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The role and relevance of methanol in the origin and structure of the RNAworld

is discussed. Methanol is a pivotal, renewable, and regenerable source from

which almost all chemical materials, simple or complex, can be accessed.

Olefins and carbonyl compounds, amines and amino acids, peptides and

polypeptides, and the molecular building blocks in the initial stages of the

biological evolution to life’s origin are obtained through methanol as a source

material by its chemical transformation. The formation of methanol, whether in

stellar and interstellar media, in deep sea-bottom hot hydrothermal vents or

from geothermal sources, results from CO2 hydrogenation. It is the basic

reaction, setting the stage for the formation of fundamental “organic”

building blocks for the formation of simple prebiotic cells to subsequent

biological evolution to cells. The important observation of many

organics– hydrocarbons and ions including the large expanse of methane

and methanol in the interstellar medium and stellar peripheries is a clear

indication of “stellar reductive processes” and ensuing reactions shedding

light on the probable significant role of extraterrestrial methanol as the basic

sourcematerial toward amulti-step transformation into complex lifemolecules

such as RNA.
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1 Introduction

In this perspective, the relevance and significance of C1 molecules, especially the key

role of methanol in the formation of simple to complex organic molecules, in the

interstellar medium (ISM) is discussed. Since the presence of many of these molecules in

ISM and their role as leading sources to signature chemical units for life’s architecture

such as amino acids, proteins, nucleic bases, and nucleic acids in the terrestrial world are

well-known, the probability of a similar scenario in the astrochemical world is discussed.

Following the introduction (Section 1), a brief discussion of extraterrestrial molecules and

molecular ions, especially relevant C1 units (Section 2) is presented. In Section 3, the

formation of methanol in the stellar and interstellar media as well as the proposed routes/

constraints for its formation (Section 3.1), transformation of methanol to hydrocarbons
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(MTHC) and its relevance in terrestrial and astrochemical world

(Section 3.2), and the significance of methanol as a key synthon

to access complex organic molecules and eventually to RNA and

DNA (Section 3.3) is presented. The concluding Section 4

emphasizes the intermediacy of methanol as a reactive C1

building block and its key role in protocols that would lead to

the formation of fundamental building blocks for the entry to the

RNA world and its subsequent biological evolution to primitive

cells.

Chemistry plays a central role in every feature of human life, its

environment, and its multi-faceted society (Shaik, 2003; Bertozzi,

2015; Roth, 2015; Mahaffy et al., 2019). Behind life and its processes,

alongwith hydrogen and oxygen, themost important elementwhich

plays the biggest role is carbon. Miller & Urey (1959) pioneering

studies in search of primordial chemistry in the mid-20th century

rejuvenated serious discussions about the scientific understanding of

nature and the source of origin of life and lifemolecules. Their classic

experiment (Miller, 1953) was conducted using a mixture of simple

precursor molecules—hydrogen, ammonia, methane, and

water—under electric discharge or conditions thought to be

similar to those of the primordial soup (Oparin, 1924; Haldane,

1929; Oparin, 1952) which showed the formation of varied amino

acids, the building blocks to polypeptides and eventually proteins,

essential to the formation of living systems. Recent observations

indicate that the Earth’s original atmosphere and its chemical

composition might have been different from Miller’s conditions.

However, the results from his studies provide a significant insight

into the primordial molecular interaction and chemical aspects of

the evolutionary process toward further terrestrial life.

In Miller’s spark experiment, the gas mixture containing the

reactive product molecules HCN, aldehydes, or ketones was

subsequently allowed to disperse into the aqueous phase

where they underwent Strecker synthesis to yield amino acids

such as glycine and other compounds. Later, further simulation

studies with the permutation combination of similar

experimental conditions showed even the possibility of

extraterrestrial formation of many other building blocks such

as sugars and nucleotides, besides amino acids (Horst et al.,

2012). In the following decades, with the discovery of the

structure of nucleic acids and the development of modern

biology sparked by the revolutionary achievement of Watson

& Crick (1953), there has been a giant leap in our understanding

of biological systems and our quest to unravel the essential and

historical question of ages—origin and evolution of life from

inanimate precursor molecules.

In our search for the carbon source of these precursor

molecules, the possible role of the simplest C1 molecules such

as carbon dioxide (CO2), methane (CH4), or its oxygenate

methanol (CH3OH) and their derivatives has been a theme of

serious discussion in the last few decades. It is now quite clear

that under suitable conditions as in the liquid water lakes or in

the depth of the oceans of our Earth, seeding the simplest

inanimate precursor molecules such as methane, methanol,

and ammonia can lead to fundamental building blocks of life

such as amino acids, proteins, and sugars, as revealed by Miller’s

pioneering studies (Miller, 1953; Miller & Urey, 1959). The

relevance and significance of C1 molecules, especially

methanol as the source material for many higher organic and

biological molecules including the unique multifunctional

biopolymer, the RNA, will be discussed in the ensuing sections.

2 Extraterrestrial molecules and
molecular ions

Nucleosynthesis of carbon and its transformations in stellar

and interstellar media (ISM) is well known. The formation and

transformation of molecules and molecular ions play an

important role in the constitution and vitality of the

interstellar medium. Interstellar medium is rich in

C1 compounds and ions such as CH4, its protonated ion

CH5
+ and its oxygenated CH3OH, HCHO, CO, CO2, etc.

