29 17,609.83 48.21
39 1 542.78 1.49

6,703 30 18,694.55 51.18
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improvement, we fit, directly, the H, G12 phase function to the
magnitudes of the brightness maxima. The resulting H and G12

parameters then allow us to predict the lightcurve brightness
maxima at arbitrary phase angles within 0°–120°. Fourth, a
reference phase curve is computed for selected phase angles
by averaging the magnitudes over one full rotation. Fifth,
magnitudes of lightcurve brightness maxima are computed
for the selected phase angles, together with the values for the
integrated disk function (∝ μ0/(μ + μ0) in Eqs 3, 4) and single-
scattering phase function, all in the magnitude scale for the
geometries corresponding to the brightness maxima. Sixth, a
phase function is computed for an equal-projected-area
spherical asteroid with the help of the single-scattering phase
function, made possible by the fact that the mean projected area
of a convex object in random orientation is one fourth of its total
surface area (van de Hulst, 1957). An absolute magnitude then
follows from the prediction to zero phase angle. Seventh, we fit
the equal-sphere phase function using the full H, G1, G2 phase
function. Finally, we compute the slopes of the mean-magnitude
reference phase curve (βref) and the phase function (βS) at the
20° phase angle. Repeating the computations above for all the
MCMC solutions allows us to obtain uncertainty estimates for

the absolute magnitudes and phase functions throughout the
entire phase curve analysis.

4 RESULTS AND DISCUSSION

The inverse methods are here applied to the ~500 asteroids with
ground-based and GaiaDR2 lightcurve data and to the simulated
lightcurve data of the GS-asteroid.

4.1 Asteroids of Gaia Data Release 2
Martikainen et al. (2021) carried out MCMC convex lightcurve
inversion for some 500 asteroids with photometric data deriving
from Gaia DR2. In the present study, we make use their 5,000
MCMC samples for each asteroid and revisit the photometric
phase function retrieval with improvements described in Sections
2 and 3. The number of successful phase function retrievals
increased and 13 new asteroids were incorporated into the
analysis, bringing the total number of successful retrievals to
358. The improvements further allowed us to derive uncertainties
for the reference phase curves and final equal-sphere phase
functions and absolute magnitudes. Whereas Martikainen
et al. (2021) documented photometric slopes at 20° phase
angle for the reference geometry of equatorial illumination
and observation, we proceed to provide the full photometric

TABLE 6 | Lightcurve characteristics for the GS-asteroid in the case of relative
photometry. First, we give the lightcurve identifier (k), effective number of
observations (Nk,eff, Eq. 20), and the resulting initial uncertainties (σϵ,k, “ini”).
Second, we give the final uncertainties (σϵ,k, “fin”) and rms-values (rms(m), “fin”) for
the best-fit model from convex inversion.

k Nk,eff σ,k σ,k rms(m)

(mag, ini) (mag, fin) (mag, fin)

1 6.1246 0.0748 0.0938 0.0121
2 5.5051 0.0812 0.1093 0.0136
3 5.4936 0.0816 0.0918 0.0115
4 5.4033 0.0827 0.0939 0.0111
5 4.5674 0.0872 0.0947 0.0111
6 6.4165 0.0658 0.0762 0.0117
7 5.1952 0.0825 0.0947 0.0119
8 4.8254 0.0694 0.0873 0.0118
9 5.6908 0.0576 0.0604 0.0095
10 5.5814 0.0592 0.0611 0.0098
11 4.9902 0.0590 0.0632 0.0109
12 1.0000 0.0491 0.1220 0.0166
13 1.4205 0.0610 0.0954 0.0147
14 3.1281 0.0617 0.0835 0.0140
15 4.0068 0.0645 0.0957 0.0131
16 6.9281 0.0733 0.0753 0.0103
17 6.4510 0.0712 0.0741 0.0101
18 3.9917 0.0517 0.0567 0.0089
19 7.1727 0.0793 0.0795 0.0106
20 6.5369 0.0628 0.0671 0.0106
21 7.3120 0.0681 0.0699 0.0101
22 7.1810 0.0714 0.0734 0.0107
23 1.9931 0.0573 0.0641 0.0105
24 1.9533 0.0589 0.0601 0.0120
25 8.4081 0.0144 0.0164 0.0095
26 3.7597 0.0339 0.0378 0.0099
27 3.8517 0.0487 0.0492 0.0111
28 3.6011 0.0810 0.0898 0.0111
29 3.0910 0.0818 0.0931 0.0117
30 39.0000 0.0100 0.0100 0.0068

