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The examination of parity symmetry in gravitational interactions has drawn

increasing attention. Although Einstein’s General Relativity is parity-conserved,

numerous theories of parity-violating (PV) gravity in different frameworks have

recently been proposed for different motivations. In this review, we briefly

summarize the recent progress of these theories, and focus on the observable

effects of PV terms in the gravitational waves (GWs), which aremainly reflected

in the difference between the left-hand and right-hand polarization modes.

We are primarily concerned with the implications of these theories for GWs

generated by the compact binary coalescences and the primordial GWs

generated in the early Universe. The deviation of GW waveforms and/or

primordial power spectrum can always be quantified by the energy scale of

parity violation of the theory. Applying the current and future GW observation

from laser interferometers and cosmic microwave background radiation, the

current and potential constraints on the PV energy scales are presented, which

indicates that the parity symmetry of gravity can be tested in high energy scale

in this new era of gravitational waves.

KEYWORDS

parity symmetry, gravitational waves, circular polarization, birefringence effects,
primordial power spectrum

1 Introduction

The application of gravitational waves (GWs) to test gravitational theories becomes
an important topic in gravitational wave astronomy. This review mainly focuses on
the theories of parity-violating gravity and their applications to different scenarios in
astronomy. Theoretically, a variety of parity-violating gravities have been constructed,
all of which have been extensively studied. These parity-violating gravities formally fall
into two main categories: One is based on the framework of Riemannian geometry
with modifications to the Einstein-Hilbert action to obtain parity violation, and the
other is in the framework of non-Riemannian geometry where the alternative gravity of
general relativity ismodified to produce parity violation. In the framework of Riemannian
geometry, the classical type of gravity is Chern-Simons (CS) gravity (Jackiw and Pi, 2003),
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which modifies GR by introducing the CS term. CS gravity is
further extended to the most general parity-violating scalar-
tensor gravity by introducing coupling terms for the higher
order derivatives of the scalar field (Crisostomi et al., 2018).
The problem of parity violation in the Poincaré gauge theory
of gravity has been analyzed, where models are built as
natural extensions of Einstein-Cartan theory (Obukhov, 2021).
Furthermore, by breaking the time diffeomorphism (or Lorentz
symmetry), one can naturally introduce parity-violating
but spatially covariant terms into the action, thus forming
Hořava-Lifshitz (HL) gravity (Takahashi and Soda, 2009;
Wang et al., 2013; Zhu et al., 2013) and spatially covariant
gravity (Gao and Hong, 2020; Gao and Hu, 2020).

The most classical theories of gravity that have been
developed in a non-Riemannian geometric framework are
teleparallel gravities (TGs) (Aldrovandi and Pereira, 2013) and
symmetric teleparallel gravity (STG) (Nester and Yo, 1999). TG
is gravity described in terms of spacetime torsion rather than
curvature, where the model equivalent to GR is called the
Teleparallel Equivalent of General Relativity (TEGR). TEGR
gravity is modified by the introduction of an odd parity-violating
topological term consisting of torsion, i.e., Nieh-Yan (NY)
modified gravity (Li et al., 2020; Li et al., 2021). STG theory is
formulated in spacetime given zero curvature and zero torsion
and attributes gravity to a non-metricity, where the model
equivalent to GR is called the Symmetric Teleparallel General
Relativity (STGR). The STGR can also be modified by a parity-
violating term to form parity-violating symmetric teleparallel
gravity (Conroy and Koivisto, 2019).

Observationally, the presence of parity violation in GWs
produced by isolated sources affects the waveform of GWs
propagation in two ways. One way is to modify the conventional
dispersion relation for GWs. This causes the velocities of the left
and right-hand circular polarization of the GWs to be different,
i.e. the velocity birefringence of GWs. This phenomenon
has been found to exist in HL gravity (Zhao et al., 2020a),
Chern-Simons Axion Einstein Gravity (Nojiri et al., 2019),
Chern-Simons Axion F(R) Gravity (Nojiri et al., 2020), NY
modified teleparallel gravity (Li et al., 2020;Wu et al., 2022), and
parity-violating symmetric teleparallel gravity (Conroy and
Koivisto, 2019; Li and Zhao, 2022). Another way of parity
violation is to change the frictional terms in the GWs
propagation equation, where these additional frictional terms
modify the amplitude of the GWs. Thus the amplitude of left-
hand circular polarization of GWs increases (or decreases)
during the propagation, while the amplitude for the right-hand
mode decreases (or increases), i.e. the amplitude birefringence
of GWs. The correction of this phenomenon to the GW
waveform has been studied in the framework of CS modified
gravity in (Yunes et al., 2010; Yagi et al., 2012; Alexander and
Yunes, 2018; Yagi and Yang, 2018; Li et al., 2022). Recently,
the research in metric-affine CS gravity has found that

the metric tensor modes are coupled to the torsion tensor
components, leading to the appearance of velocity birefringence
(Bombacigno et al., 2022; Boudet et al., 2022). The studies in
Palatini CS gravity have shown that both amplitude and velocity
birefringence effects are present in the propagation of GWs
polarization (Sulantay et al., 2022). It also has been shown in
the parity-violating scalar-tensor gravity that parity violation
leads to the presence of both phenomena in the waveforms
of GWs (Nishizawa and Kobayashi, 2018; Qiao et al., 2019;
Zhao et al., 2020a; Gao and Hong, 2020).

Experimentally, as the sensitivity of the Advanced LIGO,
Virgo and KAGRA detector continues to be upgraded, detected
GWs events accumulate at an increasing rate (Abbott, 2019;
Abbott, 2021a; Abbott, 2021b; Abbott, 2022). With the catalog
of detected events, like GR (Will, 1998), a variety of more
accurate tests of parity-violating gravities can be performed.
The most extensive research has been carried out to search
for birefringence effects in the propagation of GWs in GW
data. Studies based on this are divided into theory-independent
approaches (Shao, 2020), of which the method on mode
splitting in (Zhao et al., 2020b), Bayesian analysis performed
in (Wang and Zhao, 2020; Hu et al., 2021; Wang et al., 2021;
Wang et al., 2022; Zhao et al., 2022), and Fisher matrix analysis
considered in (Wang and Chen, 2020), and model-dependent
approaches, of which Chern-Simons gravity is constrained
in (Okounkova et al., 2022), Nieh-Yan modified teleparallel
gravity considered in (Wu et al., 2022), spatial covariant gravity
analyzed in (Zhu, Zhao, Wanga), and more generic parity and
Lorentz violating gravities investigated in (Gong et al., 2022;
Niu et al., 2022).

Different from gravitational waves produced by the isolated
sources, primordial gravitational waves (PGWs) come from
quantum fluctuations and carry important information about
the early Universe, such as the physics of inflation, bouncing and
emergent Universe. The most effective way to detect PGWs is
to measure the B-mode polarization of the cosmic microwave
background (CMB). In CMB, the PGWs can produce the TT, EE,
BB, and TE spectra, but the TB and EB spectra vanish if the parity
symmetry in gravity is respected (Kamionkowski et al., 1997;
Seljak and Zaldarriaga, 1997; Zhao and Baskaran, 2009;
Zhao et al., 2009; Krauss et al., 2010; Garcia-Bellido, 2011; Zhao
and Li, 2014a; Zhao and Li, 2014b). Since non-zero TB and
EB spectra of CMB in large scale implies parity violation in
the gravitational sector, the precise measurement of the low-
multipole TB and EB spectra could be important evidence of the
parity violation of the gravity (Lue et al., 1999; Saito et al., 2007;
Seto and Taruya, 2007; Gluscevic and Kamionkowski, 2010;
Bischoff et al., 2011; Li et al., 2018; Ghosh et al., 2022). Towards
this purpose, Ref. (Lue et al., 1999) first proposed a cosmological
study of CS corrected gravity as a way to search for parity-
violating effects from the GW sector of the CMB polarization
spectrum. Subsequently, with the continuous development of
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various parity-violating gravities, similar studies were explored
in the broader frameworks, such as dynamical Chern-Simons
gravity (Peng, Zeng, Fu, and Guo), Chern-Simons f (R) Gravity
(Odintsov and Oikonomou, 2022), parityviolating scalar-
tensor gravity (Qiao et al., 2020), HL gravity (Wang et al., 2013;
Zhu et al., 2013), spatial covariant gravity (Zhu, Zhao,
Wangb), Nieh-Yan modified teleparallel gravity (Li et al., 2020),
and parity-violating symmetric teleparallel gravity (Li and
Zhao, 2022), etc.

In this article, we will briefly review the recent progress
on the tests of gravity with gravitational waves. The paper is
organized as follows. In the next section, we briefly introduce
the different parity-violating gravities. In Section 3, we present
the applications of parity-violating gravities toGWs generated by
isolated sources. In Section 4, we discuss the applications of these
parity-violating gravities in the early Universe. In Section 5, we
summarise the conclusions arising from these parity-violating
gravities in two applications.

Throughout this paper, the metric convention is chosen as
(−,+,+,+), and greek indices (μ,ν, ⋅ ⋅ ⋅) run over 0,1,2,3 and
the latin indices (i, j,k, ⋅ ⋅ ⋅) run over 1,2,3. We set the units to
c = ℏ = 1.

2 The parity-violating gravities

In this section, we give a brief review of several parity-
violating gravities. We first present the most classical and the
simplest parity-violating gravity in the Riemannian geometric
framework, namely the CS gravity, followed by its generalization
to general parity-violating scalar-tensor gravity. Then the parity-
violating Hořava-Lifshitz gravity in the Riemann framework
is described. Finally, Nieh-Yan modified teleparallel gravity
and parity-violating symmetric teleparallel gravity in non-
Riemannian geometry are introduced.

