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The identification of geochemical bio-signatures is important for assessing

whether life existed on early Mars. In this paper, experimental microbiology and

thermochemical modelling were combined to identify potential inorganic bio-

signatures for life detection on early Mars. An analogue mixed microbial

community from an analogue terrestrial fluvio-lacustrine environment similar

to an ancient lacustrine system at Gale Crater was used to study microbial

dissolution of a basalt regolith simulant and the formation of bio-signatures

over a short time frame (1°month) at 14°C, 2 bar. Microbial growth influenced

element dissolution (Mg, Fe, Mn, Ca and K) and the formation of morphologies

and Fe-Si amorphous layers onmineral surfaces. Thermochemicalmodels were

performed at 14°C, 2 bar; the results were compared with experimental data to

predict bio-signatures that would occur over geological timescales. The pHwas

varied to simulate abiotic and biotic experimental conditions. Model results

suggest that, at water to rock ratios of 100 to 38, a less complex secondary

mineral assemblage forms during biotic dissolution compared to abiotic

weathering. Carbonates, quartz, pyrite and hydroxyapatite form under biotic

conditions, whereas in the abiotic system magnetite and phyllosilicates would

also precipitate. These results could be used to distinguish between abiotic and

biotic basalt weathering processes, aiding the interpretation of data from Mars

exploration missions.

KEYWORDS

Mars, Mars bio-signatures, terrestrial analogue, thermochemical modelling,
microbiology

OPEN ACCESS

EDITED BY

Barbara Cavalazzi,
University of Bologna, Italy

REVIEWED BY

Eva Mateo-Marti,
Center for Astrobiology (CSIC), Spain
Ricardo Amils,
Autonomous University of Madrid, Spain

*CORRESPONDENCE

Simone Cogliati,
s.cogliati86@gmail.com

SPECIALTY SECTION

This article was submitted to
Astrobiology,
a section of the journal
Frontiers in Astronomy and Space
Sciences

RECEIVED 05 October 2022
ACCEPTED 04 November 2022
PUBLISHED 17 November 2022

CITATION

Cogliati S, Wolsey E, Ramkissoon NK,
Schwenzer SP, Pearson VK and
Olsson-Francis K (2022), Geochemical
bio-signatures in Martian analogue
basaltic environments using laboratory
experiments and
thermochemical modelling.
Front. Astron. Space Sci. 9:1062007.
doi: 10.3389/fspas.2022.1062007

COPYRIGHT

© 2022 Cogliati, Wolsey, Ramkissoon,
Schwenzer, Pearson and Olsson-
Francis. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Astronomy and Space Sciences frontiersin.org01

TYPE Original Research
PUBLISHED 17 November 2022
DOI 10.3389/fspas.2022.1062007

https://www.frontiersin.org/articles/10.3389/fspas.2022.1062007/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.1062007/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.1062007/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.1062007/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.1062007/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2022.1062007&domain=pdf&date_stamp=2022-11-17
mailto:s.cogliati86@gmail.com
https://doi.org/10.3389/fspas.2022.1062007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2022.1062007


1 Introduction

Finding evidence of past or present life on Mars is one of the

key objectives of the most recent and future space exploration

missions (NASA’s Mars Science Laboratory, NASA’s Mars 2020,

and ESA’s ExoMars—Grotzinger et al., 2012; Vago et al., 2017;

Ehrenfried, 2022). Since water is essential for life as we know it,

most of the efforts are focused on the investigation of potentially

habitable extraterrestrial aqueous environments where water

may have existed, or still exists. Geological, geochemical and

geomorphological evidence collected by orbiting spacecraft,

landers and rovers (e.g., Mars Odyssey, Curiosity,

Opportunity, Mars Express) suggest that early Mars had a

denser atmosphere, warmer surface temperatures, and more

clement and less oxidising environmental conditions than

today (e.g. Carr and Head, 2010; Mangold et al., 2012) that

may have been conducive to life (Molina-Cuberos et al., 2001;

Bibring et al., 2005; Tian et al., 2009). Among other places,

impact-generated hydrothermal systems (Schwenzer and Kring,

2009; Marzo et al., 2010; Mangold et al., 2012; Schwenzer et al.,

2012; Osinski et al., 2013; Arvidson et al., 2014; Fox et al., 2016;

Turner et al., 2016) and fluvio-lacustrine systems (e.g., Gale and

Jezero Craters—Grotzinger et al., 2014; Grotzinger et al., 2015;

Rampe et al., 2017; Mangold et al., 2021; Tu et al., 2021) identified

on Mars may have been habitable (Malin and Edgett, 2003;

Abramov and Kring, 2005; Irwin et al., 2005; Mangold et al.,

2012; Williams et al., 2013; Grotzinger et al., 2014; Fassett and

Head, 2015) in the Noachian—early Hesperian (4.1–3.0 Ga,

Grotzinger et al., 2014). It has been suggested that Gale

Crater’s aqueous environment had a circumneutral pH,

temperatures suitable for low salinity water bodies (e.g., lake,

rivers) that were stable over geological timescales, a varied

chemical history and sedimentological features that can be

associated with complex aqueous processes and potentially

diverse redox conditions that may have been used as an

energy source for life (Grotzinger et al., 2014; Bridges et al.,

2015; Hurowitz et al., 2017; Edgar et al., 2020; Fraeman et al.,

2020; Rampe et al., 2020; Ramkissoon et al., 2021; Rapin et al.,

2021).

Since rocks of basaltic composition dominate the Martian

surface (Nyquist et al., 2001; Christensen et al., 2005; Filiberto,

2008; Treiman and Filiberto, 2015; Morris et al., 2016; Mangold

et al., 2017), weathering processes and/or brine evaporation has

evolved clay minerals, carbonates, sulfates and other alteration

minerals (Poulet et al., 2005; Poulet et al., 2007; Ehlmann et al.,

2008; Mustard et al., 2008; Ehlmann et al., 2009; Bridges et al.,

2015; Stern et al., 2015; Bultel et al., 2019; Horgan et al., 2020).

The presence of such secondary minerals, for example at Gale

and Jezero Craters, indicates a variety of alteration conditions

and water-rock reactions that may have controlled the local

chemical conditions (e.g., chemistry of the fluids, redox state

of elements, release of elements into the fluids) and, thus, the

availability of bio-essential elements. Understanding the

formation of secondary minerals is therefore critical to

determining the potential habitability of aqueous

environments (Schulte et al., 2006; Hand et al., 2007; Bridges

and Schwenzer, 2012).

In terrestrial aqueous systems, the chemistry of alteration

products and the reactions occurring in each system are

influenced by the local environmental conditions, parent

rock mineralogy and permeability, water-to-rock ratios,

duration of alteration, and the presence of microbes (Boston

et al., 2001; Wu et al., 2007; Schwenzer and Kring, 2009;

Ehlmann et al., 2013; Bridges et al., 2015; Carter et al., 2015;

Olsson-Francis et al., 2015; Zolotov and Mironenko, 2016).

Laboratory experiments, among other insights, have shown that

microbes can enhance basalt weathering rates sourcing bio-

essential elements from olivine, pyroxene and plagioclase (e.g.

