
Taxonomy of Asteroids From the
Legacy Survey of Space and Time
Using Neural Networks
A. Penttilä1*, G. Fedorets2 and K. Muinonen1

1Department of Physics, University of Helsinki, Helsinki, Finland, 2Astrophysics Research Centre, School of Mathematics and
Physics, Queen’s University Belfast, Belfast, United Kingdom

The Legacy Survey of Space and Time (LSST) is one of the ongoing or future surveys,
together with the Gaia and Euclid missions, which will produce a wealth of
spectrophotometric observations of asteroids. This article shows how deep learning
techniques with neural networks can be used to classify the upcoming observations,
particularly from LSST, into the Bus-DeMeo taxonomic system. We report here a success
ratio in classification up to 90.1% with a reduced set of Bus-DeMeo types for simulated
observations using the LSST photometric filters. The scope of this work is to introduce
tools to link future observations into existing Bus-DeMeo taxonomy.
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INTRODUCTION

Spectroscopy is the primary technique for the precise physical characterization of asteroids. Its use is
hindered by the requirements of time-consuming dedicated observations. Therefore, up-to-date
spectroscopy is only available for some thousands of asteroids out of around a million currently
known. However, the corpus of data required for physical characterization of asteroids can be and
has been greatly amended by less accurate albeit far more abundant multi-filter photometric
observations. In particular, sky surveys provide a plentitude of broad-band spectrophotometric
data of small Solar System bodies, despite their main purpose often being in other fields of
astronomy. In particular, the Sloan Digital Sky Survey (SDSS, York et al., 2000), by-design a
survey for galaxies, has been a valuable resource for asteroid characterization. DeMeo and Carry
(2013) were able to classify tens of thousands of asteroids from the SDSS Moving Object Survey
database (Ivezić et al., 2002) into the Bus-DeMeo taxonomy, and recently Sergeyev and Carry (2021)
performed probabilistic classifications for almost 400,000 asteroids in the SDSS data. These results
have been essential in mapping the spectral distribution of asteroids in the main belt, opening
insights to the mechanisms sculpting the Solar System (e.g., Raymond and Nesvorný, 2021, and
references therein).

The next generation of synoptic sky surveys is headed by the Vera Rubin Observatory’s Legacy
Survey of Space and Time (LSST; Ivezić et al., 2019), going two magnitudes deeper compared to
SDSS. One of four major science goals for LSST will be the inventory of the Solar System (Jones et al.,
2009; Schwamb et al., 2018). Currently expected to commence its nominal decade of operations in
2024, LSST is anticipated to discover 5.5 million new small Solar System objects (LSST Science
Collaboration 2009, Chapter 5) from close-approaching near-Earth asteroids and objects inside
Earth’s orbit all the way to the distant realms of the transneptunian object population.

The number of asteroid discoveries and observations by LSST depends heavily on the survey
cadence of LSST, which is under discussion as of late 2021. From the point of view of Solar System
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Science Collaboration, the so-called Northern Ecliptic Spur has
been identified as the primary requirement to amend the nominal
southern-sky (Wide-Fast-Deep) survey cadence to reach the
scientific goals. The Northern Ecliptic Spur is a crescent-
shaped area of 5,800 square-degrees north of the celestial
equator covering the ecliptic in its entirety with 10-degree
margins in latitude.

As a rule, LSST data will be released using two different
mechanisms (Jurić et al., 2017). Objects deemed to have high
importance will be released as alerts 60 s after the observation.
Generally, all observed and calibrated data will be distributed
through annual data releases. In addition to alerts and data
releases for all LSST data, Solar System observations will be
submitted daily to the Minor Planet Center (e.g., Jurić et al.,
2021). These daily submissions will be resubmitted upon
recalibration of astrometry and photometry with annual data
releases. The bulk of new asteroid discoveries is anticipated
during the first year of LSST operations, but the photometric
corpus of observations will be updated throughout the planned
10-year survey.