2.1 Chern-Simons gravity

The action of the CS gravity can be written in the following
form

S = 1
16πG
∫d4x√−g(R+LCS +Lϕ +Lother) , (2.1.1)

where R is the Ricci scalar, LCS is the CS Lagrangian, Lϕ is
the Lagrangian for a scalar field, which may be coupled non-
minimally to gravity, and Lother denotes other matter fields. As
one of the simplest examples, we consider the action of the scalar
field

Lϕ =
1
2
βg μν∂μϕ∂νϕ+ βV (ϕ) . (2.1.2)

Here V(ϕ) denotes the potential of the scalar field. The
Lagrangian of CS reads (Alexander and Yunes, 2009)

LCS =
α
4
ϑ(ϕ) *RR, (2.1.3)

where

*RR = 1
2
ε μνρσRρσαβR

αβ
μν (2.1.4)

is the Pontryagin densitywith ɛρσαβ the Levi-Civitá tensor defined
in terms of the antisymmetric symbol ϵρσαβ as ερσαβ = ϵρσαβ/√−g
and the CS coupling coefficient ϑ(ϕ) being an arbitrary function
of ϕ. The parameters α and β are coupling constants whose
values represent the dynamical (α ≠ 0 ≠ β) and non-dynamical
(α ≠ 0,β = 0) versions of CS gravity. These two versions have no
effect on the study of GWs, and in this paper we take α = 1 = β.
CS modified gravity effectively extends GR that captures
gravitational parity-violating terms in leading order. The similar
versions of this theory were suggested in the context of string
theory (Campbell et al., 1991; Campbell et al., 1993), and three-
dimensional topological massive gravity (Deser et al., 1982a;
Deser et al., 1982b). However, this theory has a higher-derivative
field equation, which induces the dangerous Ostrogradsky
ghosts. For this reason, CS modified gravity can only be treated
as a low-energy truncation of a fundamental theory. To cure this
problem, the extension of CS gravity by considering the terms
which involve the derivatives of a scalar field is recently proposed
in (Crisostomi et al., 2018) and shown in the next subsection.

2.2 The ghost-free parity-violating
gravity

The ghost-free parity-violating gravity is an extension of the
CS gravity to the more general parity-violating gravity, where
new parity-violating terms LPV1 and LPV2 are introduced into
the action (2.2.4) of the CS gravity. LPV1 is the Lagrangian
containing the first derivative of the scalar field, which is given
by (Crisostomi et al., 2018)

LPV1 =
4

∑
A=1

aA (ϕ,ϕ
μϕμ)LA,

L1 = εμναβRαβρσR
ρ
μνλϕ

σϕλ,

L2 = εμναβRαβρσR
ρσ

μλ ϕνϕ
λ,

L3 = εμναβRαβρσR
σ
νϕ

ρϕμ,

L4 = ε
μνρσRρσαβR

αβ
μνϕλϕλ,

(2.2.1)

with ϕμ ≡∇μϕ, and aA are a priori arbitrary functions of ϕ and
ϕμϕμ. In order to avoid the Ostrogradsky modes in the unitary
gauge (where the scalar field depends on time only), it is required
that 4a1 + 2a2 + a3 + 8a4 = 0.With this condition, the Lagrangian
in Eq. (2.2.1) does not have any higher order time derivative of
the metric, but only higher order space derivatives.
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One can also consider the terms which contain second
derivatives of the scalar field. Focusing on only these that are
linear in Riemann tensor and linear/quadratically in the second
derivative of ϕ, the most general Lagrangian LPV2 is given by
(Crisostomi et al., 2018)

LPV2 =
7

∑
A=1

bA (ϕ,ϕλϕλ)MA,

M1 = εμναβRαβρσϕ
ρϕμϕ

σ
ν,

M2 = εμναβRαβρσϕ
ρ
μϕσν,

M3 = εμναβRαβρσϕ
σϕρμϕλνϕλ,

M4 = εμναβRαβρσϕνϕ
ρ
μϕσλϕ

λ,

M5 = εμναβRαρσλϕ
ρϕβϕ

σ
μϕ

λ
ν,

M6 = εμναβRβγϕαϕ
γ
μϕλνϕλ,

M7 = (∇2ϕ)M1,

(2.2.2)

with ϕσν ≡ ∇
σ∇νϕ. Similarly, in order to avoid the Ostrogradsky

modes in the unitary gauge, the following conditions should be
imposed: b7 = 0, b6 = 2(b4 + b5) and b2 = −A2

*(b3 − b4)/2, where
A* ≡ ϕ̇(t)/N and N is the lapse function. Here, we consider a
general scalar-tensor theorywith parity violation, which contains
all the terms mentioned above. So, the parity-violating terms are
given by

LPV = LCS +LPV1 +LPV2. (2.2.3)

The coefficients ϑ, aA and bA depend on the scalar field ϕ and
its evolution. Therefore, the final action of ghost-free parity-
violating gravity is given by

S = 1
16πG
∫d4x√−g(R+LPV +Lϕ +Lother) . (2.2.4)

2.3 The parity-violating Hořava-Lifshitz
gravity

The HL gravity is based on the perspective that the Lorentz
symmetry appears only as an emergent symmetry at low energies,
but can be fundamentally absent at high energies (Horava, 2009;
Wang, 2017). This opens a completely new window to build a
theory of quantum gravity without the Lorentz symmetry in
the UV, using the high-dimensional spatial derivative operators,
while still keeping the time derivative operators to the second-
order, whereby the unitarity of the theory is reserved. Besides the
original version of the theory byHořava (Horava, 2009), there are
several modifications, which are absent in several in-consistent
problems that appear in the original version. In this paper, we are
going to focus on an extension of the HL gravity by abandoning
the projectability condition but imposing an extra local U (1)
symmetry that was proposed (Zhu et al., 2011; Zhu et al., 2012),

in which the gravitational sector has the same degree of freedom
as that in GR, i.e., only spin-2 massless gravitons exist.

By abandoning the Lorentz symmetry, the HL theory also
provides a natural way to incorporate parity violation terms
into the theory. For our current purpose, we consider the
third- and/or fifth-order spatial derivative operators to the
potential term L of the total action in (Zhu et al., 2011;
Zhu et al., 2012; Zhu et al., 2013),

LPV =
1

M3
PV

(α0KijRij + α2εijkRil∇jR
l
k) +

α1ω3 (Γ)
MPV
+ “ ⋅ ⋅⋅”.

(2.3.1)

Here MPV is the energy scale above which the high-order
derivative operators become important. The coupling constants
α0,α1,α2 are dimensionless and arbitrary, Kij and Rij denote,
respectively, the extrinsic curvature and the 3-dimensional Ricci
tensor built of the 3-metric gij.∇i denotes the covariant derivative
with respect to gij, and ω3(Γ) is the 3-dimensional gravitational
CS term. “ ⋅ ⋅ ⋅ ” denotes the rest of the fifth-order operators given
in Eq. 2.6 of (Zhu et al., 2012). Since they have no contributions
to tensor perturbations, in this paper we shall not write them out
explicitly.

2.4 The Nieh-Yan modified teleparallel
gravity

The teleparallel gravity (TG) theory is a constrained metric-
affine theory that is constructed in spacetimewith zero curvature
and metric compatible connection. The Nieh-Yan modified
teleparallel gravity is constructed by introducing parity-violating
terms in the GR equivalent teleparallel gravity, which is
formulated in flat spacetime with vanishing curvature and
vanishing asymmetry. The action of the Nieh-Yan modified
teleparallel gravity is (Li et al., 2020; Wu et al., 2022)

S = ∫d4x√−g[−
R (e)
2
+ c
4
θTAμνT̃ Aμν

+b
2
∇μθ∇

μθ− bV (θ)] + Sm, (2.3.2)

where b is a coupling constant, θ is a scalar field, and the
curvature scalar R(e) is defined by the Levi-Civitá connection
and considered as being constructed entirely from themetric gμν,
which in turn is constructed from tetrad field eaμ, with the relation
gμν = ηabe

a
μe

b
ν. TAμν in Eq. (2.3.2) is a non-zero torsion tensor that

is used to identify the gravity, which generally depends on both
the tetrad field and the spin connection,

T λ
μν = 2eλa (∂[ μe

a
ν ] +ω

a
b[ μe

b
ν ]) . (2.3.3)

The ωa
bμ is the spin connection, which generally has the form

ωa
bμ = (Λ

−1)ac∂μΛ
c
b and ωabμ = −ωbaμ with Λa

b being the matrix
elements of Lorentz transformation. The form of T̃ Aμν in
Eq. (2.3.2) is T̃ Aμν = (1/2)εμνρσT A

ρσ.