Vandevivere et al., 1994; Barker et al., 1998; Rogers et al., 1998;

Kalinowski et al., 2000; Liermann et al., 2000; Bennet et al.,

2001; Welch et al., 2002; Wu et al., 2007; Uroz et al., 2009;

Olsson-Francis et al., 2015; Olsson-Francis et al., 2017),

whereby microbes use multiple mechanisms to extract bio-

essential elements from basaltic rocks including the production

of excess protons, low molecular weight organic acids,

siderophores (highly specific Fe3+ ligands) and extracellular

polysaccharides and enzymes (Welch and Ullman, 1993;

Vandevivere et al., 1994; Barker et al., 1998; Bennet et al.,

2001; Wu et al., 2007; Olsson-Francis et al., 2015). Some of these

processes can leave specific chemical and mineralogical

signatures in the rocks that indicate the former presence of life.

Bio-signatures are formed by microbial activity (e.g.,

Vandevivere et al., 1994; Banfield et al., 2001; Westall et al.,

2015; Price et al., 2018; Tan et al., 2018) and can be divided in two

main categories: 1) organic bio-signatures, which are

biomolecules produced by organisms as part of their

metabolic and reproductive machinery (Summons et al., 2011;

Röling et al., 2015; Westall et al., 2015; Hays et al., 2017; Vago

et al., 2017); and 2) inorganic bio-signatures, which include

morphological fossils, sedimentary structures, isotope

fractionation, and mineral alterations that are the result of

microbial activity (Banfield et al., 2001; Cady et al., 2003;

Westall et al., 2015; Vago et al., 2017; McMahon et al., 2018).

Such bio-signatures can be preserved within the geological record

and used as evidence of the presence of life in terrestrial and

extraterrestrial environments, including early Martian aqueous

systems. Owing to the detrimental effect of the conditions at the

present-day surface of Mars, which can degrade organic

molecules (Ten Kate et al., 2005; Dartnell, 2011; Hays et al.,

2017; Vago et al., 2017), inorganic bio-signatures, such as

secondary alteration minerals, may be more appropriate for

assessing whether life existed on early Mars. For example,

biotically produced secondary minerals may be preserved in

Martian rocks and be detectable through in-situ

measurements by on-going and up-coming rover missions

(Vago et al., 2017).
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To identify and use, unambiguously, specific secondary

mineral assemblages as bio-signatures for life detection, it is

fundamental to have a comprehensive comparison between

biotic and abiotic weathering processes. Investigating

analogue environments is one way of informing our

understanding of potential bio-signatures. Unfortunately,

the heterogeneity of the natural environment, the lack of

control over changes during even a short sampling period,

and the difficulty of finding relevant abiotic controls, make

such work challenging. Moreover, although basalt weathering

and secondary alteration mineral formation have been widely

investigated in the field and in laboratory experiments under

abiotic (Gislason and Eugster, 1987; Oelkers and Gislason,

2001; Wolff-Boenisch et al., 2006) and biotic conditions (Wu

et al., 2007; Olsson-Francis et al., 2010; Olsson-Francis et al.,

2012; Olsson-Francis et al., 2015; Olsson-Francis et al., 2016;

Olsson-Francis et al., 2017; Price et al., 2018; Olsson-Francis

et al., 2020) these studies have been only over short

timeframes (months—years). This makes it difficult, if not

impossible, to predict what would happen over years or even

over geological time scales when the rock is fully dissolved or

more likely, subject to the effects of incongruent dissolution.

In these circumstances, the formation of amorphous and

leached layers, and secondary mineral precipitation, may

occur, influencing the availability of cations for use in

biological metabolism and, thus, the formation of bio-

signatures (e.g. Welch and Ullman, 1993; Benzerara et al.,

2004; Benzerara et al., 2005).

In order to overcome this problem, thermochemical

modelling can be used to study, theoretically, alteration

processes that can occur over geological timescales. Owing

to its capability to predict secondary mineral assemblages and

variations in fluid chemistries by assessing reaction pathways

during water-rock interactions, thermochemical modelling

has been widely applied to study alteration processes that

happened, or may have happened, in terrestrial and Martian

aqueous environments (Griffith and Shock, 1997; Kühn, 2004;

Zolotov and Mironenko, 2007; Marion et al., 2008; Bridges

and Schwenzer, 2012; Catalano, 2013; Filiberto and

Schwenzer, 2013; Schwenzer and Kring, 2013; Bridges et al.,

2015; Melwani Daswani et al., 2016; Zolotov and Mironenko,

2016; Ramkissoon et al., 2021). Only recently, Olsson-Francis

et al. (2017) used thermochemical modelling in conjunction

with laboratory-based experiments to investigate and

compare the alteration minerals that may form during

microbial basalt weathering over a range of different

timescales. The study suggested that an aerobic

chemoorganoheterotrophic bacterium (Burkholderia

sp. strain B_33), during long-term weathering of a

naturally occurring altered basalt, would produce a less

chemically and mineralogically diverse secondary mineral

assemblage consisting of Fe-hydroxide and kaolinite, than

under abiotic conditions, where chlorite would also be

formed (Olsson-Francis et al., 2017). That study also

demonstrated the utility of combining laboratory

experiments and thermochemical modelling to identify

secondary minerals that could be used to distinguish,

unambiguously, weathering processes that may have

occurred on early Mars (Olsson-Francis et al., 2017).

In this paper, we investigate the impact of microbial activity

on a simulated Rocknest environment and the formation of

inorganic bio-signatures using a combination of laboratory-

based experiments and thermochemical modelling. The

Rocknest environment was simulated by preparing a Martian

regolith simulant with a composition similar to that of the

Rocknest basalts (global Martian basaltic soils, Blake et al.,

2013; Schmidt et al., 2014) and combining this with a

minimal medium. A buffer was added to the medium to

compensate for the reactions that would occur between the

basalt and a CO2 rich headspace, with the intent to create a

stable environment with circumneutral pH (Bridges and

Schwenzer, 2012) similar to ancient Martian aqueous systems

(Grotzinger et al., 2014; Vaniman et al., 2014). To study the fluid

chemistry variations and secondary minerals formed under biotic

conditions we use a terrestrial analogue mixed anaerobic

community consisting of chemoorganotrophs and

chemolithotrophs. The analogue microbial community was

isolated from a Mars analogue environment, the anoxic inter-

tidal zone of the River Dee (United Kingdom), and had

previously been deemed a plausible analogue to study

habitability of ancient lacustrine systems on early Mars (e.g.

Gale Crater) using laboratory-based simulation experiments

(Curtis-Harper et al., 2018).

Experimental and model results were compared in order

to identify chemical and mineralogical signatures that are

uniquely produced by microbial weathering and may be used

as inorganic bio-signatures for life detection on Mars.

Instrumentation onboard current Martian rovers could

provide mineralogical and geochemical data that would

assist in the identification of potential bio-signatures, e.g.,

the CheMin (XRD) instrument and the Laser Induced

Breakdown Spectroscopy (LIBS, ChemCam) and the Alpha

Particle X-Ray Spectrometer (APXS) instrument on board of

the Mars Science Laboratory Rover Curiosity (Grotzinger

et al., 2012) and the most recent SuperCam (a LIBS

instrument) and Raman instruments on board of the

Perseverance rover (Williford et al., 2008).