It would be extremely interesting to classify the asteroids
observed by LSST using a taxonomic system, namely the Bus-
DeMeo system. Having at least a preliminary classification for these
millions of asteroids would greatly improve our understanding of
the distribution of different materials and evolutional history in the
asteroid population. We have similar new opportunities also with
the upcoming data from the Gaia mission by the European Space
Agency. The Data Release 3 (expected in 2022) and the data
releases thereafter will include low-resolution spectral data from
hundred thousand or so asteroids with wavelengths of
0.33–1.05 µm. Penttilä et al. (2021) showed that by using a
neural network it is possible to obtain the Bus-DeMeo
taxonomic classification for the Gaia spectral observations, even
though the wavelength ranges for the Bus-DeMeo system
(0.45–2.45 µm) differ from the Gaia wavelengths. Since neural
networks are basically very flexible nonlinear approximators to any
function, they are suitable for various classification tasks. In this
article, we will study how a neural network, similar to that in
Penttilä et al. (2021), could classify the LSST spectrophotometric
observations into the Bus-DeMeo system.

MATERIALS AND METHODS

Combined Asteroid Dataset With Vis-NIR
Spectra and Bus-DeMeo Taxonomic
Classifications
The spectroscopic dataset utilized in this study is a combination
of spectroscopic observations used in DeMeo et al. (2009) and
observations from the MIT-Hawaii Near-Earth Object
Spectroscopic Survey (MITHNEOS; Binzel et al., 2019). The
Bus-DeMeo data has observations of 371 asteroids and the
MITHNEOS has 316. Both datasets also contain the
taxonomic classification of the objects together with their Vis-
NIR spectra. When the datasets are combined, there are 602
unique asteroids. However, after further inspection, there is a

total of 591 asteroids with spectral observations that could
reliably be resampled into the wavelength range of
0.45–2.45 µm. Finally, three of the asteroids are of unknown
taxonomy, and there is only a single asteroid for the taxonomic
types O and R, making these impossible to use when both training
and validating a classifier. Thus, the combined spectral dataset for
this study has 586 asteroids from 11 taxonomic types. For more
details about the processing of the data, see Appendix A from
Penttilä et al. (2021).

Simulating the Legacy Survey of Space and
Time Observations
The LSST survey will observe with six photometric filters. The
filters u, g, r, i, z, and y and their passbands are described in the
LSST webpage,1 and the filter transmission curves can be
downloaded from the LSST GitHub site.2 The half-maximum
transmission wavelength ranges for the filters are repeated here in
Table 1. To simulate how the LSST survey would see the asteroids
in our combined dataset, we convolve the spectral data with the
filter transmission curves to produce six “colors.” Since the sizes
of the asteroids are generally not known, the absolute albedo
information is not available in the future LSST observations.
Thus, we should only use normalized colors in taxonomic
classification.

We need to select one filter where the colors are normalized
to unity. The u filter is below the range of the Bus-DeMeo
wavelengths and cannot be used in Bus-DeMeo classification.
Thus, selecting the u filter for normalization does not decrease
the number of filters left for classification. On the other hand,
the spectra in our combined dataset are already normalized at
550 nm. For the classification it should not matter if the
normalization is done at 550 nm or at 375 nm (the center
of the u filter), so we can use the combined dataset and the
colors (without u) produced by the convolutions as they are in
this example study. It should be noted, however, that if we
want to build a taxonomic classifier for the actual LSST
observations following the example in this study, we will
need to augment our combined dataset with observations
down to the u filter and normalize there to produce the
correct numerical values for the coefficients in the neural
network classifier.

The average spectral curves for each Bus-DeMeo taxonomical
type are shown in Figure 1 together with the bars indicating the
LSST filters g, r, i, z, and y. All the subtypes of S, C, and
X-complexes are shown in the same subfigure with their main
type. By mere visual inspection, one can see that separating the
subtypes in a complex using only the LSST filters would be a hard
task, especially when remembering that the curves in the figures
show only the average behavior without any natural variation
within a subtype. Perhaps the subtype B for the C-complex with
its negative spectral slope can be recognized, therefore in our first
try on the classification, we will keep the B type but simplify all the

1https://www.lsst.org/about/camera/features
2https://github.com/lsst-pst
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other subtypes to their main type of S, C, or X. We will also keep
all the endmember types in the taxonomy. Therefore, our dataset
for testing the taxonomical classification on LSST observations
consists of five normalized colors and a taxonomic type with 11
categories for 586 objects.