Frontiers in Astronomy and Space Sciences 04 frontiersin.org

https://doi.org/10.3389/fspas.2022.1109086
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Qiao et al. 10.3389/fspas.2022.1109086

2.5 The parity-violating symmetric
teleparallel gravity

STG is another constrained metric-affine theory. It is
formulated in a spacetime endowed with zero curvature and zero
torsion and attributes gravity to the non-metricity. The parity-
violating symmetric teleparallel gravity is constructed as an
extension of the STGR model by introducing a parity-violating
term. The full action of gravity is (Li and Zhao, 2022)

S = ∫d4x√−g[− R̂
2
− cϕϵμνρσQμναQρσ

α

−1
2
∇̂μ (Qμ − Q̄μ) + 1

2
∇μϕ∇μϕ−V (ϕ)] + Sm, (2.4.1)

where R̂ is the curvature scalar, c is a coupling constant, ϕ
represents a scalar field, Sm is other matter, Qαμν is the non-
metricity tensor and is defined as

Qαμν ≡ ∇αgμν = ∂αgμν − Γ
λ
αμgλν − Γ

λ
ανgμλ, (2.4.2)

the vectors Qμ, Q̄μ are two different traces of the non-metricity
tensor and are given by

Qμ = gαβQμαβ, Q̄μ = gαβQαβμ, (2.4.3)

∇̂ denotes the covariant derivative associatedwith the Levi-Civitá
connection. It should be noted here that in the zero curvature
condition, the affine connection can usually be expressed as

Γλμν = (Ω−1)
λ
σ∂μΩ

σ
ν, (2.4.4)

where Ωσ
ν is an arbitrary element of the group GL(4) and

has non-zero determinant. The zero-torsion condition requires
that Ωσ

ν should be expressed as Ωσ
ν = ∂yσ/∂xν, where yσ(x) are

four functions that fully determine all components of the affine
connection,

Γλμν (xμ) =
∂xλ

∂yβ
∂μ∂νy

β. (2.4.5)

The above equation shows that the four functions yα constitute
a special coordinate system in which the affine connection
vanishes, i.e. Γλμν = 0.Thus, the metric gμν and the function y

α(x)
can be treated as independent variables in this theory.

3 Applications of the parity-violating
gravity to the isolated sources

In this section, based on the previous introduction to parity-
violating gravity, we will present the study of gravitational
wave propagation from isolated sources under these different
frameworks. We can assume that GWs are propagating on
a homogeneous and isotropic background. In the case of a
flat Friedmann-Robertson-Walker (FRW) Universe, the spatial
metric is written as

gij = a
2 (τ)(δij + hij (τ,xi)) , (3.1)

where τ denotes the conformal time, which relates to the cosmic
time t by dt = adτ, and a is the scale factor of the Universe.
Throughout this paper, we set the present scale factor a0 = 1. hij
is the GW, which represents the transverse and traceless metric
perturbations, i.e.,

∂ihij = 0 = h
i
i. (3.2)

3.1 The ghost-free parity-violating
gravity

As we have discussed in the previous section, CS gravity
could be regarded as a specific version of ghost-free parity-
violating gravity. The effect of the CS correction is included
in the final result of the parity-violating corrections. Therefore
the application of CS gravity is not discussed separately and
is presented as a special case of ghost-free parity-violating
gravity.

3.1.1 Gravitational waves in ghost-free
parity-violating gravity

With the above choice of background and the definition
of GWs, the equation of motion of GWs can be derived.
Substituting the metric perturbation into the action (2.2.4) and
expanding it to the second order in hij, the tensor quadratic
action reads (Qiao et al., 2019)

S(2) = 1
16πG
∫dτd3xa4 (τ)[L(2)GR +L

(2)
PV] , (3.1.1)

where

L(2)GR =
1
4a2
[(h′ij)

2 − (∂khij)
2] , (3.1.2)

L(2)PV =
1
4a2
[
c1 (τ)
aMPV

ϵijkh′il∂jh
′
kl +

c2 (τ)
aMPV

ϵijk∂2hil∂jhkl]. (3.1.3)

Here,MPV labels the parity-violating energy scale in this theory.
c1 and c2 are the coefficients normalized by the energy scaleMPV,
which are given by Ref. (Qiao et al., 2019)

c1 (τ)
MPV
= ϑ̇− 4 ̇a1ϕ̇

2 − 8a1ϕ̇ϕ̈+ 8a1Hϕ̇
2 − 2 ̇a2ϕ̇

2

− 4a2ϕ̇ϕ̈− ̇a3ϕ̇
2 − 2a3ϕ̇ϕ̈

+ 4a3Hϕ̇
2 − 8 ̇a4ϕ̇

2 − 16a4ϕ̇ϕ̈

− 2b1ϕ̇
3 + 4b2 (Hϕ̇

2 − ϕ̇ϕ̈) + 2b3ϕ̇
3ϕ̈+ 2b4ϕ̇

3ϕ̈

− 2b5Hϕ̇
4 + 2b7ϕ̇

3ϕ̈+ 6b7ϕ̇
4H, (3.1.4)

c2 (τ)
MPV
= ϑ̇− 2 ̇a2ϕ̇

2 − 4a2ϕ̇ϕ̈+ ̇a3ϕ̇
2

+ 2a3ϕ̇ϕ̈− 8 ̇a4ϕ̇
2 − 16a4ϕ̇ϕ̈, (3.1.5)
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Where a dot denotes the derivative with respect to the
cosmic time t, and H ≡ ȧ/a is the Hubble parameter. The MPV
can be constrained by Solar System experiments and various
astrophysical observations. As we have already described in the
introduction, some of the parity-violating gravities have been
examined by GW observations and give updated constraints
on their respective corresponding energy scale MPV. For the
ghost-free parity-violating gravity, using the results of the frame-
dragging measurement with the GPB in the Solar System
experiment we have given the energy scale constraint: M−1PV ≲
104m, which is consistent with the constraint obtained for
CS gravity when the same factors are taken into account
(Qiao et al., 2022). The latest constraint on MPV is also given
using the event data from the GW detection to examine
ghost-free parity-violating gravity, which we will describe
later.

We consider theGWs propagating in the vacuum, and ignore
the source term. Varying the action with respect to hij, we obtain
the field equation for hij,

h′′ij + 2Hh′ij − ∂
2hij +

ϵilk

aMPV
∂l [c1h

′′
jk + (Hc1 + c

′
1)h
′
jk − c2∂

2hjk]

= 0, (3.1.6)

whereH ≡ a′/a, and a prime denotes the derivative with respect
to the conformal time τ.

In the parity-violating gravities, it is convenient to
decompose the GWs into circular polarization modes. To study
the evolution of hij, we expand it over spatial Fourier harmonics,

hij (τ,xi) = ∑
A=R, L
∫ d3k
(2π)3

hA (τ,ki)eikix
i
eAij (k

i) , (3.1.7)

where eAij denote the circular polarization tensors and satisfy the
relation

ϵijknieAkl = iρAe
jA
l , (3.1.8)

with ρR = 1 and ρL = −1. We find that the propagation equations
of these two modes are decoupled, which can be cast into the
form (Qiao et al., 2019)

h′′A + (2+ νA)Hh′A + (1+ μA)k
2hA = 0, (3.1.9)

where

νA =
ρAk(c1H− c

′
1)/(aHMPV)

1− ρAkc1/(aMPV)
, (3.1.10)

μA =
ρAk (c1 − c2)/(aMPV)
1− ρAkc1/(aMPV)

. (3.1.11)

3.1.2 Various effects of the parity violation
In this subsubsection, we present the phase and amplitude

corrections to the waveform of GWs arising from the parameters
νA and μA. We further decompose hA as

hA = h̄Ae
−iθ(τ), (3.1.12)

h̄A =AAe
−iΦ(τ), (3.1.13)

Where h̄A satisfies

h̄′′A + 2Hh̄′A + (1+ μA)k
2h̄A = 0, (3.1.14)

Where AA denotes the amplitude of h̄A and Φ(τ) is the phase.
With the above decomposition, θ(τ) denotes the correction
arising from νA, while the corrections due to μA is included in
h̄A. Such processing allows the phase correction to be calculated
separately before the amplitude correction is investigated. Details
of the calculation of the phase and amplitude corrections are
given in the following as Ref. (Qiao et al., 2019).

3.1.3 Phase modifications
We first concentrate on the corrections arising from the

parameter μA, which leads to the velocity difference of the two
circular polarizations of GWs. To proceed, we define ūAk (τ) =
1
2
a(τ)MPlh̄A(τ) and then Eq. (3.1.14) can be written as

d2ūAk
dτ2
+(ω2

A −
a′′

a
) ūAk = 0, (3.1.15)

where

ω2
A (τ) = k

2 (1+ μA) , (3.1.16)

is the modified dispersion relation. With this relation, the speed
of the graviton reads

v2A = k
2/ω2

A ≃ 1− ρA (c1 − c2) (k/aMPV) , (3.1.17)

which leads to

vA ≃ 1− (1/2)ρA (c1 − c2) (k/aMPV) . (3.1.18)

Since ρA have the opposite signs for left-hand and right-hand
polarization modes, we find that one mode is superluminal and
the other is subluminal. Considering a graviton emitted radially
at r = re and received at r = 0, we have

dr
dt
= −1

a
[1− 1

2
ρA (c1 − c2)(

k
aMPV
)]. (3.1.19)

Integrating this equation from the emission time (r = re) to
arrival time (r = 0), one obtains

re = ∫
t0

te

dt
a (t)
− 1
2
ρA(

k
MPV
)∫

t0

te

c1 − c2
a2

dt. (3.1.20)
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Consider gravitons with the same ρA emitted at two different
times te and t′e, with wave numbers k and k′, and received at
corresponding arrival times t0 and t′0 (re is the same for both).
Assuming Δte ≡ te − t

′
e ≪ a/ȧ, then the difference of their arrival

times is given by

Δt0 = (1+ z)Δte +
1
2
ρA

k− k′

MPV
∫
t0

te

c1 − c2
a2

dt,

where z ≡ 1/a (te) − 1 is the cosmological redshift.
Let us focus on the GW signal generated by non-spinning,

quasi-circular inspiral in the post-Newtonian approximation.
Relative to the GW in GR, the term μA modifies the phase of GW
Φ(τ). The Fourier transform of h̄A can be obtained analytically
in the stationary phase approximation, where we assume that the
phase is changing much more rapidly than the amplitude, which
is given by (Maggiore, 2007)

̃h̄A ( f) =
AA ( f)

√d f/dt
eiΨA( f), (3.1.21)

where f is the GW frequency at the detector, and Ψ is the phase of
GWs. In (Mirshekari et al., 2012), it is proved that, the difference
of arrival times as above induces themodification of GWs phases
ΨA as follows,

ΨA ( f) = Ψ
GR
A ( f) + δΨA ( f) , (3.1.22)

with

δΨA ( f) = ξAu2, (3.1.23)

where

ξA =
ρA

MPVM2∫
t0

te

c1 − c2
a2

dt, (3.1.24)

u = πM f. (3.1.25)

The quantity M = (1+ z)Mc is the measured chirp mass, and
Mc ≡ (m1m2)3/5/(m1 +m2)1/5 is the chirp mass of the binary
system with component massesm1 andm2.

