AUTHOR=Zhang Quanhao , Cheng Xin , Liu Rui , Song Anchuan , Li Xiaolei , Wang Yuming TITLE=Influence of magnetic reconnection on the eruptive catastrophes of coronal magnetic flux ropes JOURNAL=Frontiers in Astronomy and Space Sciences VOLUME=9 YEAR=2023 URL=https://www.frontiersin.org/journals/astronomy-and-space-sciences/articles/10.3389/fspas.2022.1084678 DOI=10.3389/fspas.2022.1084678 ISSN=2296-987X ABSTRACT=

Introduction: Large-scale solar eruptive activities have a close relationship with coronal magnetic flux ropes. Previous numerical studies have found that the equilibrium of a coronal flux rope system could be disrupted if the axial magnetic flux of the rope exceeds a critical value, so that the catastrophe occurs, initiating the flux rope to erupt. Further studies discovered that the catastrophe does not necessarily exist: The flux rope system with certain photospheric flux distributions could be non-catastrophic. It is noteworthy that most previous numerical studies are under the ideal magnetohydrodynamic (MHD) condition, so that it is still elusive whether there is the catastrophe associated with the critical axial flux if magnetic reconnection is included in the flux rope system.Methods: In this paper, we carried out numerical simulations to investigate the evolutions of coronal magnetic rope systems under the ideal MHD and the resistive condition.Results and discussions: Under the ideal MHD condition, our simulation results demonstrate that the flux rope systems with either too compact or too weak photospheric magnetic source regions are non-catastrophic versus varying axial flux of the rope, and thus no eruption could be initiated; if there is magnetic reconnection in the rope system, however, those flux rope systems could change to be capable of erupting via the catastrophe associated with increasing axial flux. Therefore, magnetic reconnection could significantly influence the catastrophic behaviors of flux rope system. It should be both the magnetic topology and the local physical parameters related to magnetic reconnection that determine whether the increasing axial flux is able to cause flux rope eruptions.