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Currently, thermospheric species densities and temperatures between

~100 and 200 km are not known to the accuracy needed to fully

characterize how the thermosphere transitions from a well-mixed

atmosphere to a diffusively separated atmosphere with zero temperature

gradient. This greatly inhibits scientific discovery attainable from either

models or observations in this region, especially the understanding of

mechanisms that drive thermosphere and ionospheric variability from space

weather to climatological time scales. The purpose of this paper is to highlight

the importance and critical need for new, global, height-resolved neutral

composition (O, O2, N2) and temperature measurements in the new

ignorosphere: the 100–200 km region of the thermosphere. We conclude

with observation recommendations and requirements for new

comprehensive composition and temperature measurements in the

100–200 km altitude region that would lead to significant advances in

thermosphere-ionosphere science, space weather, and space climate.
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1 Scientific motivation and challenges

The thermosphere and ionosphere (T-I) system is forced from both above and below.

From above, external forcing includes (but is not limited to) extreme ultraviolet (EUV) and

X-ray radiation as well as energy and momentum input via coupling with the solar wind and

magnetosphere. From below, a wide-ranging spectrum of vertically propagating waves of

lower atmospheric origin impart their energy andmomentum into the T-I system (Oberheide

et al., 2015; Liu, 2016; Sassi et al., 2019). Coupling between the plasma in the ionosphere and

neutrals in thermosphere via ion drag, chemistry, and Joule heating add evenmore complexity

to T-I system. The primary neutral parameters that define the thermospheric state are

temperature, composition, mass density, and winds, which experience variations over a wide
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range of spatiotemporal scales (e.g., Qian and Solomon, 2012;

Emmert, 2015a) due to the energy and momentum inputs

outlined above. Ultimately, neutral or thermospheric variations,

together with variations in the electrodynamic forcing, drive

ionospheric variations and produce the space weather of the T-I

system (e.g., Rishbeth, 1998; Liu et al., 2021).

The thermosphere spans roughly 90–600 km altitude, consisting

primarily of N2, O2, O, He, and H. The thermosphere transitions

between ~100 and 120 km (e.g., Offermann et al., 2007) from a well-

mixed fluid (dominated by eddy diffusion) to one dominated by

molecular diffusion, whereby individual species are distributed by

altitude according to their molecular masses. Above ~200 km, the

thermosphere is in approximate diffusive equilibrium (Meier et al.,

2001), transitioning from a molecular dominated atmosphere (N2,

O2), to an atomic dominated regime, with O diffusing upward and

becoming the major thermospheric species from ~200 to 600 km.

Between ~250 and 750 km (depending on the solar cycle), O accounts

for most of the thermospheric mass and therefore most of the

atmospheric drag experienced by satellites and debris in low-Earth

orbit. Critically, the O distribution in the mesosphere and lower

thermosphere (MLT, ~50–120 km), which is controlled by the relative

contributions of chemistry, diffusion, and dynamics (e.g., Yamazaki

and Richmond, 2013; Jones Jr, et al., 2014b; Chang et al., 2014; Gan

et al., 2015), is directly connected to mass density distribution in the

upper thermosphere viamolecular diffusion (Picone et al., 2013; Jones

Jr et al., 2017; Jones Jr et al., 2018; Jones Jr et al., 2021).

Adding to the complexity of the 100–200 km region is that the

thermospheric temperature profile increases steeply with altitude

from ~250 K at 100 km to ~1000 K at 200 km (on average).

Numerous competing heating and cooling processes govern the

temperature of the thermosphere, including direct absorption of

solar UV radiation, thermal interaction with the ionosphere,

exothermic chemical reactions, infrared radiation by several

species (including CO2 and NO), and adiabatic heating and

cooling due to dynamic motions. The connection between

temperature and mass density (and therefore composition) is via

hydrostatic balance and the ideal gas law. Variations in mass density

are highly sensitive to variations in underlying temperature because

increased temperature acts to expand a hydrostatic column, leading

to increases in the density scale height and increasedmass density at a

fixed altitude. For example, a 20 K overestimate of temperature over a

10 km altitude band near 100 km will produce a ~20% overestimate

of atmospheric density at higher altitudes, because the erroneously

high temperature produces a more expanded air column via

hydrostatic adjustment. Thus, in order to properly interpret mass

and plasma density changes measured in the upper thermosphere

from previous [e.g., Challenging Minisatellite Payload (CHAMP)]

and future [e.g., Global Dynamics Constellation (GDC)] satellite

missions, one must understand the temperature and composition of

the 100–200 km region.