2 Methods

2.1 Preparation and characterization of the
mars regolith simulant

For this study, a regolith simulant was prepared that was

compositionally similar to basaltic float rocks analysed by
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Curiosity at Rocknest, Gale Crater (Schmidt et al., 2014)

(Table 1). The simulant consisted of basalt from Le Cheix

Puy de Dome (France) (Table 1), which was selected to

represent a typical unweathered basalt, whereby any

macroscopically visible weathering was separated out of the

sample during the sample preparation. The basalt was

supplemented with aegirine, an iron rich pyroxene (FeO

29.21 wt%, Table 1) from Mount Malosa (Malawi). This

was to ensure that the simulant contained an equivalent

iron content to an average Martian basalt, which is higher

than terrestrial basalts (Longhi et al., 1992), and to correct for

Fe speciation. This is important when exploring Martian

habitability since the Fe2+/Fe3+ ratio is crucial for microbial

metabolism (Nixon et al., 2013; Ramkissoon et al., 2021). Both

the basalt and the aegirine were purchased from Richard

Tayler Minerals (United Kingdom).

The major element composition of the aegirine (Table 1) was

obtained from polished thin sections using a CAMECA

SX100 Electron Microprobe (EMPA) operated with a spot size

of 10 mm, accelerating voltage of 20 kV and a beam current of

20 nA. Analysis of the basalt’s major element composition

(Table 1) was carried out on powdered samples using an ARL

8,420 + dual goniometer wavelength-dispersive X-ray

Fluorescence (XRF) spectrometer.

To produce the regolith simulant, the basalt and aegirine

were separately crushed using a Tema swing mill, for 8 min.

The crushed materials were sieved to a fraction size of between

100 μm and 250 μm, the fine particles were removed by

ultrasonication in MilliQ water (Olsson-Francis et al., 2010;

Olsson-Francis et al., 2017), and the products were dried for

24 h, at 80 C and at 1 bar. The 100–250 μm size fraction was

selected to include materials that have a grain size comparable

to dust-size particles of the Martian regolith observed by

Curiosity’s Mars Hand Lens Imager instrument in

sedimentary deposits at various locations at Gale crater

(Minitti et al., 2013; Weitz et al., 2018). Moreover, the

selection of a such small grain size was intended to speed

up the formation of secondary minerals mitigating for the

short duration of the dissolution experiments. The aegirine

was mixed to the basalt in a 1.75:1 ratio to achieve an overall

iron-rich composition similar to that of Rocknest basalt

(Schmidt et al., 2014), which has 6.65 wt% more Fe2O3(Tot)

than the Le Cheix Puy de Dome basalt (Table 1).

TABLE 1 Major element composition of the basalt, aegirine and regolith simulant in comparison to Rocknest composition.

Oxide (wt%) Basalt Aegirine Regolith analogue Rocknest*

SiO2 44.7 52.35 47.48 45.98

Fe2O3(T) 11.73 29.21 18.09 18.38

MnO 0.21 0.66 0.38 0.45

MgO 4.66 0.07 2.99 5.33

Na2O 4.02 12.21 7 4.02

K2O 2.37 - 1.51 1.86

P2O5 0.93 0.01 0.6 1.08

Cl - - - 0.88

SO3 - 0.03 0.01 -

TiO2 - 0.9 0.33 -

Al2O3 - 0.19 0.07 -

CaO - 1.52 0.55 -

NiO - 0.01 0 -

*Composition from Schmidt et al., 2014.

TABLE 2 Relative abundance of the bacterial families from the anoxic
intertidal zone of the River Dee estuary. Data obtained fromMiSeq
DNA gene sequences. A detailed description and characterization of
the microbial community and how it was sampled is given in
Curtis-Harper et al. (2018).

Bacterial families Proportion %

Hyphomicrobiaceae 28

Flavobacteriaceae 23

Alteromonadaceae 16

Rhodobiaceae 10

Rhodobacteraceae 6

Acidimicrobiales 6

Caldilineaceae 3

Peptostreptococcaceae 1

Flammeovirgaceae 1

Nitrospiraceae 1

Desulfobacteraceae 1

Granulosicoccaceae 1

Rhodospirillaceae 1

Others 2
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2.2 Microbial community

A microbial community from the sub-surface intertidal

anoxic zone of the River Dee, United Kingdom

(53˚21′15.40 N, 3˚10′24.95 W) was used for the biotic

experiments. This mixed community was selected because it

contains chemolithoautotrophic and

chemoorganoheterotrophic microbes that are analogues for

potential microbial life that may have existed in the fluvio-

lacustrine environment at Gale Crater (Amils et al., 2007;

Grotzinger et al., 2014; Curtis-Harper et al., 2018). The

sample was collected as part of a previous study (Curtis-

Harper et al., 2018). MiSeq sequencing demonstrated that the

bacterial community was dominated by the families

Hyphomicrobiaceae (28%), Flavobacteriaceae (23%),

Alteromonadaceae (16%), whilst over 90% of the archaeal

community was dominated by Thaumarchaeaota phylum

(Nitrosopumilus genus) (Curtis-Harper et al., 2018) (Table 2).

The microbial enrichment was prepared by adding 5 g of dry

sediment to an anaerobic enrichment medium containing per

litre: 2 g of trypticase peptone (Sigma Aldrich), 2 g of yeast

extract (Sigma), 0.3 g of KCl, 1 g of NH4Cl, 3 g of Na2SO4,

23 g of NaCl, 0.5 g of Na-Lactate, 2 g of MgCl2, 0.35 g of

K2HPO4, 0.1 g of Na-thioglycollate (C2H3NaO2S) and 0.1 g of

ascorbic acid (C6H8O6), and was prepared anaerobically, as

previously described (Hungate, 1966). Vitamin solution (Balch

et al., 1979) and SL10 trace element solution (Widdel et al., 1983)

were added post-autoclaving (121°C, 15 psi, 15 min). 100 ml of

mediumwas aseptically transferred (under anaerobic conditions)

to sterilised Wheaton bottles (Speers et al., 2009), and after

inoculation, the headspace was pressured to 2 bar with 80%

CO2/20% H2. The cultures were incubated at 14°C, for 700 h

(29 days), and subsequently transferred twice to eliminate any

crossover from the sediment.

2.3 Dissolution experiments

The dissolution experiments were conducted with a (W/R)E
of 100/33 (we denote W/RE as the experimental water to rock

ratio and denotes the amount of rock and the amount of water)

with a nutrient-limited anaerobic minimal medium, which

contained the following (per litre): 1 g of NH4Cl, 2 g of Na-

lactate (C3H5NaO3), 1 g of Na-thioglycollate (C2H3NaO2S), 1 g

of ascorbic acid (C6H8O6), 37 g of NaCl, 13.25 g of Na2CO3. To

prepare the regolith simulant, 8.09 g of basalt and 5.91 g of

aegirine were dispensed into acid-washed Wheaton bottles,

which had been purged with N2 to remove O2. The regolith

was autoclaved at 121 C for 15 min and after cooling, 68 ml of

medium was added, and the pH was adjusted to pH 7.0 with

filtered sterilised 10 mM NaOH. For the inoculum, exponential

phase cells were harvested by centrifugation (4,000 × g, for

5 min), washed, and resuspended in the minimal medium to

give a final cell density of 107 to 108 cell mL−1. A 1% inoculumwas

used for the biotic experiments (designated V1, V2, V3, V4 and

V5) and abiotic controls were prepared in parallel (designated

VA1, VA2, VA3, VA4 and VA5). The headspace of all of the

Wheaton bottles were overpressured to 2 bar with 80% CO2/20%

H2, prior to incubating at 15 C for 700 h. Microbial growth was

measured every 24–48 h over the course of the 29 days

experiment (closed system simulation) using the acid-binding

Sybr, as previously described by Olsson-Francis et al. (2017). The

duration of the dissolution experiment was also dictated by the

experimental design (closed system simulation) that limited the

availability of nutrients for microbes and by the fact that,

interrupting the experiments after 700 h (point at which the

microbial community reached the stationary phase), it was

avoided a reduction in abundance and diversity of microbes

relating to the selection of specific metabolic groups. To monitor

microbial growth in absence of the regolith simulant, experiment

controls were also performed combining the microbial

community and the minimal medium only. In such cases, no

microbial growth was observed; for this reason, this aspect will

not be further discussed.