TABLE 7 | As in Table 6 for the GS-asteroid in the case of absolute photometry
with Nk,eff = 1 in Eq. 23.

k Nk,eff σ,k σ,k rms(m)

(mag, ini) (mag, fin) (mag, fin)

1 1.0 0.1850 0.2573 0.0134
2 1.0 0.1905 0.2895 0.0154
3 1.0 0.1911 0.2275 0.0121
4 1.0 0.1923 0.2347 0.0119
5 1.0 0.1863 0.3252 0.0178
6 1.0 0.1667 0.2451 0.0148
7 1.0 0.1881 0.2394 0.0132
8 1.0 0.1525 0.2415 0.0149
9 1.0 0.1375 0.1642 0.0109
10 1.0 0.1398 0.1843 0.0125
11 1.0 0.1317 0.1484 0.0114
12 1.0 0.0491 0.1460 0.0199
13 1.0 0.0727 0.1128 0.0146
14 1.0 0.1091 0.1366 0.0130
15 1.0 0.1291 0.2316 0.0159
16 1.0 0.1930 0.2372 0.0123
17 1.0 0.1808 0.2442 0.0131
18 1.0 0.1033 0.4010 0.0316
19 1.0 0.2123 0.2930 0.0146
20 1.0 0.1604 0.2089 0.0129
21 1.0 0.1841 0.1962 0.0105
22 1.0 0.1912 0.2237 0.0121
23 1.0 0.0809 0.1030 0.0120
24 1.0 0.0823 0.0874 0.0125
25 1.0 0.0419 0.0528 0.0106
26 1.0 0.0657 0.0754 0.0102
27 1.0 0.0956 0.1104 0.0127
28 1.0 0.1537 0.1813 0.0119
29 1.0 0.1438 0.1729 0.0123
30 39.0 0.0100 0.0100 0.0063
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phase function of a fictitious spherical object with surface
scattering properties equal to those of the asteroid. Note that
the earlier work addressed the estimation of the equal-sphere
photometric slope across the phase-angle range of the Gaia
observations, by incorporating the corresponding slope
parameter in MCMC lightcurve inversion. As the phase-angle
ranges differed for each asteroid, the slopes also differed a priori,
sometimes substantially. The remedy utilized by Martikainen
et al. (2021) was to move to the reference geometry and
project the photometric slopes to the same phase angle of 20°.
Due to the fact that, in the reference geometry, we replace the
linear model by the H, G12 phase function and repeat the analysis
separately for each MCMC sample solution, we are capable of
carrying out the analysis of uncertainties all the way to the equal-
sphere phase functions. Complete tables including all the present
results for the Gaia DR2 phase functions are available from the
authors.

Figure 2 shows example lightcurves for asteroid (167) Urda
together with best-fit convex model predictions and MCMC
uncertainty envelopes. The sparse Gaia DR2 lightcurve is
accurately modeled with realistic model uncertainties.
Modeling for the dense ground-based lightcurve is
satisfactory. Figure 3 presents histograms of the βS (20°) and
βref values that were obtained for 358 asteroids. To reiterate,
βS(20°) refers to the photometric slope from equal-sphere phase
function obtained at the 20° phase angle, and βref refers to the
slope of the mean-magnitude reference phase curve at the same
phase angle. The βref values show no significant differences