Astronomers have already identified over 250 molecular

species as interstellar molecules (Yamamoto, 2017; McCarthy

&McGuire, 2021; Woon, 2021; Guélin and Cernicharo, 2022). In

the ISM, the carbon atom remains in its ionized form C+, its

dominant form in the gas phase (Williams, 2005; Liszt, 2011). As

expected, this species and its hydrogenated and oxygenated

forms contribute to a subsequent chemical evolution to rich

C1 chemistry. White et al. (1999), Oka (2015) studied the

presence and spectral characteristics of CH5
+, the parent C1

carbonium ion, with reference to related studies by Olah et al.

(2009) in the development of non-classical carbonium ion

chemistry through his pioneering efforts in identifying this

fundamental species and its related ions along with a wide

array of classical carbocations (carbenium ions) under

terrestrial conditions in the condensed-state in super acid media.

Contrary to earlier thoughts that an interstellar medium

poses an unsafe atmosphere for the formation of organic

species and their survival, many molecules and ions (over

200), cyclic as well as open chain hydrocarbons and their

derivatives have been discovered since the last five decades

(Herbst & van Dishoeck 2009; Tielens, 2013; McGuire, 2022).

Well established by now, both methane and its mono oxygenate

methanol are among the most abundant molecular species in

interstellar clouds and stellar peripheries in the observable

galaxies spanning many billions of miles (Harvey-Smith &

Cohen, 2006; Heward, 2006; Whittet et al., 2011). In fact, it

was found that in high-mass protostellar object W33A, the

abundance of methanol (CH3OH) is significant, exceeding

that of both CO and CO2 (Gibb et al., 2000). Detection of

various carbocations and their terrestrial analogs starting from

CH5
+ (methanium ion) in Titan’s upper atmosphere through

Cassini–Huygens mission using the ion neutral mass

spectrometer (INMS) and the Cassini plasma spectrometer

(CAPS) instruments on board (Ali et al., 2013; Puzzarini
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et al., 2014; Ali et al., 2015) not only sheds light on the ongoing

abiotic organic synthesis in an extraterrestrial world—in the ISM

and on the surface of other planets and stars, but also its

remarkable relationship to non-classical carbonium ion

chemistry similar to that observed in the terrestrial world.

Studies of the aerosol contents in Titan’s

thermosphere–ionosphere by negative ion measurements by

the CAPS′ Electron Spectrometer (ELS) showed the formation

of unsaturated anion carbon chains and positive ion

measurements using the ion neutral mass spectrometer

(INMS) indicate cation formations of many aromatic

hydrocarbons (Sittler et al., 2020).

The discovery of many polyaromatic entities such as C7H11
+,

C11H9
+, C15H11

+, etc., on the surface of Titan discussed by Ali

et al. (2013, 2015) and their formation as vital intermediates

toward more complex systems starting with simple molecular

entities such as CH5
+ formed outside the terrestrial perimeter

emphasizes the role and the scope of astrosynthesis, which leads

to a molecular evolution from simple systems to complex systems

(Puzzarini, 2017). The relevance of an RNA–world hypothesis to

the origin of life is further supported by the current

understanding of the basic elements for life architecture such

as proteins (of which amino acids are the simple precursors) and

nucleic acids (both DNA and RNA, of which, the phosphate

backbone with ribose and nucleic bases are properly integrated)

(Figure 1) as well as the presence of their source chemical entities

in terrestrial, stellar, and interstellar media.

Apart from the Earth, in the other three so-called terrestrial

planets- Mercury, Venus, and Mars, presence of organics has

been reported. For example, a surface reflectance study with the

mercury laser altimeter (MLA) on board the MESSENGER

spacecraft on permanently shadowed areas near Mercury’s

north pole indicated the presence of surface water-ice in the

optically bright regions (bright deposits) and a surface layer of

complex organic material in the dark regions (dark deposits),

which might have originated from impacts of comets or volatile-

rich asteroids (Newmann et al., 2013). A recent re-analysis of the

data from a large probe neutral mass spectrometer (LNMS) on

board the Pioneer Venus Multiprobe (Pioneer 13) during its

mission in 1978 showed the presence of traces of several chemical

species related to anaerobic phosphorus metabolism

(phosphine), anoxygenic photosynthesis (nitrite), and the

nitrogen cycle in Venus’ clouds (Mogul et al., 2021). Reports

from the SAM (Sample Analysis at Mars) data showed conclusive

evidence for the presence of organic compounds, both aliphatic

and aromatic including thiophene in samples drilled out from

Mars’Gale Crater (Lyons et al., 2005; Kite et al., 2017; Eigenbrode

et al., 2018; ten Kate, 2018). Despite the fact that no conclusive

evidence for extraterrestrial biology has been obtained so far, all

these findings underscore our statement in one of our previous

reports (Olah et al., 2016a) as noted by Puzzarini (Puzzarini et al.,

2017), “Of particular interest to us is the remarkable detection of

varied carbocations and their similarity with their terrestrial

analogs. The proven similarity with our terrestrial studied

FIGURE 1
Chemistry of RNA, DNA, and protein- fundamentals of the property of life.
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chemistry provides the first scientific evidence that our Earth is not

a unique celestial body for producing the chemical building

blocks.” All these observations suggest that these ions and

molecules define the future of chemical and biological

complexity and activity in the interstellar medium.