2.4 Chemical analyses of the medium

An Orion 3-Star Thermo Scientific bench top meter with an

uncertainty of 0.01 pH unit was used to measure the pH of the

media. A Prodigy High Dispersion Inductively Coupled Plasma-

Atomic Emission Spectrometer (ICP-AES) was used to measure

the total elemental concentration of dissolved elements in the

medium. In triplicates, 1 ml aliquots were removed aseptically

from each Wheaton bottle after 700 h. The aliquots were

centrifuged at 400 × g, for 2 min to eliminate any residual

regolith simulant from the analytical sample, and then

acidified using nitric acid (10%). Detection limits for the ICP-

AES were defined as 3 times above blank level. The ICP-AES data

were corrected for the loss of elemental mass during sampling

and for the decrease in fluid volume, as described in Wu et al.

(2007).

2.5 Cellular elemental uptake

To measure the intracellular elemental concentration, 1 ml

aliquots were centrifugated (4,000 × g for 2 min) and the

supernatant collected (to remove any excess regolith). The

cells were harvested and washed three times in sterilised 0.5%

HNO3 by centrifugation (13,000 × g for 10 min) to remove excess

media. The cells were acidified by resuspending the cells in 10%

nitric acid. This allowed the elemental content of the cells to be

measured using a Prodigy High Dispersion Inductively Coupled

Plasma Atomic Emission Spectrometer (ICP-AES). The values

obtained were multiplied by the number of cells measured at
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700 h and were corrected for the decrease in fluid volume during

sampling, as previously described (Wu et al., 2007; Olsson-

Francis et al., 2012).

2.6 Characterization of the simulant after
dissolution experiments

After 700 h, the regolith simulant was removed from the

Wheaton bottle, air-dried, and carbon coated (15–20 μm

thickness) on aluminium stubs. The chemical composition

and the morphological characteristics of the simulant were

determined using a ZEISS Supra 55-VP Field Emission Gun -

Secondary Emission Microscope (FEG-SEM) with an Energy

Dispersive Spectroscopy (EDS) detector, which was operated at

an accelerating voltage of 2–15 kV and a 7–10 mm working

distance. Secondary electron images, backscatter electron

images and EDS spectra obtained from FEG-SEM analysis

were compared and used to identify the presence of secondary

minerals that may be used as bio-signatures.

2.7 Thermochemical modelling

Thermochemical models were executed to identify reaction

pathways, shifts in fluid chemistry and mineral formation that

would occur over geological timescales under biotic and abiotic

conditions in the considered fluid-rock systems. The code

CHIM-XPT (previously CHILLER, Reed and Spycher, 2006;

Reed et al., 2010) was used to perform stepwise titration

simulations during which a specific amount of rock was

titrated into a constant amount (1 L) of the starting fluid. The

model assumes complete rock dissolution and each titration step

is in equilibrium, and therefore can be interpreted independently.

The reaction progress is expressed as water to rock ratio (W/R),

which represents the amount of rock reacted with the fluid. By

modelling at different (W/R)M (water to rock ratio used in the

models), the software simulates chemical reactions that may

happen under different environmental conditions (e.g. Reed,

1982; Filiberto and Schwenzer, 2013; Bridges et al., 2015). At

very high W/R (~1,000,000), the model simulates an

environment where a limited amount of rock react with a

large mass of water (e.g., freshwater inflow, fluid percolating

in a fracture, a rock surface exposed to regular precipitation),

while at lowW/R ratios (<1,000), the model represents a scenario

where a large volume of rock reacts with a limited volume of

water (e.g., stagnant water table like in lacustrine-sediment

settings). More information on the code and method and its

application and limitations can be found in Palandri and Reed

(2004), Reed and Spycher (2006) and Reed et al. (2010).

The input data for the thermochemical modelling

included the Mars regolith simulant composition (Table 1)

and the chemical composition of the minimal medium

(Table 3). Elements in the fluid summarised in Table 3 are

given as component species and in the model calculation

partitioned between several species as relevant to the

pH and Eh conditions during the modeling. The code

applies mass balance and mass action equations to calculate

the equilibrium of secondary alteration mineral assemblages

and fluid composition at different water/rock ratios. The

modelling was carried out at 2 bar and 14°C, which was

used to simulate the pressure and temperature conditions

of the growth experiment. The models were run over a

range of (W/R)M ratios between 105 and 1. Three models

were conducted: in the first, the pH was allowed to vary and

was treated as a free parameter to simulate rock weathering in

an abiotic environment. In the other two models, the pH was

set at 7.0 and 7.4 to reproduce the minimum and maximum

pH conditions observed during microbial growth experiments

simulating weathering progression in presence of the

considered bacterial community. Full data tables, minerals

suppressed in the modelling because not stable at low P and T

conditions (2 bar, 14 C) or not forming in the simulated

Martian environment and relative references are presented

in Supplementary Material.

3 Results

3.1 Microbial growth

The microbial community grew in the minimal medium with

the Mars regolith simulant as the sole source of bio-essential

elements. Exponential growth occurred between 24 h

(1–5×105 cells mL−1) and 300 h (4–7 × 106 cells mL−1) after

inoculation (Figure 1). After 300 h, the cultures reached

stationary phase and cells numbers remained relatively

constant between 5 and 6 × 106 cells mL−1 (Figure 1). No

growth was detected in the abiotic controls.

In the biotic controls, the mean pH increased from 7.07 ±

0.08 to 7.36 ± 0.06 in the first 170 h and then stabilised to 7.29 ±

0.02 until the end of the experiments (Figure 1A, Supplementary

TABLE 3 Composition of the fluid used in the models.

Ion Concentration (moles)

H+ 0.2357

O2 0.4802

Cl− 0.6518

S− 0.0088

C 0.2302

Na+ 0.9097

N+ 0.0187

Species in the fluid are summarized in the table as one species, but during the modelling

were partitioned into several dissolved species.
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Material). For the abiotic controls, the pH increased from 6.98 ±

0.08 to 7.31 ± 0.08 (Figure 1A, Supplementary Material).

3.2 Regolith simulant dissolution

Simulant dissolution was measured by the concentration

of key rock forming elements (Si, K, Ca, Mn, Mg, Al and Fe)

released into the medium (Figures 1B–H, Supplementary

Material). The elemental concentrations in the fluid

increased over time in both abiotic and biotic experiments.