compared to the values derived in the previous study by
Martikainen et al. (2021). The values of βS and βref range
from 1.3 to 5.3 mag/rad and are almost identical which can
be seen in Figures 3, 4 with the exception of two noticeable
outliers. The asteroid (15172) 3086 P-L shows a deviation of
0.19 mag/rad. It has only 3 lightcurves with a total of 398
observations. The phase-angle range of the Gaia lightcurve is
8°. Asteroid (5902) Talima shows a slightly larger deviation of
0.23 mag/rad. It has only 3 lightcurves totaling 29 observations.
Again, the phase-angle range of the Gaia lightcurve is 8°. For
these objects, the small number of ground-based lightcurves
gives rise to large uncertainties.

For the vast majority of the asteroids presently studied, the
absolute magnitude referring to random orientation is brighter
than the absolute magnitude referring to the reference
geometry. The explanation derives from a bias in the
reference geometry. For the sake of clarity, let us
characterize the shape of the asteroid by the semiaxes a ≥
b ≥ c as in the ellipsoidal model. On one hand, in the reference
geometry, an asteroid rotating about its axis c of maximum
inertia will never be viewed with its maximum projected area
pointing in equatorial directions, whereas, in random
orientation, maximum-projected-area viewing is enabled.
Consequently, the asteroid exhibits a larger mean projected
area in random orientation than in the reference geometry and
the resulting absolute magnitude is brighter. On the other
hand, in the reference geometry, in the unlikely case of an
asteroid rotating about its long axis a of minimum inertia,

FIGURE 9 | Example photometric lightcurves for the Gaussian-random-sphere asteroid (GS-asteroid). We show the dense photometric lightcurves #12 and #5
and the sparse lightcurve (blue circles; left, middle, and right, respectively; see Tables 5–7) together with the best-fit convex model lightcurves (red crosses) with 1-σ
standard deviations (red bars) and uncertainty envelopes using all 30,000 Markov-chain Monte Carlo (MCMC) sample solutions (red points). We depict the results for
relative (top) and absolute lightcurves (bottom). m, t, and k stand for relative magnitude, time from the first lightcurve observation, and lightcurve observation
counter, respectively.
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there is a bias towards the asteroid appearing larger in the
reference geometry than in random orientation. As most of the
asteroids are rotating about their axis of maximum inertia, at
the population level, the absolute magnitude is predominantly
brighter in the case of random orientation.

In Figure 4, we compare the βS (20°) and βref values. For every
asteroid, the value of the βref is marginally greater than or equal to
the value of βS (20°). The explanation can again be related to a bias
in the reference geometry. There, the minimum projected area of
an ellipsoidal asteroid appears in equatorial viewing. Recalling the
increase of lightcurve amplitude with phase angle assessed by
Zappalà et al. (1990), the reference geometry provides the steepest
phase curve dependence available for lightcurve brightness
minima of a given asteroid. As to the lightcurve brightness
maxima, phase curve dependences shallower than those in the
reference geometry are available in random orientation, as
geometries involving the maximum projected area of the

asteroid are exposed. It is reasonable that the mean-magnitude
reference phase curve turns out to be steeper than the mean-
magnitude random-orientation phase curve. Conversely, for
asteroids rotating about their axis of minimum inertia, the
random-orientation phase curves are steeper than the
reference phase curves.

The uncertainties for βS (20°) as a function of βS (20°) itself are
depicted in Figure 5. Martikainen et al. (2021) showed that,
despite of all the asteroid classes overlapping with each other to
an extent, the C-complex and the S-complex asteroids form their
own distinctive groups. This can be seen more clearly in our
results: the C-complex asteroids have larger βS(20°) values and are
located on the right, whereas the S-complex asteroids have
smaller βS(20°) and are located on the left. The X-complex and
end member asteroids are spread more widely as both groups are
heterogeneous, containing asteroids with different albedos and
compositions. In the middle and bottom panel of Figure 5, we
focus for simplicity on the Tholen taxonomic classification, and
do not check the possibility that some of the objects could belong
to a different class according to more modern taxonomic
classifications.