3 Relevance and significance of
methanol in stellar and interstellar
media

Methanol is one of the most significant, highly versatile

chemicals with innumerable applications—as a synthetic

feedstock for various commodity chemicals, as fuel, and as a

source material in fuel cells and pharmaceuticals. Its terrestrial

and extraterrestrial presence suggests its adept role in the tellural

and the astrochemical world. Parent C1 hydrocarbon methane, the

major ingredient of Earth’s natural gas and the terrestrial

hydrogenation product of CO2 (Sabatier’s methanation

reaction) (Sabatier et al., 1902; Fujita et al., 1993; Wang et al.,

2011Fechete, 2016) is also present in Mars’ atmosphere in

conspicuous amounts with seasonal variation (Webster et al.,

2018). The partially hydrogenated intermediates formic acid,

formaldehyde, and methanol are key synthons in many organic

synthetic reactions. The indisputable role of these signature

substances, especially methanol in the molecular evolution to

cells’ building blocks such as sugars, nucleic bases, and proteins

following known synthetic pathways ismanifested bymany studies

in recent years. This motivates us for further exploration of

astrochemical evolution in the stellar and interstellar territory.

3.1 Formation of methanol in stellar and
interstellar media

Though homogeneous and heterogeneous reductions of CO2

to methanol are already established under terrestrial conditions,

the exact extraterrestrial conditions (and the suggested pathways)

for the formation of vast methanol clouds in stellar and

interstellar regions are yet to be revealed. The overall

reduction process (methanation) is exothermic

(ΔH298K = −39.4 kcal/mol, Scheme 1, Eq. 1) but the initiation

of the process needs optimal conditions such as high pressure,

high temperature, and a suitable catalyst to overcome the kinetic

barrier. At the initial stage, the reduction process can proceed

through deoxygenation to CO (reverse water gas shift reaction,

Scheme 1, Eq. 2) (Porosoff et al., 2016) or even direct

hydrogenation to formic acid (HCOOH) if it meets the

appropriate conditions. Both of these initiation steps (Scheme

1, Eqs 2, 3) are endothermic processes. However, after the

initiation at the region of high temperature and pressure in

the interstellar medium and the dispersal to the interstellar

medium with drastic reduction in concentration and

temperature, the probability for the controlled reduction

process in a thin layer of interstellar CO2 dust grains to

methanol by a diffused thin layer of hydrogen (similar to

terrestrial RWGS reaction) is worth considering. Various

possible steps during CO2 hydrogenation are shown in

Scheme 1. The first organic acid detected in the interstellar

medium was formic acid. A dense cloud of formic acid

(HCOOH) was located not only in the dark cloud (e.g., L

134 N) (Irvine et al., 1988; Irvine et al., 1990) but also inside

the hot cores (hot star-forming cores) in molecular clouds,

namely, Sagittarius B2, Orion KL, and W51 ((Liu et al., 2001;

Remijan et al., 2004; Tercero et al., 2018; Li et al., 2020). Detection

of compounds such as methylenimine (H2C=NH), intermediate

SCHEME 1
Different possible steps in CO2 Hydrogenation.

SCHEME 2
Formation of methanol by successive CO hydrogenation.
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hydrogenation products from HCN in the interstellar

atmosphere in cogent amounts also reveals the hydrogenation

process prevalent there (Dickens et al., 1997). Individual

hydrogenation experiment with both solid HCN and CH2NH

leads to the formation of methylamine suggesting the possibility

of CH2NH being the active intermediate during HCN

hydrogenation to CH3NH2. This shows the significance of the

incessant hydrogenation process occurring in ISM (Theule et al.,

2011).

The major route for the formation of methanol would be the

successive hydrogenation of CO on the surfaces of interstellar

dust grains. (Tielens & Whittet, 1997; Watanabe et al., 2004;

Hidaka et al., 2009). Using a cold (30 K) atomic hydrogen beam,

Watanabe et al. (2004) investigated the hydrogenation of CO on

pure solid CO and CO–H2O mixed ice at temperatures below

20 K and noticed that it proceeds efficiently producing methanol

in both cases. Upon exposure to cold H atoms, CO is consumed

with successive hydrogenation first to HCHO and subsequently

CH3OH, leading to a mixture of both HCHO and CH3OH below

12 K. H· has good mobility which favor the formation of

reduction products HCHO and CH3OH (Bredehöft, 2020).

Simulation studies also show that molecules such as CH3OH,

H3O, and CO2 can be formed in the solid state in the ISMwithout

the need for energetic processing such as thermal, UV/cosmic ray

processing (i.e., through H-atom addition) (Ioppolo et al., 2011).

The transition of CO2 from a solid form (dry ice, below 194.5 K)

to a gaseous form at and below the ambient pressure suggests a

much longer lifetime as solid and reactive interaction period for

CO2 with associated molecules in the interstellar ice grains

during various events at varying temperatures compared to

those for CO, which has a much lower freezing point (81.5 K,

ambient pressure) but a greater reactivity once it is formed.

For a successive hydrogen addition on CO to occur at very

low temperatures, quantum mechanical tunneling through the

activation barrier is suggested and the formation of methanol

occurs at the warm-up period and is then released when the dust

is warmed by radiation from the newly formed star. Garrod et al.

(2006) studied a gas-phase model that included the simulation of

the surface formation of methanol on ice grains similar to the

formation of molecular hydrogen. They also utilized a gas–grain

code suggesting a mechanism for desorption of methanol

following the warming-up due to exothermic chemical

reactions. This can be a viable route for the emulation of the

observed abundance of the gas-phase methanol as well as many

gas-phase species in the dark and cold molecular clouds such as

the well-known Taurus TMC1-CP (Soma et al., 2015). Since the

calculated activation barriers for step 1 and step 3 (Scheme 2) are

high, they are proposed to occur by quantum mechanical

tunneling reactions (Woon, 2002). Though the formation of

·CH2OH in the third step (3b) is energetically viable and

more exothermic than that of CH3O· (3a), its probability is

lower as it has a higher activation barrier (Tielens & Whittet,

1997; Woon, 2002; Osamura et al., 2005). However, it is possible

that favorable reaction conditions, which can reduce the

activation barrier, may also arise as a result of many

astrophysical events in the interstellar medium.