For the duration of the experiments, dissolved Si and Al had

higher concentrations in the abiotic controls than the biotic

experiments; Mg was higher in the biotic experiments, as

shown in Figure 1G, with a minimum and maximum

difference of ~30 μmolL−1 and ~170 μmolL−1, respectively,

FIGURE 1
Mean pH value of themedium (A) andmean concentration of elements in the medium (B–H) over the course of biotic and abiotic experiments,
plotted in parallel to the logarithmic plot of cell density. Error bars represent the standard error of the mean for all series. Full data are listed in
Supplementary Material.
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between the biotic and abiotic controls. The microbial growth

phase influenced the dissolution of certain elements, e.g., after

300 h (exponential growth), K was higher under biotic

conditions, and the concentrations of Fe, Ca and Mn were

higher in the biotic experiments than the abiotic experiments

only during the late stationary phase (>400–500 h).

3.3 Secondary alteration minerals

FEG-SEM with EDS was used to investigate secondary

alteration products (secondary minerals, amorphous

phases) formation and morphological changes on the

surface of the simulant. Analysis of the abiotic samples

demonstrated that the mineral surfaces showed little or

no evidence of physical or chemical weathering (Figures

2A–C). Analysis of the regolith simulant from the biotic

experiments showed some microbial attachment and

evidence of chemical and physical changes on the mineral

surfaces (Figures 2D–F). This included morphological steps

observed along mineral cleavage plains and amorphous

layers with smooth, rounded and undulate surfaces

observed on top of some weathered grains (Figure 2D).

SEM-EDS analysis demonstrated that the amorphous

layers were mainly composed of Fe, Si, O and Na with

lower amounts of Cl, Ca and Al (Figures 2E,F).

3.4 Thermochemical modelling

Figures 3, 4 show the changes in mineralogy and fluid

compositions that would occur over geologically timescales

under biotic and abiotic conditions as the weathering

reactions advance and the (W/R)M ratios decrease from 105 to

1. Table 4 shows all the minerals that precipitate in the abiotic

and biotic models at different (W/R)M ratios. Variation in

element concentration in the fluid that are not directly

comparable with data from dissolution experiments but that

are relevant for secondary minerals formation predicted by the

models are reported in Supplementary Material.

3.4.1 Abiotic model
The abiotic model (Figure 3A) forms the baseline from

which to compare the biotic models. From high to low (W/

R)M ratios the secondary mineral assemblage became more

complex. Pyrite formed at (W/R)M ratio of 105, which was

stable over the considered (W/R)M ratio range, and

progressively decreased from 100 wt% to <1 wt%. This

reduction in pyrite coincided with other Fe-rich minerals

forming and the (W/R)M ratio decreasing. Talc formed

below a (W/R)M ratio of 100,000, it reached its maximum

abundance (~21 wt%) at a (W/R)M ratio of 3,330 when quartz

started to form. The values remained constant between 12 wt

% and 16 wt% up to a (W/R)M ratio of 1. Between (W/R)M

FIGURE 2
(A) FEG-SEMmicrograph of the simulant after the abiotic experiment. Minimal alteration was observed along cleavage plains; (B) EDS spectrum
of a mineral in the abiotic control; (C) EDS spectrum of a Na-enriched grains on top of the mineral. Na enrichment happened during sample drying
before sample preparation; (D) FEG-SEMmicrograph of the simulant after the biotic experiment. An amorphous layer on the surface of some crystals
is evident; (E) EDS spectrum of the amorphous layer; (F) EDS spectrum of the mineral beneath the amorphous layer.
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ratio of 3,300 and 500, pyrite (75–40 wt%), quartz (20–47 wt

%), and talc (~21—12 wt%) were the main precipitates.

Siderite, which formed at (W/R)M ratio of 500 together

with trace amounts of Fe-talc, reached a maximum

abundance of ~31 wt%, at a (W/R)M ratio of 55 and was no

longer stable below a (W/R)M ratio of 20. Siderite coexisted

with quartz (~42–50 wt%), pyrite (<2–37 wt%), talc (12–14 wt

%), Fe-talc (<1–6 wt%) and, below a (W/R)M ratio of 50,

magnetite (<5–21 wt%). Between (W/R)M ratios of 20 and

3, only minor variations (<5 wt%) in the abundance of quartz,

magnetite, talc, Fe-talc and pyrite were observed. Magnetite

reached its maximum abundance of 25 wt% at a (W/R)M ratio

of 3. Below this threshold, magnetite declined to 2 wt%, while

goethite started to form (8–27 wt%). Chlorite (clinochlore,

daphnite, Mn-chlorite), carbonates (rhodochrosite), Na- and

K-nontronite and hydroxyapatite also formed in trace

amounts (<3 wt%) at various (W/R)M ratios.

The pH of the fluid varied between 9.5 and 12.7 over the

course of the titration range (Figure 4A, Supplementary

Material). The concentration of most of the dissolved

elements and component species varied by, at least, two

orders of magnitude except for Cl−, HS−, NH4
+, Na+ and

HCO3
−, which were more stable and less variable (Figure 4B,

Supplementary Material). The concentration of abundance of

Mg2+, Ca2+ and Al3+ generally decreased, while the amount of

HPO4, H4SiO4, Mn2+, K+ and Fe2+ generally increased (Figure 4B,

Supplementary Material). Al3+ and Fe2+ were the most variable

elements and showed more complex patterns (Figure 4B,

Supplementary Material) that can be associated with the

formation of variable amounts of Al- and Fe-rich phases in

the considered titration range.

3.4.2 Biotic models
When the pHwas set at 7.0 and 7.4 (simulating the small change

in the buffered medium), the models (Figures 3C,D) gave similar

results in terms of secondary mineral assemblages and fluid

chemistries. Pyrite was stable over the considered (W/R)M ratio

range with its abundance progressively decreasing from 100 wt%

to <1 wt% when quartz started to form ((W/R)M ratio of ~100,000).

Below this value, quartz increased and was the most abundant

mineral phase at a (W/R)M ratio lower than 25,000 (a maximum

value of 67 wt% was measured at end of the titration range).

FIGURE 3
Secondary minerals predicted from the dissolution of the
regolith simulant at 14°C and 2 bar under abiotic and biotic
conditions. (A) variation of the pH in the abiotic model; (B) abiotic
model where the pH was set as a free parameter; (C) biotic
model where the pH was set at 7.0; (D) biotic model where the
pH was set at 7.4. The diagrams show the formation of pyrite,

(Continued )

FIGURE 3 (Continued)
quartz, carbonate, talc, magnetite, goethite in different
amounts and traces of chlorite, nontronite, apatite and kaolinite
(not shown in the diagram since its abundance is <<1 wt%). For
more details on the variability of the minor phases (chlorite,
nontronite, apatite and kaolinite) see supplementarymaterials A, B,
C. The (W/R)D is represented by the shadowed area in between the
two blue dotted vertical lines and it was calculated based on the
element potassium because it is not incorporated into the
microbes and into any of the expected mineral precipitates.

Frontiers in Astronomy and Space Sciences frontiersin.org09

Cogliati et al. 10.3389/fspas.2022.1062007

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1062007


When the pH was fixed at 7.4, quartz reached its maximum

abundance of 68.8 wt% at a (W/R)M ratio of ~3. Quartz and

pyrite were the major phases that formed between (W/R)M ratios

of 100,000 and 500. Siderite precipitated only below a (W/R)M
ratio of 500, together with quartz (~62–65 wt%) and pyrite

(~35–< 1 wt%). Siderite increased up to ~34 wt% at a (W/R)M
ratio of 11, and then started to decline. Below a (W/R)M ratio of

10, quartz continued to be stable with a maximum abundance of

~69 wt%, siderite decreased from 34 wt% to <3 wt%, and goethite

reached its maximum concentration of around 22 wt% at (W/

R)M ratio of 1. Below (W/R)M of 10, magnetite formed (<4 wt%)

when the pH was set at 7.0, while it reached 7 wt% when the

pH was set at 7.4. Huntite formed in traces (<1 wt%) only when

the pH was set at 7.4 and between (W/R)M ratios of 50 and 24;

whilst talc (<7.5 wt%) formed only when the pH was set at

7.4 below a (W/R)M of 3. Trace amounts (<1–3 wt%) of chlorite

(clinochlore, daphnite), carbonates (rhodochrosite), kaolinite,

nontronite and hydroxyapatite were also formed at different

(W/R)M ratios.