The relation between the derived G-band absolute
magnitudes G(1,0) and the V-band absolute magnitudes H
for the 358 asteroids is displayed in Figure 6. The V-band
absolute magnitudes were retrieved from the Jet Propulsion
Laboratory Small-Body Database. The figure shows that our
derived G-band magnitudes are nearly perfectly correlated save
for a few outliers. These are most likely caused by insufficient
lightcurve data. Asteroid (1368) Numidia shows a deviation of
0.81 mag from its respective H value, and has only 4 lightcurves
that totaled in 40 observations. The phase-angle range of the
Gaia lightcurve is only 4°, which is bound to result in
uncertainties. Asteroid (446) Aeternitas shows the largest
deviation of 1.37 mag. Despite having 128 lightcurves
totaling 1794 observations, the phase-angle range of the Gaia
lightcurve is again just 4°.

Table 1 describes the taxonomical classes, numbers of
observations, and phase-angle ranges for 12 example asteroids

TABLE 8 | Rotation period P (h), pole longitude λ (°) and latitude β (°), rotational phase ϕ (°), and phase-curve parameters m0 (mag) and β0 (mag/rad) for the simulated
Gaussian-sphere asteroid. The parameter values on the topmost line (GS-model) represent those utilized to simulate the observations. For the simulation of the
scattering model, see text. On the lines that follow, the parameter values represent least-squares solutions (LS) and means fromMCMC sampling (MCMC) as obtained from
ellipsoid inversion (EI) and convex inversion (CXI) in the cases of relative (Relative) and absolute simulated observations (Absolute). For theMCMC solutions, the parameter 1-σ
standard deviations are given in the units of the last digit shown.

P λ β ϕ m0 β0

GS-model 10.17,395,622 25.018 62.89 110.09 − −

Relative
EI, LS 10.1739544 23.5 61.3 116.3 — 2.07
EI, MCMC 10.1739547 (26) 23.9 (3.8) 60.5 (4.0) 116.1 (3.6) — 2.06 (23)
CXI, LS 10.17,395,626 24.5 62.7 — — 1.833
CXI, MCMC 10.17,395,623 (42) 24.80 (73) 62.5 (1.1) — — 1.822 (61)

Absolute
EI, LS 10.1739532 28.9 58.2 112.1 0.205 1.64
EI, MCMC 10.1739544 (42) 28.5 (1.5) 58.0 (3.7) 112.9 (1.9) 0.181 (54) 1.67 (10)
CXI, LS 10.17,395,567 24.52 63.0 — 0.227 1.598
CXI, MCMC 10.17,395,556 (68) 24.63 (59) 62.9 (1.3) — 0.226 (21) 1.601 (47)

TABLE 9 | Correlation coefficients for the rotation period P (h), pole longitude λ (°)
and latitude β (°), rotational phase ϕ (°), and phase-curve parametersm0 (mag)
and β0 (mag/rad) for MCMC lightcurve inversion using ellipsoids (EI for ellipsoid
inversion) and convex shapes (CXI for convex inversion) in the case of the
simulated GS asteroid. The upper (lower) triangles depict the coefficients in the
case of relative (absolute) simulated observations.

P λ β ϕ m0 β0

EI
P — −0.049 0.30 −0.00084 — −0.039
λ −0.17 — −0.25 −0.94 — −0.54
β 0.18 −0.48 — 0.16 — −0.20
ϕ 0.23 −0.79 0.26 — — 0.53
m0 −0.21 0.14 −0.011 −0.11 — —

β0 0.13 −0.064 0.049 −0.020 −0.92 —

CXI
P — −0.0075 0.34 — — −0.22
λ −0.17 — −0.51 — — −0.27
β 0.31 −0.74 — — — −0.29
ϕ — — — — — —

m0 −0.010 0.023 −0.086 — — —

β0 0.054 −0.015 0.095 — −0.96 —
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FIGURE 10 |MCMC sampling of the rotational, shape, and photometric phase-curve parameters for the GS-asteroid simulation in the case of relative lightcurves.
The marginal probabilitity densities are characterized by an unbiased sub-sample of 1,000 parameter sets selected from the complete sample of 30,000 sets. We depict
rotational pole longitude (λ) and latitude (β) vs. rotation period (P; up to the left andmiddle, respectively), pole longitude vs. pole latitude (up to the right), example spherical
harmonics coefficients a20 and b21 vs. rotation period (down to the left and middle, respectively), and photometric slope (βS (20°)) vs. rotation period (down to the
right). The red, dotted line marks the true rotation period.