Methane absorbed on the surface of interstellar space ice/dust

grains, can facilitate methanol formation in an otherwise extreme

dilution of space as it can also act as a reductant at appropriate

temperature–pressure conditions developing over time during

stellar events as observed in our extensively studied single step bi-

reforming/oxidative bi-reforming reactions, under terrestrial

conditions though such a comparison needs to be justified by

further experimental studies (Olah et al., 2013; Olah et al., 2015;

Olah and Mathew, 2015). Carbon oxides synthesized by the

interaction of carbon and oxygen already formed in the

interiors of stars are ejected to ISM and undergo subsequent

hydrogenation on the surface of space ice/dust grains to give

methanol as observed in telluric chemistry. Recently, we achieved

direct glycol-assisted CO2 hydrogenation to methanol using

heterogeneous Cu/ZnO/Al2O3 with high efficacy, further

underscoring the relevance of our direct CO2-methanol

concept (Sen et al., 2021) in telluric chemistry. It emphasizes

the significance of the hypothesis of similar possibilities in the

interstellar medium.

A spectral survey of the star forming region W51 e1/e2,

mainly in the hot cores showed the signs of about 105 molecules

and their isotopic species (Kalenskii and Johansson, 2010). These

include CO, CS, HCN, CH3OCH3, CH3COCH3, CH3OCHO,

C2H5OH, CH3CN, CH3OH, H2O, and SO2 along with various

molecular ions such as N2H
+, HCO+, and HCS+. However, in the

condensed phase of interstellar dust grains, CO, CO2, and H2O

are the most abundant molecules. CO2 has been identified in

many interstellar sites such as dense ISM clouds, YSOs (young

stellar objects) (Ehrenfreund & Charnley, 2000), and comets

(Irvine et al., 2000; Bibring et al., 2015). Interestingly, the widely

accepted route for CO2 formation is the energetic processing of

carbon monoxide with water acting as the oxygen donor on dust

grain surfaces (Bredehöft, 2020). It reveals the interstellar water

gas shift reaction (WGSR) prevalent in the stellar/interstellar

medium. Therefore, it is quite reasonable to suggest that the

stellar equivalent of WGSR occurs at stellar peripheries and

reverse water gas shift (RWGS) reactions occur on dust grain

surfaces in the interstellar medium. Other products observed

during energetic processing studies {UV light (Milligan & Jacox,

1971; Allamandola et al., 1988; Watanabe & Kouchi, 2002;

Watanabe et al., 2007), slow and fast electron beams

(Yamamoto et al., 2004; Bennett et al., 2011; Petrik et al.,

2014a; Petrik et al., 2014b; Schmidt et al., 2019); X-ray (Laffon

et al., 2010)}, mimicking processes under radiative conditions

(such as cosmic radiations) in the interstellar medium include

formaldehyde, formic acid, and methanol. As early as over half a

century ago, many researchers were able to detect ammonia

(Cheung et al., 1968), methanol (Ball et al., 1970), formic acid

(Zuckerman et al., 1971), and formaldehyde (Snyder et al., 1969)

in the interstellar space where high energy radiation is imminent,
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hence the formation of amino acids in interstellar space is well

explicable. Wollin and Ericson (Wollin & Ericson, 1971) were

able to isolate a series of amino acids by mixing ammonia,

methanol, and formic acid/formaldehyde (all in gaseous form,

detected in interstellar medium) at 115°C and subjecting the

resulting product mixture to UV irradiation (275 W) at 35°C in a

trial to identify the products in an astrochemical context, though

the conditions and atmospheres do not hold an exact similarity.

Oxygen insertion into methane has been manifested to be an

alternate pathway for the formation of methanol as well as

complex organic molecules (COMs) on stellar/interstellar ice

dust particles (Bergner et al., 2017). In condensed systems,

oxygen insertion into CH4 has been demonstrated by the

photolysis of oxygenating compounds at very low

temperatures (9–25 K) under appropriate conditions such as

HOF in a CH4 matrix under high vacuum of ~10−7 Torr

(Appleman et al., 1989), N2O or O3 in to CH4 in an Ar

matrix (Parnis et al., 1993; Lugez et al., 1994), etc. UV–visible

irradiation (broad-band) of argon matrices containing 2% N2O

and 10% of methane resulted in the formation of CH3OH as the

dominant photoproduct from the reaction of methane with the

first excited atomic oxygen, O(1D) (Parnis et al., 1993). Similarly,

oxygen insertion in the C-H bond with O(1D) generated by ozone

during photolysis of CH4/O3 in a low-temperature argon matrix

gave CH3OH (Lugez et al., 1994) as the major product as noted in

the case of silane (SiH4) and ozone (Withnall & Andrews, 1988).

It is quite intriguing to note that the vibrational spectrum of the

product mixture obtained by the irradiation of a mixture of

CH3OH (0.1% in Ar) and ozone (0.5% in Ar) at 11 K, showed the

formation of CO, CH2O, H2O, and H2O2 revealing further

probable oxidation and oxidative dissociation pathways under

ISM-like conditions (Scheme 3). Methanol oxygenation can

occur either by oxygen insertion into the C-H bond or O-H

bond, C-H insertion leads to dihydroxy methane or methyl

hydroperoxide, which decomposes to formaldehyde and water.