Neural Network Classifier
The neural network (NN) classifier that we are testing in this
study is a two-layer, all-to-all-connected feed-forward network
that was presented in Penttilä et al. (2021). The input layer for the
normalized photometric color data that we are using has five

TABLE 1 | The six photometric filters used in the LSST survey, and their half-maximum transmission wavelength (HMTW) ranges.

LSST filters u g r i z y

HMTW range (nm) 350–400 400–552 552–691 691–818 818–922 948–1,060

FIGURE 1 | Spectral behavior of the three taxonomic complexes and the nine endmember types in the Bus-DeMeo taxonomy. The average spectral behaviors of
the types are shownwith black solid lines. The wavelength ranges fromwhich the LSST filters g, r, i, z, and y integrate the signal are shown in the backgroundwith colored
rectangles. The spectral curves are normalized to unity at 0.55-µm wavelength.
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nodes. This input layer is connected to the first hidden layer with
k nodes using hyperbolic tangent sigmoid (tansig) activation
functions. The second hidden layer has as many nodes as
there are classes in the data, starting with 11, using the so-
called softmax activation function. The second hidden layer
and the softmax function will produce the output, a single
taxonomical type for the object.

The network is initialized with random weights and biases and
trained using the Adam algorithm, a stochastic first-order
gradient-based optimization (Kingma and Ba, 2015). We did
validation rounds leaving randomly one-fourth of the data for
validation and trained the network with the rest of the data. We
increased the number of the nodes k in the first hidden layer, and

the number of the training rounds in the optimization until the
network accuracy was not increasing significantly. This process
led us to have 20 nodes in the first hidden layer, trained with
10,000 rounds with the Adam algorithm.

RESULTS

The final evaluation of the accuracy of the NN classifier was
obtained using leave-one-out cross-validation. We trained the
NN 586 times, each time leaving one asteroid out from the
training data. This asteroid was then classified with the trained
network, and the predicted taxonomic type was recorded.

The overall cross-validated accuracy, the fraction of correctly
classified objects to all objects, of the NN predicting 11 taxonomic
types using only the five normalized LSST colors was 85.8%. This
performance, considering that only five filters (plus one for
normalization) was used, is promising. The accuracy can be
compared to possible upper limit from Penttilä et al. (2021),
where they used the same NN classifier but for full spectral data
between 0.45 and 2.45 µm, reaching 90.6% accuracy. On the other
hand, a lower limit of 52.9% accuracy can be reached with the
most simplistic possible approach, i.e., classifying all objects as
S-complex since it is the most common one in the data.

In Table 2 we show the NN recall and precision for each type
or complex, together with their share in the data. Recall is defined
to be the fraction of correctly classified objects to all objects of that
class. Precision is the fraction of correctly classified objects to all
objects that were classified to that class. All the complexes S, C,
and X were quite well predicted with recall from 93.4% for the
C-complex to 80.4% for the X-complex. Several endmember
types, A, D, Q, and V were also well predicted. Quite poor
recall was received for B, K, L, and T-types. Precision scores
were not as low for any type, but the lowest was for predictions
into L-type, of which only 59.4% were actually from L-type.

TABLE 2 | The accuracy of the neural network classifier per taxonomic type and their share of the data. “Cc,” “Sc,” and “Xc” stand for C, S, and X-complexes.

Taxonomy A B Cc D K L Q Sc T V Xc Accuracy
(%)

Recall (%) 85.7 41.7 93.4 81.8 40.0 57.6 86.0 92.9 0.0 92.9 80.4 85.8
Precision
(%)

85.7 83.3 85.1 75.0 66.7 59.4 80.4 92.6 − 92.9 73.2

Share (%) 1.2 2.0 10.4 3.8 2.6 5.6 7.3 52.9 0.7 4.8 8.7 100

FIGURE 2 | Confusion matrix plot of the results of the NN taxonomic
classification of simulated LSST observations. The correct taxonomic types
are organized in rows and predicted types in columns. The rightmost column
is a row sum, and the bottom row is a column sum of the asteroids. For
example, for class D there are 22 asteroids of which 18 are correctly classified
as D class, and 2 incorrectly as X-complex. In total, 586 asteroids are
classified. The blue-to-white color of the cell indicates the share of the
asteroids from that row having the predicted type of that column. A perfect
classifier should have deep blue throughout the diagonal, and white
elsewhere.