FIGURE 11 | As in Figure 10 in the case of absolute photometry.
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chosen for a more detailed study as in Martikainen et al. (2021).
Thereafter, Figure 7 showcases the random-orientation phase
functions along with the H, G1, G2 fits for asteroids (55) Pandora,
(95) Arethusa, (245) Vera, (596) Scheila, (731) Sorga, and (1251)
Hedera. These asteroids were chosen to demonstrate different
Tholen classes and to compare our results to the phase functions
shown inMartikainen et al. (2021). TheH,G1,G2 phase functions
were fitted using the phase angles of 0.0°, 0.3°, 1.0°, 4.0°, 8.0°, 12.0°,
20.0°, 30.0°, and 50.0°. A noticeable change to results by
Martikainen et al. (2021) comes up in the order of the phase
functions in terms of their slope at 20°. In particular, the asteroids
(245) Vera and (1251) Hedera have exchanged places. We are still
involved in analyzing scarce Gaia DR2 data and expect to be able
to offer more solid conclusions based on the forthcoming Gaia
DR3 data.

Table 2 provides a detailed comparison, including
uncertainties, of the phase function slopes βS, βref, and βS
(20°). It is clear that the latter two are closer to one another
than to βS that has been computed over a different phase-angle
range for each asteroid. When comparing to phase-angle ranges
documented in Table 1, a systematic behavior is seen: for phase-
angle ranges located towards phase angles smaller than 20°,
those local slopes are higher than the slope βS(20°). This derives
from the smoothly onsetting opposition effect prominent at
small phase angles. For phase-angle ranges centered near
20°, the two slopes are similar. Finally, asteroid (245)
Vera shows a phase function strikingly similar to that of
the Moon. In Table 3, absolute magnitudes with
uncertainties are collected for all 12 example asteroids. For
most of the asteroids, the reference absolute magnitude is
fainter than the random-orientation one, but there are two
exceptions, (246) Asporina and (1251) Hedera. Whether
these asteroid rotate about their axes of minimum inertia
remains as an open question that may well be resolved by
the forthcoming Gaia DR3 data.

We present the derived G1 and G2 parameters for the different
Tholen classes in Figure 8 together with the G12 parameter
mapping to G1 and G2 in the H, G12 magnitude system. It is
possible to distinguish three groups in theG1,G2 parameter space:
the first group contains the M and S classes, the second group
contains the D class, and the third group consists of the C, G, and
F classes. The figure also includes A, P, X, and B classes that each
contains a single asteroid. Our results differ from those of
Martikainen et al. (2021) as they pointed out only two
distinctive groups. The updated computations suggest that, for
the M and S classes, the G1 parameter is smaller and the G2

parameter is larger, moving the group toward the upper left. The
opposite happens to the third group as the G1 parameter is larger
and the G2 parameter smaller than in the previous computations
moving the group to the lower right. As above, we must
emphasize the preliminary nature of the studies by us and
Martikainen et al. (2021), due to the scarce data available. We
also recall that, in producing the plot in Figure 8, we did not
check the possibility that, according to more modern taxonomic
classifications, some of the objects we have analyzed could belong
to a different class.