Knowing the significance of methane, mono-oxygenate

methanol and its role as a key synthon toward many pivotal

substrates for their molecular evolution to complex biological

molecules; it is worthwhile to discuss a few prominent reactions,

which are suggested as fundamental routes and a practical

approach to their access.

3.2 Methanol-to-hydrocarbon process

Methanol-to-hydrocarbon (MTHC) process can be

considered as fundamental in the transformation of methanol

to complex organic molecules (COMs). Methanol is spotted in

many regions of the interstellar medium (vide supra). Vast areas

of the methanol cloud spread into billions of square miles in the

interstellar medium similar to the one as a cloudy bridge of

methanol, which surrounds Sagittarius B2, is 288 billion miles

wide in the milky way Galaxy itself (Harvey-Smith & Cohen,

2006; Heward, 2006; Whittet et al., 2011). Therefore, it is quite

rational in viewing its astrochemical role as a prominent

molecular synthon in the formation of COMs in the

interstellar medium. In our terrestrial (telluric) hydrocarbon

chemistry, methanol-to-hydrocarbon (MTHC) transformations

over acidic zeolites (HZSM-5) by the Mobil research team

(Miesel et al., 1976; Chang & Lang, 1977; Rollmann, 1982) as

well as via a bifunctional acid−base catalysis by Olah (1983); Olah

et al. (1984); Olah & Prakash (2009) have been established in the

1970s, 1980s, and later (Scheme 4). Gasoline shortage in the

1970s led to pioneering efforts by many research groups to

develop a methodology for synthetic fuels (synfuels). The

simple and convenient commercially developed catalytic

process for the conversion of methanol to hydrocarbons

(gasoline with high octane numbers, 90–95) using shape-

selective zeolite catalysts was first announced by Mobil

Chemicals in 1976 (Miesel et al., 1976). Gasoline of superior

quality has been produced in much higher yield by this method

compared to the nature of the product obtained by

Fischer–Tropsch (FT) chemistry. These studies showed that

not only methanol, but many hetero-organic compounds

could also lead to hydrocarbons with high efficacy (Chang &

Silvestri, 1977; Chang & Silvestri, 1987). Further studies (Liang et

al., 1990) showed that SAPO catalysts drive this reaction with

high conversion and yield. In general, methanol-to-hydrocarbon

(MTHC) processes (Scheme 3) include methanol-to-olefin

(MTO), methanol-to-gasoline (MTG), and methanol-to-

aromatics (MTA) processes.

As more and more secrets of interstellar space and prevailing

molecular composition thereof unfold, it is no wonder that

SCHEME 3
Oxygenation of methane and methanol under ISM-like
conditions.
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processes such as AMTO (astro methanol to olefin process similar

to the terrestrial methanol to olefin process) can also occur.

Computational studies showed that the conversion of methanol

to ethylene can occur through the protolytic cracking of CH3OH2
+

in the presence of H3
+ to give CH5

+, a dominant astrochemical

species in ISM (Olah et al., 1969; White and Tang, 1999; Oka,

2015), followed by a radiation-induced cleavage to CH2 singlet and

exergonic dimerization to ethylene. The reaction of H3
+, also a

dominant species in ISM (Oka, 2013; Oka, 2019), with CH3OH2
+

to form CH5
+ is shown to be exothermic by 40.3 kcal/mol

(Figure 2, Eq 4; ΔH = −41.7 kcal/mol by our earlier calculation-

Olah et al., 2016b), suggesting that the AMTO route for the

formation of ethylene from methanol is overall

FIGURE 2
Probable pathways involved in the formation of ethylene and propylene by the “Astrochemical methanol to olefins (AMTO)” process in the ISM,
the comparison of thermodynamic parameters at 298.15 and 10 K.

SCHEME 4
MTHC Process: From C1-oxygenate methanol to higher
hydrocarbons.
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thermodynamically favorable. Similar to the observed CH5
+,

protonation of CH3OH to CH3OH2
+ also helps with

stabilization against radiative dissociation to some extent. In

our computational studies of the various steps shown with

good probability for their involvement in the AMTO process,

thermodynamic analysis at temperatures 298.15 and 10 K

considering both the terrestrial and ISM thermal environments

showed that for the conversion of methanol to ethylene, the

pathway involving astrochemical protolytic cleavage of

CH3OH2
+ promoted by interaction of H3

+ to give CH5
+-

methanium ion, the simplest carbonium ion (Sefcik et al., 1974;

Schreiner et al., 1993; Müller et al., 1997) can also be feasible. This

pathway (Figure 2; Eq. 4) seems less probable due to

charge−charge repulsion than the direct conversion of methanol

to singlet methylene.

It should be pointed out that the laboratory microwave

spectra for protonated methanol, CH3OH2
+, and protonated

methane, CH5
+ could not be obtained due to their irregularity

from the effect of “fluxional” long-amplitude quantum motions

over multiple minima on the potential energy surface. Therefore,

search of these ions by rotational spectroscopy in the interstellar

medium is still challenging (Puzzarini, 2017). However, it lays

out a feasible connection of the chemistry of fluxonial

methanium ion with methanol conversions and future studies

can shed more light on the probability of these steps.

One can argue that, under extraterrestrial conditions such as

varying temperatures (extremely low to high) and high-energy

radiation, the feasibility of these reactions fluctuates

considerably, however, optimal circumstances leading to

favorable conditions may also arise intermittently. Although

the radiative decomposition of the neutral form as well as the

formation of protonated and clustered forms is an unavoidable

process, the recurring formation of methanol can help to

maintain its concentration without much depreciation. In fact,

laboratory experiments approximating the composition of such

systems show that the imperfection in dust grains are active sites

promoting the association of CH3OH2
+ with neutral CH3OH or

even H2 and CH4 (association of CH3OH with H3
+ or CH5

+ is

also another probable course) via weak bonding interactions.