Further complicating the understanding of upper T-I variations

connected with variations in the 100–200 km altitude regime is that

most vertically-propagating waves (solar and lunar tides, planetary

waves, Kelvin waves, gravity waves) break, dissipate, and generate

secondary or higher orderwaves at this altitude, bringingmomentum

and energy from the lower atmosphere into the thermosphere. As a

result, accurate modeling of neutral thermospheric composition,

temperature, and ionospheric plasma density are important for

satellite operations and requires a deft understanding of

atmospheric waves, dynamics, and thermodynamics that modulate

the neutral and plasma densities at time scales from days, months,

years, to decades (e.g., Qian et al., 2009, 2013; Leonard et al., 2012;

Vadas et al., 2014; Emmert, 2015b; Pedatella et al., 2016; Thayer et al.,

2021). Further, wave propagation and dissipation prior to

geomagnetic storms can serve to precondition thermospheric

composition, dynamics, and temperature, which if unaccounted

for can lead to large uncertainties in modeled plasma density

calculations (e.g., Pedatella and Liu, 2018).

All the above is well supported by a rich body of scientific

literature and provided strong motivation for the GDC and

Dynamical Neutral Atmosphere (DYNAMIC) science missions

that were among the highest priority recommendations in the

2013 Decadal Survey (National Research Council, 2013). Further,

both GDC and DYNAMIC were strongly advocated for in the

Decadal Survey Midterm Assessment (NASEM, 2020), with the

latter receiving strong community support from the 2022 CEDAR

community statements on DYNAMIC (CEDAR Science Steering

Committee, 2022).

2 Current state of temperature and
composition measurements in the
100–200km region

Sophisticated whole atmosphere and/or middle and upper

atmospheric models constrained with realistic lower atmosphere

forcing from atmospheric prediction systems or reanalyses can

reproduce some of the nuances of T-I composition and

temperature in the T-I system. Since the 2013 Decadal Survey,

a number of advances in understanding the composition and

temperature variations in the 100–200 km region have been

accomplished via combined data-modeling efforts.

However, temperature and composition measurements in the

100–200 km region are still very sparse, which is an obstacle to the

validation and interpretation of the modeling results. Figure 1

illustrates the historical and current record of major data sets as a

function of altitude and year. The only current and ongoing research

measurements of major thermospheric chemical constituents and/or

temperature above 105 km are from the NASA Ionospheric

Connection Explore (ICON) mission (Immel et al., 2017; neutral

temperature measurements only, max altitude 127 km daytime,

108 km nighttime), the NASA Global-scale Observations of the

Limb and Disk (GOLD) mission (Eastes et al., 2017; temperature,

a vertically integrated measurement that is of limited utility; column

O/N2 and O2 vertical profiles, but in geostationary orbit, with limited

longitudinal coverage), ground-based incoherent scatter radar
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(campaign-based operation, only ~3 sites, daytime only, requires

special processing), ground-based airglow measurements (only at

~250 km altitude, nighttime, limited geographic coverage, sporadic

temporal coverage), and ground-based resonance fluorescence lidars

routinely measure temperature from ~80 km up to ~115 km at

nighttime (Yuan et al., 2021), with occasional temperature

observations reaching ~140 km and above (Chu et al., 2011; Liu

et al., 2016). Further, important for improving theMass Spectrometer

Incoherent Scatter radar or MSIS series of empirical models with

current and future thermospheric composition and temperature

measurements, is the complicating factor that measurement

techniques often use MSIS itself as an initial guess or for ancillary

parameters needed in the retrieval (e.g., Michelson Interferometer for

Passive Atmospheric Sounding (MIPAS), Bermejo-Pantaleón et al.,

2011; Global Ultraviolet Imager (GUVI), Meier et al., 2015). Thus,

there is a need to expand existing and develop new techniques for

measuring and retrieving thermospheric temperature and

composition, especially between the 100 km and 200 km altitude

region, which has strong vertical gradients and a strong influence on

higher altitudes in the T-I.