4.2 Gaussian-Sphere Asteroid
The Gaussian-random-sphere asteroid simulation is carried out
using the observational cadence of asteroid (26) Proserpina both
for the Gaia DR2 and ground-based observations (Durech et al.,
2010; Gaia Collaboration et al., 2018; Muinonen et al., 2020). It
involves the shape and rotation model in Torppa and Muinonen
(2005) and the so-called lunar mare surface scattering model
(Muinonen et al., 2015;Wilkman et al., 2015) of the form in Eq. 5.
The asteroid is assumed to have a photometric phase function
coinciding with the H, G1, G2 fit to the lunar phase curve
(Muinonen et al., 2010). Basic information about the
simulated observations is offered in Table 4. Zero-mean
Gaussian random errors with a standard deviation of 0.01 mag
were added to the numerically integrated magnitudes.

There are 29 dense lightcurves with altogether 6,664 data
points and a single sparse lightcurve with 39 data points
simulated for the GS-asteroid (Table 4). The total number
of points is thus 6,703, spanning more than 51 years. The data
set covers a phase-angle range from 1.77° to 21.62°, altogether
19.85°. Note that the single sparse lightcurve covers the phase
angle range of ~14–22° and does not constrain the opposition
effect. Table 5 describes the properties of the individual
lightcurves in terms of their time spans, mean sampling
time intervals, and number of data points. Additionally,
cubic spline fits dictated by the Bayesian Information
Criterion (Liddle, 2007) for the numbers of evenly spaced
spline nodes are presented for each lightcurve. The rms-values
of the fits are in agreement with the 0.01-mag standard
deviation used to simulate the errors.

Lightcurve inversion for the GS-asteroid data was carried out
using Lommel-Seeliger ellipsoids and general convex shapes for
two principal cases: one where all of the lightcurves were assumed
to represent relative photometry and the other where all were
assumed to represent absolute photometry. In addition, two error
models were studied for each of the principal cases: the first model
assigned a unit weight for each ground-based lightcurve, whereas
the second model differed for the relative and absolute
photometry as described in Section 3. Consequently, the
analysis consisted of 8 different case studies.

In the case of convex inversion, after in-depth studies using least
squares and MCMC, the error model for relative photometry was
chosen to be the conventional one presented in Muinonen et al.
(2020), whereas the errormodel for absolute photometry was taken
to be the one with a unit weight for each dense ground-based
lightcurve. The latter, conservative error model was required to
account for, primarily, the systematic errors arising from the
forward modeling of the inverse problem. Likewise, in ellipsoid
inversion concerning both relative and absolute photometry, a unit
weight was assigned for each dense ground-based lightcurve.

Least-squares fitting and MCMC sampling were carried out
for all cases. In final MCMC inversion, 30,000 samples were
computed using Lommel-Seeliger ellipsoids and 30,000 samples
were computed using general convex shapes. Altogether, of the
order of a month of sequential CPU time was required. Tables 6,
7 describe, for convex inversion, the details of the initial and final
models of uncertainties in the cases of relative photometry and
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absolute photometry, respectively. The tables include the effective
number of observations for each lightcurve, to be compared to the
actual number of observations (Table 5). The final rms-values on
the magnitude scale indicate that, even with convex inversion, the
goodness of fit cannot reach the standard deviation used to
simulate the errors. This is due to the forward modeling
incorporated in the inversion, in particular, due to the
restrictive linear-exponential phase function and the pure
Lommel-Seeliger scattering model. Indeed, we can see that the
fits are better for the case of relative photometry, due to the less
stringent requirements on the phase function.

Figure 9 shows examples of simulated lightcurves and the
modeling results from MCMC sampling. The overall match
between the simulated observations and modeling is quite
satisfactory, but there are some systematics present, in particular,
for the dense lightcurve #12 in the case of relative photometry. The
conservative error model for absolute photometry shows up as large
uncertainty envelopes using all of the MCMC samples, the standard
deviations being significantly smaller.