Most of the dissolved elements, here given as component

species, varied in concentration by, at least, one order of

magnitude with the exception of Cl−, H4SiO4, NH4
+and Na+

that were relatively stable (Figures 4C,D, Supplementary

Material). HPO4, Mg2+, Mn2+ and K+ steadily increased, while

Ca2+ increased up to a (W/R)M ratio of ~1,000 and then decreased

in concentration; HS− and HCO3
− decreased only at a (W/R)M

ratio below 10 (Figures 4C,D, Supplementary Material); Al3+

decreased by five orders of magnitude below a (W/R)M ratio

of 10 because it precipitates in Al-rich phases (chlorites) that

form at the end of the (W/R)M ratio range (Figures 4C,D,

Supplementary Material). Fe2+ showed a more complex

pattern and a variation of more than 10 orders of magnitude

between (W/R)M ratio of ~1,000 and ~1 (Figures 4C,D,

Supplementary Material); this is correlated with the different

amounts of Fe-rich minerals that formed in the considered (W/

R)M ratio range.

4 Discussion

4.1 Experimental regolith simulant
dissolution

In this study, variations in fluid chemistry, as well as

mineralogical and morphological changes to a Martian

regolith simulant, were investigated to identify inorganic bio-

signatures produced by chemolithotrophic and

chemoorganoheterotrophic microbes, which might be detected

in theMartian rock-record and which might be analogue to those

that may have lived in the fluvio-lacustrine system at Gale Crater

on early Mars (e.g. Curtis-Harper et al., 2018).

FIGURE 4
Fluid composition predicted from the dissolution of the regolith
simulant at 14°C and 2 bar. (A) pH variability in the abiotic model; (B)
model with pH as a free parameter that varies between 9.5 and 12.7; (C)
model with pH set at 7.0; (D) model with pH set at 7.4. Only
elements relevant for a direct comparison between themodels and the
basalt dissolution experiments are shown in the diagrams (H4SiO4,Mg2+,
Mn2+, K+, Ca+, Al3+, Fe2+). For more details on the variability of the other
elements (Cl−, HS−, NH4

+, Na+, HCO3
−, HPO4) see supplementary

materials A, B, C. The (W/R)D is represented by the shadowed area in
between the two blue dotted vertical lines and it was calculated based
on the element potassium because it is not incorporated into the
microbes and into any of the expected mineral precipitates.
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ICP-AES analysis detected specific changes in the fluid

chemistries that differed between the biotic and abiotic test

groups, e.g., microbial mediated dissolution increased the

dissolved concentrations of Mg, Fe, Mn, Ca and K. Previous

studies demonstrated that excess protons and low molecular

weight organic acids, produced as a by-product of microbial

metabolism, can alter the pH of the fluid promoting the

extraction of bio-essential elements from rocks (Vandevivere

et al., 1994; Liermann et al., 2000; Huston and Logan, 2004; Wu

et al., 2007) and the formation of secondary alteration minerals

(Banfield et al., 2001; Berg et al., 2020). In our study, changes in

element concentration could not be solely ascribed to the

pH differences between the abiotic and biotic experiments.

Given that the pH of the media remained nearly neutral

during biotic experiments because of the buffering capacity of

the simulant, it is possible that organic acids may have enhanced

mineral dissolution locally, e.g. in pore spaces and close to

mineral surfaces, without changing the pH of the whole

system. Micro-reaction zones have previously been identified

at microbial binding sites and are associated with high

concentrations of organic acids (Hiebert and Bennett, 1992;

Thorseth et al., 1992; Vandevivere et al., 1994). Although

there is little evidence of direct microbial attachment to the

mineral surface it is still possible that elemental dissolution in the

biotic experiments has occurred through direct contact of the

microbes with the simulant, and also indirectly (Hiebert and

Bennett, 1992; Vandevivere et al., 1994; Banfield et al., 2001;

Welch et al., 2002; Konhauser, 2007; Lian et al., 2008; Uroz et al.,

2009; Gadd, 2010). Differences between the amount of element

dissolved in the fluid in this study and previous studies (Wu et al.,

2007; Olsson-Francis et al., 2017) could be explained by the

inclusion of a buffer in the system that may have prevented

elemental release as a result of high pH changes, or the use of a

more complex microbial community instead of a single microbe

type (Burkholderia sp. strain B_33—Olsson-Francis et al., 2017;

Burkholderia fungorum - Wu et al., 2007). Heterotrophic

microorganisms, such as Burkholderia fungorum, use organic

compounds as source of energy and chemical equilibrium is

more easily reached and dissolution is at minimum (Wu et al.,

2007). In a mixed community, that contains also

chemolithotroph microorganisms which require chemical

compounds and elements (sourced from the fluid and the

rock) to produce energy, dissolution rates increase due to the

pH being far from equilibrium (Ramkissoon et al., 2021).

Morphological steps observed along mineral cleavage plains

and Fe-Si rich amorphous deposits (Figure 2D) identified by

SEM on the surfaces of some aegirine grains in the biotic

experiments are, respectively, evidence of enhanced mineral

weathering and secondary mineral deposition following

microbial action (Brantley and Chen, 1995; Benzerara et al.,

2004; Benzerara et al., 2005; Wu et al., 2007). According to the

elemental distribution in “spectrum 5” (Figure 2E), the

amorphous deposit may represent partially dissolved aegirine

and the formation of non-crystalline Fe-rich secondary clay at

the mineral surface, characteristic of an early stage of pyroxene

weathering (Nahon and Colin, 1982). We interpret this as

evidence for mineralogical changes specific to the biotic

experiments as nothing comparable was observed in the

abiotic experiments. Peaks detected for Ca, Na and Cl are

interpreted as CaCl2 and NaCl deposits precipitated on top of

the Fe-Si rich amorphous layer during sample drying before SEM

analysis.

TABLE 4 List of minerals that form in abiotic and biotic models at 14°C, 2 bar between (W/R)M of 106 and 1.