In the absence of well-resolved global temperature and

composition measurements the community has often turned to

the empirical Mass Spectrometer Incoherent Scatter Radar

(MSIS®) class of models (Hedin et al., 1977a; Hedin et al., 1977b;

Hedin, 1987; Hedin, 1991; Picone et al., 2002) to understand and

validate thermospheric composition and temperature phenomena in

the 100–200 km region. MSIS recently went through a major

reformulation and upgrade from NRLMSISE-00 to NRLMSIS

version 2.0 by Emmert et al. (2021), using extensive new datasets

from the ground to ~100 km altitude (green box labeled “Various

Remote Sensing Observations”, post-2000 in Figure 1). Further,

above ~250 km new satellite drag-derived mass densities were

used to tune and recalibrate thermospheric atomic oxygen.

FIGURE 1
Coverage of existing and historical thermospheric composition and temperature data sets in terms of altitude and year. Note that the amount of
data available within these ranges varies widely, and is generally very sparse. The dashed line indicates present day.

FIGURE 2
Biases among selected lower and middle thermospheric
temperature datasets, during daytime and at mid-latitudes
(30S—47N) with respect to NRLMSIS 2.0 as the baseline. The
middle thermospheric data sets MIGHTI (“J”,“K″), MIPAS (“L”),
and ground-based incoherent scatter radar (ISR, “M”) are
highlighted. The data sets below 100 km include a variety of
space-based and ground-based remote sensing measurements.
Error bars denote the statistical uncertainty of the estimated
biases. Also shown but not discussed in are AURA/MLS (“A”), ACE/
FTS (“B”), UARS/HALOE (“C”), AIM/SOFIE (“D”), Boulder, CO Lidar
(“E”), Ft. Collins, CO Lidar (“F”), Logan, UT Lidar (“G”), TIMED/SABER
(“H”), and ODIN/OSIRIS (“I”).
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Otherwise, the neutral parameters provided by the NRLMSISE-00

model in the thermosphere was largely retained. Emmert et al. (2021)

specifically highlighted the scarcity of thermospheric composition

and temperature measurements between 100 and 200 km, making

the following statements, “We also note that species densities in the

middle thermosphere are not known to the accuracy needed to fully

understand the critical transition from a fully mixed atmosphere to a

diffusively separated one. Observations needed to constrain lower and

middle thermospheric physics are scarce, and the 100–200 km region

can perhaps be termed the new “ignorosphere,” an epithet previously

applied to the mesosphere, which by comparison is now well measured

and understood.”

Not only are thermospheric composition and temperature

measurements sparse in the 100–200 km altitude region, but also

existing temperature datasets exhibit large mutual biases of up to

80 K or more. For example, Figure 2 illustrates the mutual biases of

selected thermospheric temperature data sets using NRLMSIS 2.0 as

a benchmark, during the daytime and at mid-latitudes.

Compounding the challenge of understanding the thermospheric

state between 100 and 200 km and its impact on the overlying T-I

system is that new “ignorosphere” overlaps the same altitude regime

of the so-called “thermospheric gap”, a term coined by Oberheide

et al. (2011). The “thermospheric gap” refers to 110–200 km region

of the thermosphere, where we know very little about the dynamics

of this region due to a lack of vector wind measurements.

This lack of wind measurements coupled with the sparsity of

composition and temperature measurements in the new

ignorosphere has significantly hindered scientific progress on

a number of T-I phenomena in which composition and

temperature variations, and dynamical-control thereof, are

known to play an important role. Just a few phenomena that

cover both local and global spatial scales, as well as span time

scales from days to beyond a solar cycle are listed below:

• Long-term trends in composition, mass density, and

temperature in the thermosphere (Emmert, 2015a;

Solomon et al., 2019)

• The residual interhemispheric lower thermospheric

residual circulation and its effect on O and temperature

(Qian and Yue, 2017).