Table 8 gives the true rotational parameters used in the
generation of the simulated data. Thereafter, it includes the
results from least-squares and MCMC inversion, using ellipsoids
and general convex shapes, for the rotational and phase function
parameters in the cases of relative and absolute simulated data. Note
that the angular width of the opposition effect has been assumed to
be α0 = 3° in the cases of absolute data. The reason is that the present
data set has been insufficient to reliably predict the angular width.
With the fixed value of α0 = 3°, we have βS (20°) ≈ β0 +m0 × 0.02431/
rad from Eq. 9. For the absolute photometry, the mean values from
MCMC sampling are βS(20°) = 1.725 mag/rad using ellipsoid
inversion and βS(20°) = 1.670 mag/rad using convex inversion.
Both values remain reasonably close to the corresponding values
of β0. Based on theH,G1,G2 fit to the lunar phase curve (Muinonen
et al., 2010), the lunar photometric slope at 20° phase angle is 1.659
mag/rad. We obtain βS(20°) = 2.06 ± 0.23, 1.825 ± 0.063, 1.725 ±
0.085, and 1.670 ± 0.041 in the cases of ellipsoid and convex
inversion with relative data and ellipsoid and convex inversion
with absolute data, respectively. With absolute photometry, both
convex and ellipsoid inversion yield accurate results. For relative
photometry, the retrieved slopes differ more substantially from the
lunar slope. Based on the uncertainties, the lunar slope is, however,
encompassed with reasonable probability.

Table 9 gives the correlation coefficient for the rotational and
phase function parameters, as computed from the MCMC
samples. Considerable and realistic correlations are found for
pole longitude and latitude and for m0 and β0 in the case of
absolute photometry. In ellipsoid inversion, the rotational phase
correlates with the pole longitude.

It is clear that, with ellipsoids, there can be statistically significant
differences from the true values of the parameters. However, with the
current error modeling, ellipsoid inversion works in an acceptable
way both for relative and absolute photometry. For more solid
conclusions, additional examples must be studied. Convex inversion
works well for both relative and absolute data.

Figures 10, 11 depict MCMC samples from convex inversion
for the rotational and photometric parameters, and two spherical
harmonics coefficients of the Gaussian surface density. Whereas

the true rotation period is close to the centers of the distributions
for relative photometry, there are apparent biases for absolute
data. Since we have simulated the lightcurve data by using an
advanced particulate medium scattering model, there are strictly
no true values for the photometric parameters to compare with.

5 CONCLUSION

We have provided models of observational uncertainties for four
classes of lightcurves, that is, for dense relative, sparse relative,
dense absolute, and sparse absolute lightcurves. We have studied
the models using an asteroid simulation based on the Gaussian-
random-sphere shape model, making use of linear or linear-
exponential phase function models for phase angles below 50° on
the magnitude scale.

We have extended the Bayesian lightcurve inversion methods
to allow for full retrieval of phase functions with their
uncertainties and applied the methods to a set of some 500
asteroids with both ground-based and Gaia photometry. In
comparison to earlier work, certain differences are seen in the
mapping from apparent phase curves to intrinsic phase functions.
These differences may derive, to an extent, from the scarce
amount of Gaia DR2 photometry, and we expect to resolve
the issues with the forthcoming Gaia DR3 photometry.

Finally, an asteroid’s spectrum from the ultraviolet (UV)
through the visible (Vis) to the near-infrared (NIR) regime is
known to vary with phase angle, evidently due to the fact that the
phase function depends on the intrinsic brightness of the asteroid
at a given wavelength. In the present work, we have confirmed
that the shape and rotational parameters of the asteroid and the
geometry of illumination and observation have an effect on the
asteroid’s photometric phase function. The effect is different for
different geometric albedos. Thus, the asteroid’s UV-Vis-NIR
spectrum can depend on the shape and rotation parameters and
vary as a function of the geometry of illumination and
observation. It can be particularly enlightening to consider
laboratory spectrometric measurements, such as those by
Cloutis et al. (2012), extended to analogs of complete
asteroids. The phase curve effects on the UV-Vis-NIR
spectrometry and spectropolarimetry of asteroids remain as an
open problem for future theoretical, observational, and
experimental studies.
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