Mineral Formula Abiotic model Biotic model (pH 7.0) Biotic model (pH 7.4)

pyrite FeS2 X X X

quartz SiO2 X X X

Hydroxy apatite Ca5(PO4)3OH X X X

siderite FeCO3 X X X

rhodochrosite MnCO3 X X X

clinochlore Mg5Al2Si3O10(OH)8 X X

daphnite Fe5Al2Si3O10(OH)8 X X X

Mn-chlorite Mn5Al2Si3O10(OH)8 X

Na-nontronite Na0.3Fe2 [(Si,Al)4O10] (OH)2·nH2O X X X

K-nontronite KFe2 [(Si,Al)4O10] (OH)2·nH2O X X X

talc Mg3Si4O10(OH)2 X X

Fe-talc Fe3Si4O10(OH)2 X

magnetite Fe3O4 X X X

goethite FeO(OH) X X X

kaolinite Al2Si2O5(OH)4 X

huntite Mg3Ca(CO3)4 X
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Previous studies that used a naturally occurring, already

altered, basalt as a Martian analogue observed similarities

between secondary minerals formed during biotic laboratory

experiments and those predicted by thermochemical models

(Olsson-Francis et al., 2017). In our study, mineralogical

features observed in the biotic samples and alteration phases

predicted by biotic models are not directly comparable, as

detailed analyses of secondary mineralisation formed

experimentally were limited by the rarity of potential

secondary minerals at detectable abundances. The use of an

unweathered fresh basalt, of a small grain size (<250 μm) and

the short duration of the experiments could have reduced the

likelihood of alteration phase formation in our study, impeding a

comparison with model results. Longer experimental run times

in a simulated open-system environment would be needed to

observe the development of a more complex alteration

assemblage, the formation of larger quantities of secondary

minerals and more pronounced alteration features that would

be more easily detectable, and thus comparable with secondary

minerals predicted by the biotic and abiotic models.

4.2 Thermochemical models of basalt
dissolution

Thermochemical modelling was used to assist in the

identification of possible inorganic bio-signatures, such as

secondary alteration minerals and fluid chemistry variations,

that form during microbial weathering of the Martian

simulant over geological timescales in an aqueous system. To

compare the experimental and model results, we focus on a

specific (W/R)M range, between 100 and 38 (Figures 3, 4), that is

equivalent to the actual (W/R)D ratio interval of the growth

experiments. The (W/R)D ratio is defined as the amount of

regolith dissolved during the experiments; it was assessed by

focusing on the most soluble elements (e.g. K+) in the fluids

resulting from the experiments and calculated as outlined in

Olsson-Francis et al. (2017). K+ was specifically selected because

it is not incorporated into microbial cells or (in large amounts)

into any of the minerals predicted to precipitate by the models

(see Results section). The (W/R)M ratio range considered here

(between 100 and 38) is also equivalent to a lacustrine-

sedimentary setting where a limited amount of water interacts

with a large volume of rock. As described in detail earlier, similar

environments have been identified by rover missions at Gale and

Jezero Craters (Grotzinger et al., 2014; Vaniman et al., 2014;

Mangold et al., 2021) and are proposed as sites that could have

supported microbial life in early Martian’s history (Rampe et al.,

2020).

Under lacustrine-sedimentary conditions, a less complex

secondary mineral assemblage forms during biotic dissolution

compared to abiotic, where more mineral species precipitate

(Figure 3). The models show that under biologically-mediated

conditions, high amounts of quartz and carbonates (mainly

siderite, but also traces of rhodochrosite and huntite) coexist

with minor amounts of Fe-sulfides (pyrite) and trace amounts of

phosphates (hydroxyapatite), whereas the abiotic system would

also precipitate Fe-oxides (magnetite) and various amounts of

phyllosilicate minerals (talc, chlorites, nontronite). Less

chemically and mineralogically complex secondary mineral

assemblages seem to be common features of basalt-fluid

interactions under biotic conditions at 1 bar and

temperature ≤25 C (Olsson-Francis et al., 2017), well below

the threshold at which life can exist (<121°C, e.g., Conrad,

2014; Cockell et al., 2016).

The differences in the fluid compositions between an abiotic

and a biotic environment are more pronounced in the models,

where rock dissolution is simulated for longer periods of time

(e.g., geological timescales), than in laboratory experiments

which investigate rock alteration only for a few weeks. Within

the considered (W/R)M ratio range between 100 and 38, that

simulates lacustrine-sedimentary conditions, K, Si and Mn were

observed in similar concentrations (10−3 mol, 10−4°mol and

10−4°mol, respectively) in the biotic models as in the growth

experiments (Figures 1, 4, Supplementary Material), suggesting

that these elements are used by the microbes only in minimal

amounts and that their behaviour is similar during short- and

long-term biotic weathering. This is also supported by the fact

that the cellular elemental uptake measured after biotic

experiments was below the detection limits (Supplementary

Material). Mg remains lower in the experimental fluid

compared to model results. This could be related to microbial

activity that impedes elemental dissolution by producing

amorphous layers on top of some minerals (e.g., pyroxene)

(Benzerara et al., 2004; Benzerara et al., 2005), promoting

adsorption of polysaccharides onto mineral surfaces (Welch

et al., 1999), producing high-molecular-weight polymers

(Welch and Vandevivere, 1994) and preventing the formation

of etch-pits (Lüttge and Conrad, 2004). According to model

results, Mg would not precipitate in large amounts in secondary

minerals predicted to form under biotic conditions, and it would

accumulate in the fluid during long-term regolith alteration. Fe,

Ca and Al contents were higher in the experimental fluids than in

the modelled fluids, suggesting that biological activity is a

limiting factor for precipitation of these elements during

short-term weathering.

Inhibition of precipitation could be related to different

processes associated to specific biological functions. Microbes

take up specific bio-essential elements (oxygen or phosphate) to

form inorganic or organic compounds, including proteins and

siderophores, that are used for internal vital processes; the

production of polysaccharides and other extracellular

polymeric substances is another way of how microbes can

attract and use bio-essential elements for their external

functions; finally, microbes also use various chemicals to

produce and release organic compounds such as low
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molecular weight organic acids (Welch and Ullman, 1993;

Vandevivere et al., 1994; Barker and Banfield, 1998;

Kalinowski et al., 2000; Bennet et al., 2001; Wu et al., 2007;

Uroz et al., 2009; Gadd, 2010; Olsson-Francis et al., 2015). These

processes would prevent solubility limits being reached,

impeding the precipitation of secondary minerals that could

form in the considered water-rock system during long-term

dissolution. As predicted by the models, these phases could be

pyrite (FeS2), siderite (FeCO3), hydroxyapatite (Ca5(PO4)3OH)

and Al-rich minerals (kaolinite, Al2SiO5(OH)4).

4.3 Alteration minerals and life detection
on Mars

Fe-phyllosilicates (nontronite and chlorite) and Fe-oxide

(magnetite), predicted by thermochemical modelling to form

only under abiotic conditions, have been found at several sites on

Mars (Ehlmann et al., 2009; Carter et al., 2013; Ehlmann and

Edwards, 2014; Rampe et al., 2020). Chlorite is an uncommon

alteration mineral at very low-temperature since it forms

preferentially in diagenetic and low-temperature metamorphic

environments. However, it is thought to be authigenic in

weathered sedimentary deltaic sandstones at 20–40 C

(Grigsby, 2001) and has been found widespread on Mars

(Ehlmann et al., 2011). Talc is also predicted by the abiotic

model to form but its presence on Mars is still uncertain (Bristow

et al., 2021). Talc is usually associated to higher temperature

regimes (hydrothermal alteration) and metamorphic conditions;

however, talc can be also authigenic in sedimentary deposit

(Tosca et al., 2011 and references therein) or, as demonstrated

in laboratory test performed at ambient conditions, it can

precipitate as a secondary product in low-temperature

aqueous systems as a precursor of Mg-rich carbonate deposits

(Bricker et al., 1973; Tosca et al., 2011). In all these cases, talc

precipitation seems strongly controlled by the pH and favoured

under alkaline conditions (Tosca et al., 2011). Carbonate

minerals (e.g., siderite and rhodochrosite) characteristic of

both biotic and abiotic models have been observed in Martian

meteorites (e.g., nakhlites, Changela and Bridges 2011; Melwani

Daswani et al., 2016; Bridges et al., 2019) and by orbiting

spacecraft and rovers on the Martian surface at various

locations (e.g., Gale and Jezero Craters, Bultel et al., 2019;