3.1.4 Amplitude modifications
Now, let us turn to study the effect caused by νA. Plugging the

decomposition (3.1.13) into (3.1.14), one finds the equation for
Φ(t),

iΦ′′ +Φ′2 + 2iHΦ′ − (1+ μA)k
2 = 0. (3.1.26)

Similarly, plugging the decomposition (3.1.12) and (3.1.13) into
(3.1.9), one obtains

i(θ′′ +Φ′′) + (Φ′ + θ′)2 + i (2+ νA)H (θ′ +Φ′) − (1+ μA)k
2 = 0.

(3.1.27)

Using the equation of motion (3.1.26) for Φ, the above equation
reduces to

iθ′′ + 2θ′Φ′ + θ′2 + i (2+ νA)Hθ′ + iνAHΦ′ = 0. (3.1.28)

The phase Φ is expected to be close to that in GR ΦGR, and
Φ′GR∼k, where the wave number relates to the GW frequency by
k = 2πf. Assuming that

θ′′ ≪Φ′θ′∼kθ′, k≫H, (3.1.29)

and keeping only the leading-order terms, the above equation can
be simplified into the form

2θ′ + iHνA = 0, (3.1.30)

which has the solution

θ = − i
2
∫
τ0

τe
HνAdτ. (3.1.31)

We observe that the contribution of νA in the phase is
purely imaginary. This indicates that the parameter νA leads
to modifications of the amplitude of the GWs during the
propagation. As a result, relative to the corresponding mode in
GR, the amplitude of the left-hand circular polarization of GWs
will increase (or decrease) during the propagation, while the
amplitude for the right-hand mode will decrease (or increase).

More specifically, one can write the waveform of GWs with
parity violation effects in the form

hA = h
GR
A (1+ δhA)e

−iδΦA , (3.1.32)

where

1+ δhA = exp(−
1
2
∫
τ0

τe
HνAdτ), (3.1.33)

and δΦA is given by (3.1.23). Noticing that

1
2
νAH =

1
2
[ln(1− ρA

kc1
aMPV
)]
′
, (3.1.34)

we find

1+ δhA = √
1− ρAkc1 (τe)/[a(τe)MPV]
1− ρAkc1 (τ0)/[a(τ0)MPV]

1+ 1
2
ρAk(

c1 (τ0)
a(τ0)MPV

−
c1 (τe)

a(τe)MPV
), (3.1.35)

which gives

δhA ≃
1
2
ρAk(

c1 (τ0)
a(τ0)MPV

−
c1 (τe)

a(τe)MPV
)

= ρA
π f
MPV
[c1 (τ0) − (1+ z)c1 (τe)] . (3.1.36)

Using u andM, one can rewrite δhA in the form

δhA =
ρAu

MPVM
[c1 (τ0) − (1+ z)c1 (τe)] . (3.1.37)

This relation indicates that the amplitude birefringence of GWs
depends only on the values of the coefficient c1 at the emitting
and observed times.
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3.1.5 Post-Newtonian orders of the correction
terms

In general, we can write the GWs in the Fourier
domain. Similar to the parameterized post-Einsteinian
framework of GWs developed in (Yunes and Pretorius, 2009;
Cornish et al., 2011), for each circular polarization mode, we
can also write the GW waveform as the following parameterized
form

h̃A ( f) = h̃
GR
A (1+ α

ppe
A ua

ppe
A )eiβ

ppe
A ub

ppe
A , (3.1.38)

where αppeA ua
ppe
A = δhA and βppeA ub

ppe
A = δΨA represent the

amplitude and phase modification respectively. These two terms
capture non-GRmodifications in the waveform in a generic way.
The coefficients appeA and bppeA indicate the post-Newtonian (PN)
orders of these modifications. In comparison with the results
derived in the previous subsection, we obtain that

αppeA =
ρA

MPVM
[c1 (τ0) − (1+ z)c1 (τe)] , (3.1.39)

appeA = 1, (3.1.40)

βppeA = ξA, (3.1.41)

bppeA = 2. (3.1.42)

Let us now count the PN order of these parity-violating
corrections relative toGR.The relative correction fromGR is said
to be n PN order if it is proportional to f 2n/3. Thus, the amplitude
correction enters at 1.5 PN order, and the phase correction enters
at 5.5 PN order (note that the phase of GR ∝ f −5/3 at leading
order).

In order to make contact with observations, it is convenient
to analyze the GWs in the Fourier domain, and the responses of
detectors for the GW signals h̃( f) can be written in terms of the
waveform of h̃+ and h̃× as

h̃ ( f) = [F+h̃+ ( f) + F×h̃× ( f)]e
−2πi fΔt, (3.1.43)

where F+ and F× are the beam pattern functions of GW
detectors, depending on the source location and polarization
angle (Jaranowski et al., 1998; Zhao and Wen, 2018). Δt is the
arrival time difference between the detector and the geocenter.
In GR, the waveform of the two polarizations h̃+( f) and h̃×( f) are
given by

h̃GR+ = (1+ χ2)AeiΨ, (3.1.44)

h̃GR× = 2χAei(Ψ+π/2), (3.1.45)

Where A and Ψ denote the amplitude and phase of the
waveforms hGR+ ×, and χ = cos ι with ι being the inclination angle

of the binary system. Now we would like to derive how the parity
violation can affect both the amplitude and the phase of the above
waveforms. The circular polarization modes h̃R and h̃L relate to
the modes h̃+ and h̃× via

h̃+ =
h̃L + h̃R
√2
, h̃× =

h̃L − h̃R
√2i
. (3.1.46)

The Fourier waveform h̃( f) becomes (Qiao et al., 2019)

h̃ ( f) =AδAei(Ψ+δΨ), (3.1.47)

where

δA = √(1+ χ2)2F2+ + 4χ2F2× ×[1+
2χ(1+ χ2)(F2+ + F2×)

(1+ χ2)2F2+ + 4χ2F2×
δh

−
(1− χ2)2F+F×
(1+ χ2)2F2+ + 4χ

2F2×
δϕ+O ((δh)2, (δϕ)2)] ,

δΨ = tan−1[
2χF×
(1+ χ2)F+

]+
(1− χ2)2F+F×
(1+ χ2)2F2+ + 4χ

2F2×
δh

+
2χ(1+ χ2)(F2+ + F

2
×)

(1+ χ2)2F2+ + 4χ2F2×
δϕ+O ((δh)2, (δϕ)2) ,

(3.1.48)

with δϕ and δh corresponding to Eq. (3.1.23) and Eq. (3.1.37)
respectively.

3.1.6 Observational properties and constraints
The final expression for the waveform clearly shows that the

modifications to the GWs relative to the waveform in GR are
quantified by the terms δh and δϕ, both of which are induced by
the parity-violating terms. δh and δϕ are amplitude birefringence
and velocity birefringence effects, respectively, between the left-
and right-hand polarization modes. In the specific case with
δh = δϕ = 0, the formula in (3.1.47) returns to that in GR. In
the CS modified gravity with δϕ = 0 and δh ≠ 0, the formulas
in Eq. (3.1.48) returns to the corresponding ones in (Yagi and
Yang, 2018). Equations (3.1.47) also indicates that the evolution
of polarizationmodesh+ andh× are not independent, themixture
of twomodes is inevitable.This explains the presence of terms δh
and δϕ that appear in the phase and amplitude modifications of
h̃( f). A further extension to the investigation of corrections to
GWs waveforms is presented in Ref. (Zhao et al., 2020a), where
the correction terms contain both parity-conserving and parity-
violating terms. The amplitude and phase corrections induced
by the parity-conserving terms modified only the amplitude and
phase of h̃( f), respectively, i.e. the parity-conserving terms affect
the evolution of the two polarization modes independently.

In the leading order, the modification δA (or δΨ) linearly
depends on δh and δϕ. Estimating their relative magnitudes is
valuable for examining waveform corrections. Assuming that the
GW is emitted at redshift z∼O (1) and approximately treating
c1 and c2 as constants in the GW propagation process, one
obtains the ratio of the two correction terms as δϕ/δh∼t0f,
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where f is the GW frequency and t0 = 13.8 billion years is the
age of the Universe. As known, f∼100 Hz for the ground-based
GW detectors, and f∼0.01 Hz for the space-borne detectors.
In both cases, the results suggest that δϕ is more than ten
orders of magnitude larger than δh. Therefore, we arrive at the
conclusion: In the general ghost-free parity-violating gravities,
both the amplitude and phase corrections of GW waveform
h̃( f) predominantly come from the contribution of velocity
birefringence rather than that of the amplitude birefringence.

In order to seek birefringence effects in waveforms produced
by parity violation, Ref. (Wang et al., 2022) direct comparison
with GW data was performed using Bayesian inference. For
all GW events, there was no indication of parity violations
found in the results. Meanwhile Ref. (Wang et al., 2022) has
given the 90% lower limit for MPV is 0.09 GeV, which is the
tightest constraint onMPV up-to-date.The velocity birefringence
effect is stronger for waveform correction than the amplitude
birefringence effect, and Ref. (Wang et al., 2022) also gave a
constraint of MPV > 1× 10

−22 GeV by considering only the
amplitude birefringence correction, which is consistent with CS
gravity.