Results from the gas-phase ion cyclotron and vibrational

spectroscopic studies of such clusters underscore the possibility

of cluster formation (Kebarle et al., 1967; Kebarle et al., 1972;

Hiraoka & Kebarle, 1975; Lau et al., 1982; Masamura, 2001; Witt

et al., 2008). This shows that under suitable extraterrestrial

conditions, a single carbon-containing building block can

produce a large variety of hydrocarbons and their heteroatom

derivatives. Therefore, as mentioned earlier, radiation induced

monomolecular dehydration of methanol or “astrochemical

methanol to olefins (AMTO)” process under the influence of

highly energetic cosmic rays on suitable associatedmethanol dust

or ice particles prevalent in the interstellar medium (ISM)

through methyloxonium ion intermediate (CH3OH2
+) can be

envisaged as a viable route to ethylene and propylene (Figure 2).

At both the terrestrial and ISM thermal conditions, the

cleavage of CH3OH2
+ to give singlet methylene is an

endothermic process (Figure 2; Eq. 1, equivalent to Eqs 4,5;

ΔH298.15 K = +107.4 kcal/mol and ΔH10 K = +105.2 kcal/mol),

while its dimerization to form ethylene is spontaneous, a highly

exothermic process (Figure 2; Eq. 2;ΔH298.15 K = −188.7 kcal/mol

and ΔH10 K = −186.6 kcal/mol). The structures, energies, and

zero-point vibrational energies (ZPEs) of the structures were

computed at the CCSD(T)/aug-cc-pVTZ level.

SCHEME 5
Astrohydrogenation of CO on interstellar dust grain surface, formation of methanol (wood alcohol), and the buildup of higher sugar alcohols
and sugars in the interstellar medium (Fedoseev et al., 2017; Fedoseev et al., 2017).

Frontiers in Astronomy and Space Sciences frontiersin.org08

Mathew et al. 10.3389/fspas.2022.809928

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.809928


3.3 Methanol, a key synthon toward
complex organic molecules

Among the discoveries of an astrochemical recipe for the

formation of various molecular forms identified in space, the

formation of formaldehyde, methanol, glycolaldehyde, and

glycerol, are crucial precursors and molecular backbones for the

chemical evolution to form complex biological molecules, under

prestellar core conditions has been achieved in recent years. Complex

organic molecules (COMs) are formed in the interstellar medium by

the interaction of interstellar ice grains with the ionizing radiations

from galactic cosmic rays and the internal UV photon field in the

cold molecular clouds containing the stellar nurseries/star-forming

regions and planetary systems (Abplanalp & Kaiser, 2019). The

interstellar ice mantles are comprised of molecules mainly H2O,

CO2, CO, and CH3OH with smaller amounts of HCHO, CH4, NH3,

and HCOOH, of which, CH3OH is present comparatively in

significant amounts as methanol clouds (Gibb et al., 2004). Also,

catalytic metal oxides/minerals (Duley, 1976; Goumans et al., 2007)

and silicate grains (Jones, 2007) present in the ice dust can act as

suitable catalysts for many astrochemical transformations. Therefore,

our proposal of the possibility of an astrochemicalMTHC reaction in

the interstellar medium is based on these facts, though it needs to be

further substantiated with results from more experimental studies.

Though smaller molecules such as carbon monoxide is very

volatile and concentration in space is significantly low, at very low

temperatures in ISM (10–25 K) they remain frozen on dust grains

and accumulate creating a dense molecular cloud and seeding the

formation of bigger molecules by cryogenic hydrogenation

occurring in ISM. The veracity of this process has been

demonstrated by mimicking hydrogenation of carbon monoxide

by cryogenic hydrogen bombardment in the laboratory that resulted

in the formation of formaldehyde, methanol, glycolaldehyde, and

glycerol among others (Fuchs et al., 2009; Fedoseev et al., 2015;

Fedoseev et al., 2017). This creates the roadmap to extraterrestrial,

biologically relevant sugar molecules such as ribose and others as

detected recently in carbonaceous chondrites, which include some of

themost primitivemeteorites (Furukawa et al., 2019). Recent studies

by Kurokawa et al. (2022) have shown that surface materials of

asteroids having 3.1 μm absorption features (indicative of

ammoniated phyllosilicates) and carbonaceous chondrites (CCs)

can originate from different regions of the same source, a single

water–rock-differentiated parent body. Now, it is a generally

accepted concept based on the results from numerous laboratory

studies by astrochemical simulations, which imply that similar

surface reactions by accumulation or coalescence of smaller

species under the impact of cosmic rays, vacuum ultraviolet

(VUV) photons, and thermal events prevailing in stellar and

prestellar core conditions lead to the evolution of complex

molecules (Charnley & Rodgers, 2008; Garrod et al., 2008;

Herbst & van Dishoeck, 2009; Vasyunin, & Herbst, 2013; Walsh

et al., 2014a; Walsh et al., 2014b; Linnartz et al., 2015; Öberg, 2016;

Sewilo et al., 2019).