Bridges et al., 2019; Thorpe et al., 2020; Archer et al., 2020;

Horgan et al., 2020). Other alteration minerals predicted to form

under biotic and abiotic conditions such as quartz, pyrite and

hydroxyapatite have also been discovered (Vaniman et al., 2014;

Rampe et al., 2020). The carbonates huntite, which precipitates in

trace amounts only in the biotic model at pH of 7.4, has not been

directly observed on Mars, although it has been inferred to occur

in Nili Fossae region (Palomba et al., 2009). However, since it can

form at surface temperatures and pressures in fluvial-lacustrine

evaporitic environments or as an alteration mineral in basalts

weathered by cold solutions rich in Mg, Ca and carbonic acid

(Kinsman 1967; Cole and Lancucki, 1975; Stanger and Neal,

1994; Akbulut and Kadir, 2003), it is likely to be present in

ancient Martian systems similar to Gale and Jezero Craters.

Huntite, could be particularly difficult to detect on Mars

(especially if present in low amounts) since it is metastable at

surface temperature (Garrels et al., 1960; Kinsman, 1967) and it is

replaced with time by magnesite (Kinsman, 1967; Spotl and

Burns, 1994; Marini, 2007), a more stable Mg-carbonate that

is present on the Martian ground together with siderite, calcite,

rhodochrosite and other Mg- and Fe-bearing alteration minerals

(Ehlmann et al., 2008; Niles et al., 2013; Goudge et al., 2015).

Finally, alteration phases predicted to form in the biotic system

(siderite, rhodochrosite, quartz, pyrite, hydroxyapatite) are all

minerals that naturally can precipitate in near-neutral

pH aqueous environments at ambient temperature following

the action of microbes (Lee et al., 2007; Ehrlich and Newman,

2009; Sun et al., 2014; Duverger et al., 2020).

The results of this study provide indications of which

mineralogical and geochemical features need to be

investigated when searching for inorganic bio-signature on

Mars. Alteration effects and mineral deposits of such small

scale (<15 μm) would be difficult, if not impossible, to be

observed in-situ using the instruments on board of Martian

rovers (Mars Hand Lens Imager instrument aboard Curiosity

rover has a resolution up to 13.9 microns/pixel) (e.g. Edgett et al.,

2012; Allwood et al., 2020). However, such information and

observations are relevant for searching for the most likely sites to

find putative life. The chemical changes associated with the

observations in this study, while not resolved in the detail

required to analyse them, might still be indicated through

gradients and deviations from baseline mineral observations in

spatially resolved techniques such as the Planetary Instrument

for X-Ray Lithochemistry (PIXL) on Perseverance (Allwood

et al., 2020). Moreover, a complex mineralogical assemblage

and secondary minerals large enough to be detected by rovers’

instruments are likely to have been formed in a natural Martian

environment where the interaction between the substrate and the

microbes, if ever been present, would have been prolonged over

longer periods. Therefore, the results of this study are required

for potentially informing the current sampling activities operated

by the Perseverance rover, for planning future life detection

missions and for interpreting the results of the analysis of

Martian samples recovered by future sample return missions.

5 Conclusion

In this study, laboratory-based experiments and

thermochemical modelling were combined to investigate

inorganic bio-signatures formed by an analogue microbial

community from an anoxic inter-tidal zone of a Martian

analogue fluvio-lacustrine system and that could be used as

Frontiers in Astronomy and Space Sciences frontiersin.org13

Cogliati et al. 10.3389/fspas.2022.1062007

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1062007


evidence in the search for life in early Martian lacustrine-

sedimentary systems. Analogue microorganisms used in

dissolution experiments were able to grow under environment

conditions that were similar to that of the Gale Crater’s aqueous

environment at Yellowknife Bay. The analysis of simulated

Martian water-rock systems after dissolution experiments

identified mineralogical, microscopic and geochemical changes

characteristic to the biotic test group that could be interpreted as

potential bio-signatures. These changes are likely to be caused by

the action of anaerobic microbes, analogues to those that could

have existed in early Gale Crater aqueous system and would have

enhanced mineral weathering and promoted secondary mineral

formation. Thermochemical modelling has highlighted more

significant differences between fluid chemistries and secondary

alteration minerals that would form in reducing biotic and abiotic

systems over geological time scales. Under biomediated lacustrine-

sedimentary conditions, a ‘simpler’ mineral assemblage is

predicted to precipitate during long-term weathering. Quartz,

carbonates and Fe-sulfides are the main secondary minerals to

form under biotic conditions, whereas in the abiotic system Fe-

oxides and phyllosilicate, in addition to the aforementioned

minerals, also precipitate. Since Gale and Jezero Craters are the

targets of current and future in-situ Mars exploration missions,

identification and characterisation of geochemical bio-signatures

produced by analogue microbial communities from terrestrial

fluvio-lacustrine systems is important to determine the potential

habitability of similar environments on early Mars. The results of

this study reinforce the necessity to use complex analogue

microbial communities and to combine laboratory experiments

with thermochemical modelling when investigating the formation

of inorganic bio-signatures that form over geological timescales,

particularly where those studies may inform the search for

habitable environments. The results obtained here, alone, may

be not sufficient as unambiguous bio-signatures for life detection

on Mars. However, they could be used in conjunction with other

geological, geochemical and biological evidence to assess the

presence of life in ancient Martian environments. More studies

are required in order to build a more comprehensive body of

evidence that can be used to identify, unambiguously, inorganic

bio-signatures on Mars. Considering the outcomes of this and

previous studies (Olsson-Francis et al., 2017), we want to

empathise and tress that only using a more holistic approach

that combines experimental microbiology, analytical geochemistry

and thermochemical modelling, similarly to what was applied in

this study, it will be possible to fully understand the evolution of

fluid and rock chemistries under biotic conditions and

geochemical bio-signatures formation in low-temperature

aqueous systems on early Mars. In this context,

thermochemical modelling represents an essential tool that

allows to investigate reaction pathways and secondary minerals

even at low-temperature when slow reaction rates make their study

difficult under laboratory conditions.

Future work, employing a manufactured, multi-

component simulant with a mineralogical and chemical

composition more similar to the Rocknest basalt at Gale

Crater (OUCM-1—Ramkissoon et al., 2019) and a

microbial community that more likely to represent life on

early Mars (as discussed in Macey et al., in review), could

increase the fidelity of the type of inorganic bio-signatures

(e.g., the secondary mineral assemblage) that a microbial

community could develop under simulated Martian

conditions. Also, the use a wider range of analytical

techniques (e.g., NIR, FTIR, XRD, XPS, Raman

Spectroscopy) relevant to either current (NASA’s Mars

Science Laboratory and Mars Perseverance) and future

(ESA’s Rosalind Franklin) Mars missions could help to

better characterize the chemical, mineralogical and physical

changes that occur on the simulant surface after dissolution

experiments. This will inform the possible recognition of

inorganic bio-signatures during ongoing exploration

missions and the analysis of samples recovered by a future

sample return mission.
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