3.2 The parity-violating Hořava-Lifshitz
gravity

3.2.1 Gravitational waves in the parity-violating
Hořava-Lifshitz gravity

The general formulas of the linearized tensor perturbations
were given in (Zhu et al., 2013), so in the rest of this section we
give a very brief summary of the main results obtained there.
Consider a flat FRW Universe and assuming that matter fields
have no contributions to tensor perturbations, the quadratic part
of the total action can be cast in the form (Zhao et al., 2020a),

S(2) = 1
16πG
∫dτd3 x[a

2

4
(h′ij)

2 − 1
4
a2(∂khij)

2

−
γ̂3

4M2
PV
(∂2hij)

2 −
γ̂5

4M4
PVa

2 (∂
2∂khij)

2

−
α1aϵijk

2MPV
(∂lh

m
i ∂m∂jh

l
k − ∂lhim∂

l∂jh
m
k )

−
α2ϵijk

4M3
PVa

∂2hil(∂2h
l
k),j −

3α0H
8MPVa
(∂khij)

2], (3.2.1)

where γ̂3 ≡ (2MPV/MPl)2γ3 and γ̂5 ≡ (2MPV/MPl)4γ5, and γ3
and γ5 are the dimensionless coupling constants of the theory. To
avoid fine-tuning, αn and γ̂n are expected to be of the same order.
Following the variational principle, the equations of motion for
hij read,

h′′ij + 2Hh′ij − α
2∂2hij +

γ̂3
a2M2

PV

∂4hij −
γ̂5

a4M4
PV

∂6hij

+ ϵilk(
2α2
aMPV
+

α2
a3M3

PV

∂2)(∂2hjk),l = 0, (3.2.2)

where α2 ≡ 1+ 3α0H/(2aMPV). To study the evolution of
hij, we expand it over spatial Fourier harmonics. For each
circular polarization mode, the standard parameterization of the
equation of motion for GW takes the form (Zhao et al., 2020a)

h′′A + (2+ νA + ν̄)Hh′A + (1+ μA + μ̄)α
2k2hA = 0, (3.2.3)

where

ν̄ = 0 = νA, μ̄ = δ2(k/aMPV)
2 + δ4(k/aMPV)

4 + 3α0H/(2MPVa) ,

μA = δ1ρA (k/aMPV) − δ3ρA(k/aMPV)
3,

(3.2.4)

with δ1 ≡ 2α1/α
3, δ2 ≡ γ̂3/α

4, δ3 ≡ α2/α
5, δ4 ≡ γ̂5/α

6. In the late
Universe, a∼1, and H≪MPV, so we find α2→ 1. In the
expression of μ̄, the second term is always negligible, and the
relative magnitude of the first and third terms depends on the
values of k andMPV. In the theory, which includes both the third-
and fifth-order operators, the first term in μA is dominant. While
for the theory, which includes only the fifth-order operator, only
the second term in μA exists.

3.2.2 Observational properties
Equations (3.2.3) reflects the fact that both the parity-

conserving and parity-violating terms are corrected for the
dispersion relation ωA = (1+ μA + μ̄)α

2k2, which is portrayed by
the parameters μ̄ and μA respectively. It can be clearly seen that in
the case of μA = 0, although the dispersion relation is corrected,
the propagation velocities of the two circularly polarised modes
are the same. Only when the dispersion relation is corrected by
the parity-violating terms μA, the propagation velocities of the
two circular polarizationmodes are handedness-dependent, thus
producing a velocity birefringence effect. This suggests that the
birefringence effect is a powerful support for testing the existence
of parity violation in gravity.

3.3 The Nieh-Yan modified teleparallel
gravity

In Section 2, we have given a brief introduction to the
modified teleparallel gravity. Here, we will present a discussion
of the study of GWs propagation in this gravity (Wu et al., 2022).
Following the variational principle, the equation of motion is
obtained by variation of the action (2.3.2) as

Gμν +Nμν = Tμν +Tμν
θ , (3.3.1)

where Gμν is the Einstein tensor, Tμν and Tμν
θ are the energy-

momentum tensor for thematter and the scalar field respectively,
and the tensor Nμν is of the form Nμν = ceνA∂ρθ T̃ Aμρ =
c∂ρθ T̃ νμρ.The antisymmetric part of the tensorNμν is vanishing,
which means Nμν is subject to a symmetry constraint as

N[μν] = 0. (3.3.2)
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The variation of the action (2.3.2) with respect to the scalar field
θ obtains the equation of motion as

b□θ+ bVθ −
c
4
TAνμT̃ Aνμ = 0, (3.3.3)

where Vθ denotes the first derivative of the potential to the
scalar field. It is interesting to mention here that the value of
the parameter b determines the different versions of this gravity.
Similar to CS gravity, when b = 0 or b ≠ 0 correspond to the
non-dynamic or dynamic versions respectively. As shown in
(Li et al., 2020; Li et al., 2021), the propagation of GW in both
theories follows the same propagation equation, therefore in the
following, we will not distinguish between the two versions and
take b = 1.

3.3.1 Gravitational waves in Nieh-Yan modified
teleparallel gravity

We have given the perturbation of the spatial metric in
Eq. 3.1, the tetrad field perturbation is (Wu et al., 2022)

e00 = a, e
0
i = 0, e

a
0 = 0,

eai = a(γ
a
i +

1
2
γajhij),

(3.3.4)

where γai can be regarded as a space tetrad on a three-dimensional
space hypersurface. For a flat Universe, there is the relation δij =
δabγ

a
i γ

b
j . It is important to note here that the tensor perturbation

comes only from the tetrad field, and the spin connections
or local Lorentzian matrices do not contribute to the tensor
perturbation.

The above tetrad field andmetric perturbation are substituted
into the action (2.3.2) and extended to the second order in hij.
After tedious calculations, the tensor perturbation form of the
action is

S(2) = 1
8πG
∫d4xa

2

8
(h′ijh
′
ij − ∂khij∂

khij − cθ′ϵijkhil∂jhkl) . (3.3.5)

To facilitate the study of the physics, GWs are usually assumed
to propagate in a vacuum, ignoring the source term. Varying the
action with respect to hij, the equations of propagation are

h′′ij + 2Hh′ij − ∂
2hij +

1
2
cθ′ (ϵlki∂lhjk + ϵlkj∂lhik) = 0. (3.3.6)

We again substitute the propagation equation using the expanded
form of hij (3.1.7) over the spatial Fourier harmonics. The
propagation equation for the two modes becomes the standard
parameterized form (3.1.9)

h′′A + (2+ νA)Hh′A + (1+ μA)k
2hA = 0, (3.3.7)

where

νA = 0, μA =
ρAcθ
′

k
. (3.3.8)

This equation shows that left- and right-handed polarized GWs
propagate with different velocities.

3.3.2 The effects of the parity violation
It can be observed from Eq. (3.3.7) that the significant

effect of the violating-parity term on GW is the correction of
the dispersion relation ωA = k2 (1+ ρA

cθ′

k
). Considering small

coupling constant c and slow evolution of θ, one can find from
the dispersion relation that GWs with different helicities have
different phase velocities

vA ≃ 1+ ρA
cθ′

2k
= 1+ ρA

aMPV

2k
, (3.3.9)

where MPV = cθ
′/a = cθ̇ is a characteristic energy scale.

Considering a graviton emitted radially at r = re and received
at r = 0, we have

dr
dt
= −1

a
[1+ ρA

aMPV

2k
]. (3.3.10)

Integrating this equation from the emission time (r = re) to
arrival time (r = 0), one obtains

re = ∫
t0

te

dt
a (t)
+ ρA

MPV

2k
∫
t0

te
dt. (3.3.11)

Consider gravitons with the same ρA emitted at two different
times te and t′e, with wave numbers k and k′, and received at
corresponding arrival times t0 and t′0 (re is the same for both).
Assuming Δte ≡ te − t′e ≪ a/ȧ, then the difference of their arrival
times is given by

Δt0 = (1+ z)Δte +
ρA
2
(
MPV

k′
−
MPV

k
)∫

t0

te
dt,

where z ≡ 1/a (te) − 1 is the cosmological redshift.
Therefore, the parity violation due to the Nieh-Yan term

changes the phase of the GWs relative to the GWs in the GR.The
expression hA(3.1.21), computed analytically from the stationary
phase approximation in the Fourier domain, could be directly
applied. The correction of the GWs phase Ψ due to different
arrival times is as follows,

ΨA ( f) = Ψ
GR
A ( f) + ρAδΨ1 ( f) , (3.3.12)

where

δΨ1 ( f) = Aμ lnu

Aμ =
MPV

2H0
∫
z

)

dz

(1+ z)√(1+ z)3Ωm +ΩΛ

. (3.3.13)

Combining this modified phase Ψ and the relationship between
h+,× and hR,L, the Fourier waveform h( f) becomes

h ( f) =AδAei(Ψ+δψ), (3.3.14)

where

δA = √(1+ χ2)2F2+ + 4χ2F2×

×[1−
(1− χ2)2F+F×
(1+ χ2)2F2+ + 4χ2F2×

δΨ1],

δΨ = tan−1[
2χF×
(1+ χ2)F+

]+
2χ(1+ χ2)(F2+ + F2×)

(1+ χ2)2F2+ + 4χ2F2×
δΨ1.