As mentioned earlier, experiments have shown that quantum

mechanical tunneling can process many surface reactions, seemingly

non-viable under ordinary conditions due to a high-activation barrier

(Hama & Watanabe, 2013). Interaction of the H atom with CH3OH

leading to the formation of ·CH2OH and H2 assisted by quantum

mechanical tunneling can also be considered (Goumans & Kästner,

2010; Cuppen et al., 2017; Simonciõ et al., 2020). Radiolysis of

methanol leads to ·CH2OH, which on dimerization yields ethylene

glycol (Harris et al., 1995; Bergantini et al., 2018). Formation of

glycolaldehyde can be considered as the result of recombination of

·CH2OH and ·HCO (Butscher et al., 2015).

The aforementioned results from the studies of Fedoseev et al.

(2017) suggest that under an atmosphere which allow the reaction to

SCHEME 6
Methanol, the reactive intermediate, and viable key synthon toward prebiotic molecules.
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continue, there is a great probability for the formation of higher

sugar alcohols, sugarmolecules including stream of ribose, andmore

complex molecules, which helps to provide answers to the questions

on chemical evolution of complex biogenic molecules from cosmic

origins (Scheme 5). Chemical ingredients for RNA and DNA, the

basic structural motifs in the phenomenon of life—the amino acids,

nucleobases, phosphates, and nucleosides are found in meteorites

(Saladino et al., 2015; Saladino et al., 2016). Initial dimerization of

formaldehyde to glycoladehyde through a free radical process

though slow can occur under high energy radiations in the ISM.

The reaction then turns autocatalytic and continues as

glycoladehyde in trace quantities can catalyze the next aldol

reaction to form glyceraldehyde from formaldehyde and

glycoladehyde (Socha et al., 1980). With isomerization of

glyceraldehyde to dihydroxy acetone and further aldol reaction,

the chain grows to aldotetroses and then to ribose, the key building

block of ribonucleic acid. Researchers proposed the formation of

molecules of the (OH−) type on interstellar oxide grains (Duley et al.,

1978). Interstellar oxide grains which might include basic oxides

such as CaO orMgO (Duley et al., 1978); corresponding hydroxides

with ice particles in dust grains) can promote the base catalyzed

formose reaction (Breslow, 1959) as generally studied (Scheme 6).

While the formation of COMs through the recombination of

reactive carbonaceous radicals during the CO to CH3OH

hydrogenation route is highly likely, we also suggested earlier

that methanol itself, being very reactive C1 oxygenate, can

undergo the AMTO process forming olefins, which can provide

aldehydes, amides, amino acids, etc., by known chemical

transformations under varying conditions. The interstellar

medium also provides varying conditions which may match up

with the required parameters to drive these reactions. Formaldehyde

can undergo the Cannizzaro reaction, the redox disproportionation

to form methanol (and formic acid) and stepwise formose reaction

(Orgel, 2000) to form sugars and Strecker reaction to form amino

acids under appropriate conditions. The interstellar medium with a

molecular mixture of heterosubstituted molecules such as HCN,

NH3, HCHO, HCONH2, and CH3OH (highly reactive

intermediate) among interstellar ice dust particles with mineral

granules can act as a continuous functional laboratory consisting

of high temperature “ovens” and cryogenic “dewars” based on

various galactic phenomena occurring in different regions.

Therefore, astro MTO (methanol to olefin), MTHC (methanol to

hydrocarbons), FTT (Fischer–Tropsch type), Cannizzaro and

formose reactions, as well as the transformation of formamide to

nucleobases are all probable under appropriate varying conditions of

ISMdeveloping intermittently and contribute to the cosmic origin of

complex biogenic molecules (Olah et al., 2017). Identification of

organic molecules such as acetaldehyde (CH3CHO), formamide

(NH2CHO), and methyl formate (HCOOCH3) achieved by remote

observations at radio wavelengths also underscore the prevalent

chemical processes in the ISM (Biver & Bockelée-Morvan, 2019).

Radiolysis studies of frozen methanol using heavy cosmic rays

and energetic solar particle analogs show dissociation of CH3OH to

molecular species H2CO, CH2OH, CH4, CO, CO2, HCO, and

HCOOCH3 (de Barros et al., 2011). From HCHO (H2CO) by

radiation-induced reductive or base-catalyzed transformation, the

formation of aldoses and polyalcohols from methanol can be

envisaged. By the pioneering efforts of many astronomers, over

240 organicmolecular species (McGuire, 2022) in neutral, ionic, and

radical forms, simple (as water and ammonia) and complex were so

far observed in the extraterrestrial world with the help of various

onboard analytical instruments of spacecrafts such as the

Cassini−Huygens spacecraft from the surface of Titan (the Moon

of Saturn) and the Philae Lander that landed on comet 67P/

Churyumov–Gerasimenko (Ali et al., 2015; Bibring et al., 2015)

in the course of their visits. Also, albeit their presence in low

concentration, at low-temperature regions, we suggest the

possibility that many species in the molecular clouds (the densest

interstellar clouds by ISM standards) remain in associated forms

which would undergo the desired reactions as right conditions

emerge. Indeed, the formation of COMs in ISMmust be a slow and

long process, not stipulated to a definite time period.

The interstellar medium witnesses many astrophysical events

including meteorite impacts with celestial bodies. Studies showed

that a significant portion of soluble organic matter observed in

carbonaceous meteorites can indeed originate from organic ices,

derived from dense molecular clouds (Danger et al., 2021). For

example, laboratory impact experiments showed that glycolaldehyde

found in the ISM, as well as glycolaldehyde mixed with

montmorillonite clay, when subjected to reverberated shocks

(~5 to >25 GPa), resulted in the formation of a mixture of

important biologically significant molecules such as ethylene

glycol, threose, and erythrose (McCaffrey et al., 2014). Meteorite

impact with planetary bodies is proposed as a possible route to their

delivery as the course of their origin on Earth and other planets.