TABLE 3 | The accuracy of the neural network classifier per taxonomic type with
simplified taxonomy. The “Cc” stands for the C-complex, now also including
the B-type. “D*” is the D-type and the T-type. “Sc*” is the S-complex with the K
and L-types. “Xc” is the X-complex.

Taxonomy A Cc D* Q Sc* V Xc Accuracy
(%)

Recall (%) 85.7 93.2 76.9 83.7 93.6 89.3 74.5 90.1
Precision
(%)

85.7 91.9 80.0 78.3 93.6 92.6 77.6

Share (%) 1.2 12.5 4.4 7.3 61.1 4.8 8.7 100
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The results are more accurately presented in Figure 2 with a
so-called confusion matrix. In this matrix, one can see into which
types the misclassifications are addressed. For example, none of
the four T-type asteroids are correctly classified, instead, two of
them are predicted as D, and one as L and X each. B-type is often
misclassified as C, which is not surprising, and K as S. If the
Q-type is misclassified, it is always misclassified as S. This is also
quite natural, since the Q-type is thought to be a fresh, non-space-
weathered counterpart of S.

Even though the overall accuracy of the NN classifier was quite
good, it is evident that some of the types cannot be predicted well
using only the LSST filters. These are the B, K, and T-types with
accuracies below 50%. Therefore, we will test the classification
again but with some types merged. We will merge the B-type into
the C-complex, the K-type with the S-complex, and the T-type
with the D-type. The results with this simplified taxonomy
showed that the accuracy of the L-type did not improve but
decreased, so finally we also merged the L-type with the
S-complex.

The cross-validated accuracy of the NN trained with the
simplified taxonomical types was 90.1%. All the individual
types had more than about 75% accuracy, see Table 3. The
confusion matrix in Figure 3 shows how the misclassifications
are distributed among the types. Overall, we find the results
very good.

DISCUSSION

The results presented here show that a feed-forward neural
network can be used to classify asteroid observations made
with photometric filters matching the ones planned for the
LSST survey. The classification into Bus-DeMeo taxonomy
(without subtypes of S, C, and X-complexes) has an 85.8%
accuracy, and by simplifying the taxonomic types we can
reach 90.1% accuracy. We think that this method is promising
to be used with the LSST asteroid data, at least for giving a
preliminary Bus-DeMeo taxonomic classification.

We note that our tests with the method assume that we have the
lowest-wavelength u filter observed for the asteroids with the LSST,
and that we can reliably augment the existing training data that we
used here into the same wavelengths. This is because we need to
have one filter for spectral normalization. If, for some reason, either
the upcoming observations or our training data will not have the u
filter values, we need to normalize using the five other filters. This
will still be possible, but it will have a decreasing effect on the
accuracy. We predict that the effect will be small enough to keep
the proposed method still useful, but another study verifying this
assumption would be needed if the situation would be realized.

The neural network designed for classification can also give
probability estimates for all the types of an object. Studying these
can be useful, and perhaps objects with relatively high probabilities of
the second-best taxonomic type can be marked for further
verifications. If the probability estimates will be used, we would
like to propose to study how robust the probability estimates are. The
trained neural network has always some randomness since the
training starts with random initial node weights and biases, and
the training algorithm is not guaranteed to find the global minimum
of the loss function. When comparing multiple identical networks
that are trained similarly but from random initial parameter values,
the actual classifications should not vary much, but the probability
estimates for the types might vary more. This can be studied, and if
there is significant variation, we would suggest using the method of
multiple independent neural network “voters,” as discussed in
Penttilä et al. (2021). In short, one would train several
independent classifiers, and form the final output probabilities by
taking the (trimmed) mean over the voters. This method will tackle
the possible problemof randomvariation in the probability estimates.

While the training of a neural network can be a somewhat
lengthy process demanding computer time, the evaluation using
the trained network is not an especially heavy task
computationally. Therefore, the proposed neural network
classifier should be possible to apply automatically to all LSST
survey asteroids, if so desired.
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