(3.3.15)
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3.3.3 Observational properties and constraints
The expression for this waveform represents that the Nieh-

Yan term produces only a velocity birefringence effect, which is
the opposite of CS theory. In contrast to parity-violating scalar-
tenser gravity, the Nieh-Yan term does not produce an amplitude
birefringence effect. It is consistent with our expectation that the
Nieh-Yan term in the equation ofmotion (3.3.7) is onlymodified
by the dispersion relation. To further investigate the correction
of the waveform by velocity birefringence, Ref. (Wu et al., 2022).
performs full Bayesian inference on the 46 GW events of BBH
in the LIGO-Virgo catalogs GWTC-1 and GWTC-2. The results
revealed no indication of any parity violation due to the parity-
violating Nieh-Yan term, and placed an upper bound on the
energy scale MPV of MPV < 6.5× 10−42GeV with a confidence
level of 90%. It represents the first constraint so far on the
Nieh-Yan correction for teleparallel gravity.

3.4 The parity-violating symmetric
teleparallel gravity

3.4.1 Gravitational waves in parity-violating
symmetric teleparallel gravity

Following the parity-violating gravities presented in
Section 2, here we will analyze the effect of the parity-violating
term on the propagation of GWs in the parity-violating
symmetric teleparallel gravity. After tedious calculations in Ref.
(Li and Zhao, 2022), the perturbation form of the action (2.4.1)
is

S(2) = 1
8πG
∫d4 xa2 [1

8
(h′ijh
′
ij − ∂khij∂

khij)

−2c(2Hϕ+ϕ′)ϵijkhil∂jhkl] . (3.4.1)

Considering GWs propagation in a vacuum and ignoring the
source term, the equation of motion of GWs is

h′′ij + 2Hh′ij − ∂
2hij − 4c(2Hϕ+ϕ′)(ϵlki∂lhjk + ϵlkj∂lhik) = 0.

(3.4.2)

By replacing the propagation equations with the extended form
of hij on the spatial Fourier harmonics, the propagation equations
for the two modes become the standard parametric form as

h′′A + (2+ νA)Hh′A + (1+ μA)k
2hA = 0, (3.4.3)

where

νA = 0, μA =
aρAMPV

k
, (3.4.4)

with

MPV ≡ −8
c(2Hϕ+ϕ′)

a
. (3.4.5)

This equation of motion shows that the parity violation term
only changes the dispersion relation in the propagation equation,
which is similar to Nieh-Yan modified teleparallel gravity.

3.4.2 Propagation speed and constraints
Meanwhile, Eq. (3.4.3) reflects that the significant effect of

the parity-violating term on the GW is to induce a handedness-
dependent dispersion relation ω2 = (1+ μA)k2 = k2 + aρAMPVk,
which in turn leads to a difference between the propagation
velocities of the two helicities of the GW. This phenomenon,
also known as the velocity birefringence of GW, characterizes
the parity violation of the theory. Assuming again that the small
coupling constants c and slow evolution of ϕ, it can be found
from the dispersion relation that GWs with different helicities
have different phase velocities as

vAp =
ωA

k
≈ 1+

ρAaMPV

2k
. (3.4.6)

These propagating velocities of GWs differ from the speed of
light. This deviation is tightly constrained by current GWs
experiments. Ref. (Wu et al., 2022) has targeted this velocity
birefringence correction to the GW waveform by using LIGO-
Virgo observations of event data from GWs of binary black hole
mergers with a tighter constraint onMPV:MPV < 6.5× 10−42GeV.

3.5 Intercomparison of parity-violating
gravities

In the previous subsections, we have described the effect
of different parity-violating gravities on the propagation of
gravitational waves produced by isolated sources. The results
for the ghost-free parity-violating gravity show both velocity
birefringence and amplitude birefringence effects from the
parity-violating terms, while the other three gravities produce
only the velocity birefringence effect. These birefringence effects
lead to different corrections to the waveforms of GWs. In
particular, the corrections to the waveform come mainly from
the velocity birefringence effect compared to the amplitude
birefringence effect in the ghost-free parity-violating gravity.
Based on these corrected waveforms, the parity-violating
gravities are examined separately and analyzed using a selection
of currently observed GWs events. The results present that there
is no significant parity violation in parity-violating gravities. In
addition, the parity-violating gravities are given separately with
the latest constraints on the energy scale: MPV > 0.09 GeV for
the ghost-free parity-violating gravity andMPV < 6.5× 10

−42GeV
for the Nieh-Yan modified teleparallel gravity and the parity-
violating symmetric teleparallel gravity.

We should mention that, it is a systematic issue to
prove or falsify general relativity or other gravitational
theory through gravitational-wave observation. The different
properties (including the Lorentz symmetry, parity symmetry,
equivalence principle, velocity, polarization, mass and dispersion
relation of GWs, the possible evolution of gravitational
constant G and so on) of theory need to be tested at
the same time with GWs at different frequency ranges.
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Actually, in addition to the birefringence effects in the general
PV gravities as discussed above, some other characters of
gravitational waves might exist in the general modified
gravities (Liang et al., 2017; Zhang et al., 2017; Liu et al., 2018;
Zhang et al., 2020; Li et al., 2022). For instance, the extra
polarization modes, except for the “plus” and “cross” modes (or,
equivalently, the left-hand and right-hand polarization modes),
are always generated in the theories including the scalar or
vector fields, although in general modified theories (including
the Chern-Simons gravities (Li et al., 2022), the scalar-tensor
gravities (Zhang et al., 2017; Liu et al., 2018), and Einstein-
Aether gravity (Zhang et al., 2020) and so on), the amplitudes
of these extra modes are relatively smaller than the “plus”
and “cross” modes. Detecting these extra modes with the laser
interferometric detectors provides a model-independent way to
distinguish GR and other modified gravities, which is another
important method to test the fundamental properties of gravity
(Wen, 2008; Corda, 2009; Niu et al., 2021).

4 Applications of the parity-violating
gravities to the early Universe

In addition to gravitational waves produced by celestial
sources, there are also primordial gravitational waves produced
by quantum fluctuations in the early Universe. PGWs produce
a distinguishable signature in the CMB polarization. In
the standard cosmological model, PGWs normally produce
autocorrelated TT, EE, and BB power spectra, as well as
TE cross-power spectra. The large-scale EB and TB power
spectra vanish when the parity of PGWs is conserved.
Information from these power spectra can be used to probe
the primordial fluctuations. In particular, the TB and EB power
spectra are good null tests and can be used to detect the
presence of instrumental and/or astrophysical system effects
(Yadav et al., 2010; Chen et al., 2022). Meanwhile, the non-zero
TB and EB spectra of PGWs imply parity-violating of the
gravitational sector, and their precise measurement is also of
great significance in testing for parity-violating interactions
(Wang et al., 2013; Zhu et al., 2013; Peng, Zeng, Fu, Guo;
Qiao et al., 2020; Zhu, Zhao, Wangb).

4.1 Polarized primordial gravitational
waves in the ghost-free parity-violating
gravity

For primordial gravitational wave studies, we considermetric
perturbations as presented in the first subsection of the previous
section for a flat FWR Universe. From the action (2.2.4) of this
parity-violating gravity, it can be found that the parity-violating
terms have no effect on the background evolution. In general, it
is assumed that the Universe is dominated by scalar field ϕwhich

plays the inflaton field role during the slow-roll inflation. In this
case, the Friedmann equation, which governs the background
evolution, takes exactly the same form as that in GR, i.e.,

H2 = 8πG
3

ρ, (4.1.1)

where H denotes the Hubble parameter during the inflationary
stage, and the energy density of the scalar field is ρ = 1

2
ϕ̇2 +V(ϕ).

The evolution of the scalar field ϕ is also the same as that in GR,

ϕ̈+ 3Hϕ̇+
dV (ϕ)
dϕ
= 0. (4.1.2)

Typically, in standard slow-roll inflation, the scalar field is
assumed to satisfy the slow-roll condition

|ϕ̈| ≪ |3Hϕ̇|, |ϕ̇2| ≪ V (ϕ) . (4.1.3)

With the above slow-roll conditions, it is convenient to define the
following Hubble slow-roll parameters,

ϵ1 = −
Ḣ
H2 , ϵ2 =

d lnϵ1
dlna
, ϵ3 =

dlnϵ2
d lna
. (4.1.4)

4.1.1 The analytical solution of the motion
equation for PGWs

Primordial gravitational waves are the tensor perturbations
of the homogeneous and isotropic background, and the equation
of motion has been given in Eq. (3.1.9). In order to calculate
the power spectrum of the primordial gravitational waves, the
processing of the equation of motion (3.1.9) is different from
the previous section, that is, the analytical solution to the
equations of motion is given by using the uniform asymptotic
approximation method (Qiao et al., 2020).

In order to facilitate the processing of the equation ofmotion,
a new variable needs to be defined as uA ≡ zhA, and rewrite
Eq. (3.1.9) as,

u′′A + [(1+ μA)k
2 − z′′/z]uA = 0, (4.1.5)

where z = a(1− c1kρA/(aMPV))
1/2. Several basic assumptions

are worth noting here: 1) the PGWs propagate during the
inflationary stage; 2) the background evolution during the
inflation must satisfy the slow-roll condition (4.1.3); 3) the
deviations from GR arising from the parity violation are small.
Considering these factors, the effective time-dependent mass
term z′′/z in Eq. (4.1.5) is expanded in terms of the slow-roll
parameter as

z′′

z
= a
′′

a
+ 1
2

(a
′′

a
c1 − c
′′
1 )kρA/aMPV

1− c1kρA/aMPV

+ 1
4
[
(c1H− c′1)kρA/aMPV

1− c1kρA/aMPV
]
2

≃
v2t −

1
4

τ2
− ρA

k
τ
c1ϵ*, (4.1.6)
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where

vt ≃
3
2
+ 3ϵ1 + 4ϵ21 + 4ϵ1ϵ2 +O (ϵ

3) , (4.1.7)

and ϵ* ≡H/MPV denotes the ratio between the energy scale
of inflation and the characteristic energy scale of the parity
violation, which determines the magnitude of the corrections to
GR.