• Characterizing the prominent drivers (especially those

associated with gravity waves and tides) of the global

annual and semiannual oscillations in the upper T-I,

and their solar cycle variability (Jones Jr et al., 2021)

• The equinox transition of composition and temperature in

the thermosphere (Qian et al., 2022).

• What actually causes changes in ∑O/N2 in existing FUV

measurements, be it O, N2, or temperature and what is the

contribution of each?

• Impacts of short-term (<5 days) variability of neutral

constituents and temperature (e.g., Yue et al., 2016; Gan

et al., 2017) between 100 and 200 km on the space weather

of the upper T-I system.

3 Recommendations for addressing
limitations in the “ignorosphere” and
“thermospheric gap”

In the next decade, it is imperative that new and more

extensive composition and temperature observations coupled

with neutral wind measurements in the ignorosphere and

thermospheric gap become available. Considering the scientific

challenges listed above (and a number of others), Emmert et al.

(2021) provided some recommendation on how to address such

challenges including:

• New in situ mass spectrometers measurements of species

densities in the thermosphere.

• New remote sensing (and potentially in situ) techniques

for, and extensive new measurements, of height-resolved

temperature and composition in the 100–200 km (and

even slightly above) region.

• Dedicated research effort into identifying, characterizing,

and reconciling systemic biases among existing and future

composition and temperature observations.

Given these previous recommendations by Emmert et al.

(2021) and others, we highly recommend flying a satellite

constellation of at least 2 satellites, but ideally 3, with the

necessary instruments that would provide unprecedented

longitude, local time, and height-resolved temperature and

composition observations of the 100–200 km region. Table 1

provides a synopsis of the new thermospheric composition

and temperature observations that would facilitate new

scientific discoveries in the 100–200 km region of the

thermosphere. Note that these composition and

temperature measurements are not much different to what

was advocated for in the 2013 Decadal Survey (National

Research Council, 2013) when the DYNAMIC mission was

originally proposed.

Additionally, the measurements in Table 1 coupled with

coincident vector wind measurements at 4 local solar times per

day (2 satellites separated apart by 6 h) at the same resolution

would allow one to resolve the large-scale gravity wave

TABLE 1 Key thermospheric composition and temperature
observables between 100 and 200 km.

Observable Coverage

T(z) Horizontal: Global

O(z), O2(z), N2(z), H(z), He(z) @ 500 km resolution

Vertical: 100–300 km

@ 5 km resolution

Time: 24 h @ 4 but

preferably 6 local times
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spectrum, daily diurnal tidal spectrum, and zonal mean wind

daily. These waves are known to have profound effects on the

thermospheric composition and temperature between 100 and

200 km and above (e.g., Yamazaki and Richmond, 2013; Jones

Jr et al., 2014a; Vadas et al., 2014). Ideally, the composition and

temperatures measurements in Table 1 coupled with

coincident vector wind measurements would be measured

at 6 local solar times per day (3 satellites separated apart by

4 h) at the same resolution, allowing one to resolve the daily

semidiurnal tidal spectrum as well, in the altitude regime

where many of these tides reach their maximum amplitude

(e.g., Forbes et al., 2022). Observing the semidiurnal part of the

tidal spectrum would add significant benefit as it is well-

known to be important in coupling lower atmospheric

variability to T-I variability in composition and

temperature during sudden variability in composition and

temperature during sudden stratospheric warmings (e.g.,

Jones Jr et al., 2020; Oberheide et al., 2020; and many

others before and after these).

In closing, the lack of global, day and night, height-resolved

thermospheric composition and temperature (and wind)

observations between 100 and 200 km has not been

sufficiently addressed since the last Decadal Survey, and

continues to be an important priority for the Heliophysics

community. New, comprehensive, thermospheric composition

and temperature (and wind) measurements in this altitude

region, would significantly advance T-I system science, space

weather modeling and prediction, and provide a means for more

collaboration between the ground and space-based observation

communities of the 100–200 km region. A table of other

Heliophysics professionals that support our position on the

future of thermospheric measurements in the 100–200 km

region is included as Supplementary Material.
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