Recently, it has been shown that the catalytic synthesis of

polyribonucleic acids from ribonucleoside triphosphates is

possible on prebiotic rock glasses, which resemble the rock on

Hadean Earth surface formed by volcanic activities and impacts

(Jerome et al., 2022). It is probable that such rock materials, silicates,

and minerals in dust grains in the interstellar medium can catalyze

similar chemical transformations resulting inmolecular evolution to

complex systems such as RNA from simple systems.

The vast expanse of methanol observed on interstellar clouds or

protoplanetary space dust shows the efficacy of the continuous

formation ofmethanol in space by bothmethane oxygen insertion as

well as CO2/CO hydrogenation (Schemes 1, 2, 3, 5). Similar to water

transport by comets and meteorites to the Earth while it was still

young, the transportation of methanol and these astrochemicals and

their transformation to more complex prebiotic molecules and

protocells would have occurred under Earth’s favorable

(Goldilocks) conditions over a long period (Chyba & Sagan,

1997; Pizzarello & Shock, 2010; Ehrenfreund et al., 2011). The

close resemblance of these molecular species and their chemistry

with terrestrial chemistry supports the transport–transformation

process also and help to unveil the pathways involved in various
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astrochemical transformations. It is important to consider the

possibility that the simplest inanimate precursor molecules such

as methane, the reactive monooxygenate methanol, CO2, ammonia

etc., under favorable catalytic conditions, can react and seed into

fundamental life building blocks such as amino acids, sugars,

proteins, nucleic acids. and bases over a long geological time

span. The chemical transformation of simple substrates with

active functional groups to complex systems without catalysts

and at elevated temperatures is well studied. Studies have

confirmed the gas-phase formation of formamide, a key source

material in the formation of nucleobases, in the star-forming region

in interstellar clouds (Codella et al., 2017). Results from emission

studies in the Protostellar shock regions L1157-B1 and L1157-B2

suggest them as significant sources of HNCO and NH2CHO

(Mendoza et al., 2014). For example, thermal decomposition of

formamide in vacuum leads to a mixture of nucleic bases purine,

cytosine, adenine, as well as hypoxanthine, pterin, urea, urocanic

acid, glycine, alanine, and norvaline (Enchev et al., 2021). The

formation of the nucleic bases, uracil and thymine, was observed

on heating formamide at 160°C for a day (Petera et al., 2021); similar

events though varying kinetically, are envisaged in galactic

chimneys.

Though many prebiotic precursors are observed in the ISM, it

does not prove any sign of extraterrestrial life. However, their

presence manifests the prevailing abiotic astrochemical protocols

leading to their formation. For example, the CO2−H2

hydrogenation, the most significant among the events occurring

in deep sea alkaline hydrothermal vents as observed in the “Lost

City” exposed through the pioneering studies byMartin et al. (2008);

Martin et al. (2014); Lane (2015); Jordan et al. (2019) shed light on

probable initial stages of the molecular evolution that can instigate

stepwise biological evolution to primitive cells. Experiments

mimicking hydrothermal vents showed that the minerals such as

olivine, serpentinite, Ni or Co containing pyrite and zeolite

sediments present in the vents possess catalytic properties similar

to those of enzymes and therefore can serve as potential catalysts for

CO2−H2 tomethanol (CH3OH), the reactive intermediate and a key

synthon towardmolecular evolution (Barge et al., 2015; Roldan et al.,

2015)., Presence of similar catalytic sites though inminute quantities

is a possible scenario in dust grains in the ISM too which triggers

similar chemical transformations as mentioned previously.

Therefore, the relevance and significance of methanol as a key

synthetic motif (methanol economy concept- Olah et al., 2014; Olah

& Mathew, 2015; Olah et al., 2018) in astrochemical organic

synthesis cannot be ignored, especially in light of detection of the

large expanse of extraterrestrial methanol.

4 Conclusion

In this brief perspective, based on the detection of methanol, the

reactive C1 oxygenate in various regions of the interstellar medium,

we summarized the possible routes for its continuous formation and

key role as a source material for molecular evolution to multi-carbon

complex organic and biogenic molecules, including proteins, nucleic

bases, and nucleic acids, thus its significance in the RNA world. The

close analogy of extra-terrestrially observed molecules and ions with

terrestrial hydrocarbon ions and molecules suggests not only

resemblance in plausible pathways for their formations, but also

can help us to answer many unanswered questions on the molecular

evolution in extraterrestrial world- interstellar medium, stars, planets,

moons, and their atmospheres. Though the constituents of these

atmospheres vary, the existence of these molecular and ionic species

must have originated by the interaction of high energy cosmic rays

and radiations on elements and subsequent chemical transformations

taking place on the surface of space dust (ice) and in celestial bodies as

well as the transport–transformation process via comets and

meteorites. The CO2/CO hydrogenation for the formation of

methanol can be viewed as the probable basic step, which lays

out subsequent protocols for the formation of fundamental

building blocks toward the entry to the RNA world and

subsequent biological evolution to primitive cells. Therefore, it is

quite rational to propose that whether under suitable extraterrestrial

conditions or deep sea thermal vent conditions, formation of all

signature intermediates such as amino acids, sugars, nucleic bases

etc., involves the intermediacy ofmethanol as the reactive C1 building

block.We anticipate that the key role of methanol in the evolution of

prebiotic molecules and in the RNA world will be more manifested

from the results of ongoing and future studies in the area.
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