Similarly, the parameter μA that modifies the dispersion
relation of the tensor mode can also be expressed in the form
of slow-roll parameter as

μA =
ρAk (c1 − c2)/(aMPV)
1− ρAkc1/(aMPV)
≃ −ρAkτ (c1 − c2)ϵ*. (4.1.8)

It is worth noting that in order to obtain the above expansion, the
following relation is used,

a = − 1
τH
(1+ ϵ1 + ϵ21 + ϵ1ϵ2) +O (ϵ

3) . (4.1.9)

Combining the expressions for z′′/z and μA, the equation of
motion in Eq. (4.1.5) can be transformed into the form

u′′A +
{{
{{
{

[1− ρAkτ (c1 − c2)ϵ*]k
2 −

v2t −
1
4

τ2
+ ρA

k
τ
c1ϵ*
}}
}}
}

uA = 0.

(4.1.10)

After some tricksy calculation, a more familiar ordinary
differential equation is obtained. Since this equation reduces to
the same form as in CS gravity when c1 = c2, it has an exact
solution in terms of the confluent hypergeometric functions
given in Ref. (Bartolo and Orlando, 2017). However, in this case
with coefficients c1 ≠ c2, there is no known exact solution to the
equation, which urges a solution. In general, the most widely
considered method is the WKB approximation, in which the
satisfaction ofWKB condition is claimed throughout the process.
Nevertheless, there are situations in which the WKB conditions
may be broken or not entirely satisfied (Zhu et al., 2014).

Here applying the uniform asymptotic approximation
(Zhu et al., 2014), the final expression for the approximate
solution through tedious calculations is given in terms of Airy
type functions as (Qiao et al., 2020)

uA = α0(
ξ

g (y)
)
1/4

Ai (ξ) + β0(
ξ

g (y)
)
1/4

Bi (ξ) , (4.1.11)

where Ai(ξ) and Bi(ξ) are the Airy functions, α0 and β0 are two
integration constants, ξ is the function of y and their expressions
are given as follows:

α0 = √
π
2k

ei
π
4 , β0 = i√

π
2k

ei
π
4 , (4.1.12)

ξ (y) =
{{{{
{{{{
{

(−3
2
∫
y

y0
√g (y′)dy′)

2/3
, y ≤ y0,

−(3
2
∫
y

y0
√−g (y′)dy′)

2/3
, y ≥ y0.

(4.1.13)

At this point, only the specific forms of the Airy functions
in the expression for the approximate solution have not been
determined. It is clear from the expressions for ξ above that
the value of ξ depends on y, while the value of ξ influences the
choice of forms of the Airy functions. Consequently, the choice
of explicit forms for the Airy functions is left to be determined
later for the specific condition required for the calculation.

4.1.2 Power spectra of PGWs
With the approximate solution of PGWs derived above, the

associated power spectrum PL,R
T can be computed in the limit

y→ 0 by

PL
T =

2k3

π2
|
uLk (y)
z
|
2

,PR
T =

2k3

π2
|
uRk (y)
z
|
2

. (4.1.14)

Here, before calculating the specific power spectrum, the form
of the required Airy functions needs to be determined. When
y→ 0+, the parameter ξ(y) becomes very large and positive, and
the Airy function allows the following asymptotic forms

Ai (x) = 1
2π1/2x1/4

exp(−2
3
x3/2), (4.1.15)

Bi (x) = − 1
π1/2x1/4

exp(2
3
x3/2). (4.1.16)

From the above two expressions for the Airy function, it is clear
that only the growing mode of uAk (y) is relevant under the limit
y→ 0, so we have

uAk (y) ≈ β0(
1

π2g (y)
)
1/4
exp(∫

y0

y
dy√g (y))

= i 1
√2k
( 1
g (y)
)
1/4
exp(∫

y0

y
dy√g (y)) . (4.1.17)

The power spectra of PGWs are then given by

PA
T =

k2

π2
1
z2

y
vt
exp(2∫

y0

y
dy√g (y))

≃ 18 H2

π2e3
e

πρAϵ*
16
(9c2−c1)

≃ 18 H2

π2e3
[1+

πρA
16

Mϵ* +
π2

2× 162
M2ϵ2* +O(ϵ*)

3],

(4.1.18)

whereM ≡ 9c2 − c1 and

9c2 − c1
MPV
= 8ϑ̇+ 4 ̇a1ϕ̇

2 + 8a1ϕ̇ϕ̈− 8a1Hϕ̇
2 − 16 ̇a2ϕ̇

2 − 32a2ϕ̇ϕ̈

+ 10 ̇a3ϕ̇
2 + 20a3ϕ̇ϕ̈− 4a3Hϕ̇

2 − 64 ̇a4ϕ̇
2 − 128a4ϕ̇ϕ̈

+ 2b1ϕ̇
3 − 4b2 (Hϕ̇

2 − ϕ̇ϕ̈) − 2b3ϕ̇
3ϕ̈− 2b4ϕ̇

3ϕ̈

+ 2b5Hϕ̇
4 − 2b7ϕ̇

3ϕ̈− 6b7ϕ̇
4H. (4.1.19)

It is clear that the power spectra can be modified due to
the presence of a parity-violating term in the action (2.2.4).

Frontiers in Astronomy and Space Sciences 13 frontiersin.org

https://doi.org/10.3389/fspas.2022.1109086
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Qiao et al. 10.3389/fspas.2022.1109086

As expected, it can be checked that the standard GR results
are recovered when Mϵ* = 0. Therefore, the power spectra in
(4.1.18) is rewritten as

PA
T =

PGR
T

2
[1+

πρA
16

Mϵ* +
π2ρ2A
2× 162

M2ϵ2* +O(ϵ*)
2], (4.1.20)

where

PGR
T =

2k3

π2
(|

uLk (y)
z
|
2

+ |
uRk (y)
z
|
2

) (4.1.21)

denotes the standard nearly scale invariant power-law spectrum
calculated by uniform asymptotic approximation in the
framework of GR (Zhu et al., 2014). For the two circular
polarization modes, namely A = R and A = L, the spectra PGR

T
have the exactly same form. The quantity M depends on the
coefficients ϑ, aA and bA, as well as the evolution of the scalar
field. It is worth noting that for positive values of M, parity
violation has a tendency to enhance (suppress) the power spectra
of the right (left) handed mode. During the slow-roll inflation,
the scalar field is slow-rolling, which satisfies the slow-roll
conditions (4.1.3). With this condition, the quantities c1 and
c2 are assumed to be slowly varying during the expansion of the
Universe, which can be approximately treated as constants during
the slow-roll inflation. In the expression of 9c2 − c1, we observe
that it contains the terms with ϑ,aA,bA and their derivatives
with respect to ϕ. Considering the scalar field ϕwith the slow-roll
condition (4.1.3), the leading contribution to 9c2 − c1 reads

9c2 − c1
MPV
≃ 8ϑ̇− 8(a1 +

a3
2
+
b2
2
)Hϕ̇2. (4.1.22)

Therefore, the leading contribution to the power spectrum of
PGWs depends only on the coefficients ϑ̇,a1,a3 and b2.

4.1.3 The circular polarization and detectability
A quantity that can be directly detected is the degree

of circular polarization of the PGWs, which is defined by
the differences in the amplitudes between the two circular
polarization states of PGWs as

Π ≡
PR
T −P

L
T

PR
T +P

L
T

≃ π
16
(9c2 − c1)ϵ* +O (ϵ3*)

≃ π
2
ϑ̇MPVϵ* −

π
2
(a1 +

a3
2
+
b2
2
)Hϕ̇2MPVϵ* +O (ϵ3*) .

(4.1.23)

As expected, when a1 = a3 = b2 = 0, the above expression of the
circular polarization Π exactly reduces to that in Chern-Simons
gravity (Alexander and Martin, 2005; Satoh and Soda, 2008).
Obviously, under conditions (4.1.3), we observe that the degree
of the circular polarization Π is very small due to the suppressing
parameter ϵ*.

We further analyze this observable Π, which provides the
opportunity to directly detect the chiral asymmetry of gravity

by observations (Lue et al., 1999; Saito et al., 2007; Gluscevic
and Kamionkowski, 2010). However, as being pointed out in
(Wang et al., 2013), the detectability of the circular polarization
of PGWs is sensitive to the values of the tensor-scalar-ratio r
and Π. According to the combination of Planck 2018 data and
the BICEP2/Keck Array BK15 data (Akrami et al., 2020), r has
been tightly constrained as r ≲ 0.065. For this case, in order to
detect any signal of parity violation in the forthcoming CMB
experiments, Π must be larger thanO(0.5), even in an ideal case
with the cosmic variance limit. On the other hand, since the
condition ϵ* ≪ 1 is imposed for the original considerations when
constructing the theory, the order of magnitude of Π is rough
≲O(0.5). For these reasons, we conclude that it seems difficult to
detect or efficiently constrain the parity violation effects on the
basis solely of two-point statistics from future CMB data.

4.2 Primordial gravitational waves in
parity-violating Hořava-Lifshitz gravity

We have discussed the corrections to the GWs propagation
waveform in parity-violating Hořava-Lifshitz gravity compared
to that in GR. Here we continue to introduce the effects of parity
violation on PGWs in this gravity.

4.2.1 The analytical solution of the motion
equation for PGWs

To facilitate solving Eq. (3.2.3), define new variables uA ≡
√αkahA and y ≡ −αkτ. Rewrite Eq. (3.2.3) with these two
variables as

uA,yy + (ω2
A − 2y

−2)uA = 0, (4.2.1)

where

ω2
A = 1+ ρ

A (δ1y+ δ3y3) + δ2y2 + δ4y4, (4.2.2)

with δ1 ≡ −2(α1/α
3)ϵ*, δ2 ≡ (γ̂3/α

4)ϵ2* , δ3 ≡ (α2/α
5)ϵ3* , δ4 ≡

(γ̂/α6)ϵ4* and ϵ* ≡H/MPV ≪ 1. Note that the unitarity of the
theory in theUV requires γ̂5 > 0, while a healthy IR limit requires
α2→ 1. Thus, without loss of generality, α = 1, or equivalently
α0 = 0, is set in the following. However, α1, α2 and γ̂3 have no
such restrictions, provided that ω2

A > 0 holds.
In order to study the power spectrum of PGWs, it is first

necessary to solve Eq. (4.2.1). The solution of Eq. (4.2.1) is
related to the choice of parameters in the dispersion relation
ω2
A.Throughmeticulous analysis and tedious calculations in Ref.

(Wang et al., 2013), the mode functions uR = √αkvR and uL =
√αkvL of Eq. (4.2.1) are given by

vR =
{{{{
{{{{
{

1

√2ωR

e−i∫
τ
τi
ωR(k,τ

′)dτ′ , ωR >H,

D+a (τ) +D−a (τ)∫
τ

τ3

dτ′

a2 (τ′)
, ωR <H,

(4.2.3)
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vL =

{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{
{

1

√2ωL

e−i∫
τ
τi
ωL(k,τ

′)dτ′ , τ ∈ (τi,τ1) ,

C+a (τ) +C−a (τ)∫
τ

τ1

dτ′

a2 (τ′)
, τ ∈ (τ1,τ2) ,

αke
−iΘL

2(k,τ) + βke
iΘL

2(k,τ)

√2ωL (k,τ)
, τ ∈ (τ2,τ3) ,

D+a (τ) +D−a (τ)∫
τ

τ3

dτ′

a2 (τ′)
, τ ∈ (τ3,0) ,

(4.2.4)

Where ΘA
n (k,τ) ≡ ∫

τ
τn
ωA(k,τ′)dτ′. The coefficients

C±k),D±k),αk,βk are uniquely determined by requiring that
vR,Lk and its first-order time derivative be continuous across the
boundaries that separate these regions.

4.2.2 The power spectrum and circular
polarization

In order to investigate the effect of the parity-violating
terms, two representative cases are considered in Ref.
(Wang et al., 2013): 1) δ2 = δ3 = 0; 2) δ1 = δ2 = 0. In the former,
the power spectrum of PGWs and the circular polarization are
given by.

PT =
k3 (|hR|2 + |hL|2)
(2π)2

= H2

4π2
(1+ 21α21ϵ

2
* +O (ϵ

3
*)) , (4.2.5)

Π =
|hR|2 − |hL|2

|hR|2 + |hL|2
= 3α1ϵ* + (17α

3
1 − 3α2)ϵ

3
*/2+O (ϵ

5
*) . (4.2.6)

In the latter case, the power spectrum and circular polarisation
of the PGWs are given by

PT =
H2

4π2
[1+ΔL

k − 3α1Δ
L
kϵ* +

21
2
(1+ΔL

k)α
2
1ϵ

2
* +O (ϵ

3
*)] ,

(4.2.7)

Π = −
ΔL
k

1+ΔL
k

+
3(1+ 2ΔL

k)α1

(1+ΔL
k)

2 ϵ* +
9ΔL

k (1+ 2Δ
L
k)α

2
1

(1+ΔL
k)

3 ϵ2*

+O (ϵ3*) , (4.2.8)

Where ΔA
k ≡ |β

A
k |

2 +Re(αAk β
A*
k e−2iΘ

A
23), and ΘA = ΘA

n (k,τm).
In addition to the above two specific cases, when δ2 ≠ 0, there

is another possibility in which ωR,L =H has three real positive
roots.Thepower spectrumand circular polarisation of the PGWs
are given by

PT =
H2

4π2
[1+ΔL

+ − 3α1Δ
−
kϵ* +

3
2
(7α21 − γ̂3)(1+Δ

+
k)ϵ

2
*

+O (ϵ3*)] , (4.2.9)

Π = −
Δ−k

1+Δ+k
+
3α1 (1+ 2Δ

R
k )(1+ 2Δ

L
k)

(1+Δ+k)
2 ϵ*

+
9α21Δ
−
k (1+ 2Δ

R
k )(1+ 2Δ

L
k)

(1+Δ+k)
3 ϵ2* +O (ϵ

3
*) , (4.2.10)

Where Δ±k ≡ Δ
L
k ±Δ

R
k . The power spectra of PGWs with parity

violation corrections in parity-violating HL gravity for the cases
with different parameters are given above. Each of these power
spectra corresponds to a non-zero circular polarization Π.
These three circular polarisations Π have been analyzed in Ref.
(Wang et al., 2013), and a large Π is possible in all three cases,
i.e. reaching detectable probability. In the analysis of polarized
PGWs for the ghost-free parity-violating gravity, it has been
shown that the detectable quantity Πmust require Π >O(0.5) in
order to be experimentally detectable. Thus, the parity-violating
HL gravity produces a stronger correction in the power spectrum
of PGWs for parity violation compared to the ghost-free parity-
violating gravity.Thedegree of circular polarization of PGWs can
be detected in future three-point correlation function statistics of
CMB data.

4.3 Intercomparison of parity-violating
gravities

This section describes the application of these parity-
violating gravities in the early Universe. The effect of the parity-
violating terms on the circular polarization of the PGWs is
presented in detail for the ghost-free parity-violating gravity and
the parity-violating HL gravity. It is shown that with the presence
of the parity violation, the power spectra of PGWs are modified
and the degree of circular polarization becomes nonzero. The
circular polarization generated in the ghost-free parity-violating
theory of gravity is quite small, which is suppressed by the energy
scale of parity violation of the theory, and it is difficult to detect
by using the power spectra of future CMB data. However, the
circular polarization produced in parity-violating HL gravity is
large and detectable using future CMB data’s power spectrum. It
is necessary to mention that, the primordial gravitational waves
is detectable, only if the energy scale of inflation is around the
Grand Unified Theory (GUT) scale of 1016GeV. If the parity-
violating effects of primordial gravitationalwaveswill be detected
in future, the value of Π must be O(1), which indicates that
the energy scale of parity violation in gravity is also round the
similar scale.Therefore, the detection of primordial gravitational
waves with cosmic microwave background radiation provides an
excellent opportunity to test the parity symmetry of gravity at the
GUT scale.

In Nieh-Yan modified teleparallel gravity and parity-
violating symmetric teleparallel gravity, in order to explore
the mechanism of the primary perturbation generation, the
quadratic perturbation of the action is given respectively
(Li et al., 2020; Li and Zhao, 2022). In the Nieh-Yan modified
teleparallel gravity, the quadratic action on the scalar
perturbation clearly shows that there is only one dynamic
scalar degree of freedom, although two scalar fields were
introduced at the beginning. This may be useful for searching
for new mechanisms of generating primordial perturbations.
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The quadratic action on the tensor perturbation shows that only
velocity birefringence and not the amplitude birefringence of
GW is produced. The parity-violating term in parity-violating
symmetric teleparallel gravity does not influence the scalar
perturbations. Vector perturbations exhibit both velocity and
amplitude birefringence effects in this gravity, where one of
the vector modes is a ghost at high momentum scales, which
would lead to vacuum instabilities in the quantum theory
of cosmic perturbations. The quadratic action on the tensor
perturbation also shows only velocity birefringence, which is
the same as the correction for Nieh-Yan modified teleparallel
gravity.

5 Conclusions and discussions

In this article, we review the applications of different
parity-violating gravities. We discuss the application of parity-
violating gravities to isolated sources. The presence of parity
violation in parity-violating HL gravity, Nieh-Yan modified
teleparallel gravity and parity-violating symmetric teleparallel
gravity induces only a velocity birefringence, which is the
opposite of the amplitude birefringence effect present in CS
gravity. However, in ghost-free parity-violating gravity, the
presence of the parity violation induces both velocity and
amplitude birefringence. These effects are fully consistent with
the existence of both ways of parity violation, where in parity-
violating HL gravity, Nieh-Yan modified teleparallel gravity
and parity-violating symmetric teleparallel gravity the parity-
violating terms indeed correct only the dispersion relation in the
GWs propagation equation; in ghost-free parity-violating gravity
the parity-violating terms change both the dispersion relation
and the friction term in the GWs propagation equation. Based
on these corrected waveforms, the parity-violating gravities are
examined separately and analyzed using the currently observed
GWs events.The results present that there is no significant parity
violation in parity-violating gravities. Meanwhile, the parity-
violating gravities are given separately with the latest constraints
on the energy scale: MPV > 0.09 GeV for the ghost-free parity-
violating gravity and MPV < 6.5× 10

−42 GeV for the Nieh-Yan
modified teleparallel gravity and the parity-violating symmetric
teleparallel gravity.

In addition, we present the application of parity-violating
gravities to the early Universe. In the ghost-free parity-violating
gravity, it is shown that with the presence of the parity violation,
the power spectra of PGWs are slightly modified and the
degree of circular polarization becomes nonzero. The circular
polarization generated in the ghost-free parity-violating theory
of gravity is quite small, which is suppressed by the energy scale
of parity violation of the theory. In order to detect any parity-

violating signals in the upcoming CMB experiments, Π must be
larger than O(0.5). The analysis shows that Π is rough ≲O(0.5)
in ghost-free parity-violating gravity, which is difficult to detect
by using the power spectra of future CMB data. Similarly, the
power spectrum of PGWs in parity-violating HL gravity is also
corrected due to the presence of the parity violation. However,
the resulting non-zero circular polarization Π might be large
enough that it can be detected in future three-point correlation
function statistics of CMB data.
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