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Many studies of solar-wind coupling with the magnetosphere depend on the

properties of the solar wind impacting the magnetosphere. Our ability to

estimate these properties relies heavily on spacecraftmeasurements at the first

Lagrangian point (L1), far upstream of the Earth. Our best estimates of these

are made by time-shifting the observations to the bow shock nose. Hence,

we are uncertain of the solar wind parameters that affect the magnetosphere.

Apart from instrumental errors, the uncertainty stems from many simplifying

assumptions that ignore the inherent variability of the solar wind at L1 (e.g.,

solar wind meso-scale structures, transverse gradients) as well as physical

processes downstream (e.g., the effect of the foreshock, structured bowshock,

magnetosheath plasma, variable solar wind propagation). These uncertainties

can lead us to significantly misinterpret the magnetosphere and ionosphere

response, adding avoidable research time and expense.Whilemulti-spacecraft

missions can reduce uncertainty by gradually filling our knowledge gaps, there

will always be a certain degree of uncertainty in determining relevant solar

wind parameters that impact the magnetosphere. Estimating this uncertainty

and correcting for them in our studies is crucial to the advancement of our

field and, in particular, 1) our understanding of the solar-wind/magnetosphere

coupling, 2) global magnetospheric simulations, and 3) space weather

forecasting. In the next decade, paired with novel multi-spacecraft missions,

we make a case for placing financial and organizational resources to support

quantifying, understanding and correcting for uncertainties in upstream solar

wind conditions.

KEYWORDS

uncertainties, solar wind variability, dayside transients, mesoscales, solar wind-magnetosphere
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1 Introduction

Space physicists conduct many investigations of the Earth’s magnetosphere
response to solar wind forcing. They use single satellite measurements of solar
wind conditions ∼230 RE upstream of the Earth at the L1 Lagrange point. However,
magnetic reconnection closer to Earth at the magnetopause mainly drives the solar
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wind magnetosphere coupling. Since local plasma parameters
determine the magnetic reconnection rates, the strength of
the coupling depends on these localized plasma and field
parameters. As a result, we are forced to estimate the plasma
parameters at the magnetopause, and this is mostly done [e.
g., in OMNI database (King and Papitashvili, 2005; Weimer
and King, 2008)] by time-shifting the measurements at the
first Lagrange point (L1) to the bow-shock nose. Sources of
time delay inaccuracy comes from assumptions of planarity and
non-propagation of solar wind parcel (Collier et al., 1998, 2000;
Weimer et al., 2002; Mailyan et al., 2008) and the consequent
need of multiple methodologies to address deviation from
these conditions (e. g., Horbury et al., 2001; Weimer et al., 2003;
Weimer and King, 2008). Though inadequate (Borovsky, 2016),
such approximations have been reasonably successful in
demonstrating correlations of solar wind parameters with
magnetosphere-ionosphere responses. Such assumptions
are considered justified as average scale sizes of solar
wind magnetic field and plasma are about 45 RE which is
larger than the magnetosphere (Chang and Nishida, 1973;
Crooker et al., 1982; Richardson and Paularena, 2001;
Matsui et al., 2002; Weimer et al., 2002; Mailyan et al., 2008).
However, recent studies have shown substantial variations in
the magnetosphere-ionosphere response for the same solar
wind driving, with the variation becoming significant during
extreme space weather. For example, sometimes, contrary to our
expectations, observations of strong solar wind driving do not
lead to a corresponding strong response in the magnetosphere,
and weak solar wind driving leads to extreme magnetosphere
responses. As a matter of fact, successful association of solar
wind features with magnetosphere processes decreases with
upstream condition derived from observations at many tens of
RE from the Earth-Sun line (e. g., Borodkova et al., 1995; Sibeck
and Korotova, 1996; Lyons et al., 1997). In addition, properties
of the incoming solar wind can lead to delayed response to
the same transient in different part of the magnetosphere (e.
g., Maynard et al., 2001). There are many explanations for such
discrepancies, which include:

i) gradients in the transverse direction of the solar wind
flow leading to a structural variation of magnetospheric
scale sizes (Chang and Nishida, 1973; Borovsky, 2018;
Burkholder et al., 2020; Kepko et al., 2020),

ii) bow shock andmagnetosheath plasma substantially altering
the solar wind parameters (Walsh et al., 2019),

iii) inaccurate propagation time estimates (Ridley, 2000; Case
and Wild, 2012; Cameron and Jackel, 2016),

iv) systematic errors, introduced for example by Earth’s orbital
characteristics (Lockwood et al., 2020; Borovsky, 2022c;
Lockwood, 2022),

v) pre-conditioning of the magnetosphere-ionosphere system
(Lavraud et al., 2006),

vi) instrument errors altering solar wind parameters (King and
Papitashvili, 2005),

vii) location of the L1 monitors (Milan et al., 2022).

Therefore, the solar wind parcel observed at L1 by a single
monitor may not be what actually impacts the magnetopause,
especially at the reconnection site. Not accounting for
the phenomena in (i)-(vii) leads to uncertainties in our
estimate of the solar wind that impact the magnetosphere
(Lockwood, 2022). We believe that quantifying these
uncertainties is extremely crucial to understanding solar-
wind/magnetosphere coupling, especially during extreme space
weather events, and hence a major challenge for the next decade
of Heliophysics.

2 Uncertainties in solar wind
upstream conditions

2.1 Inherent variability and transverse
gradients in solar wind properties

Recent studies reiterate the importance of transverse
gradients in the solar wind properties on the same order of
or greater than the size of the Earth’s day-side magnetosphere
(Borovsky, 2018; Burkholder et al., 2020; Kepko et al., 2020). In
such conditions, the solar wind upstream conditions based on a
single spacecraft might not be enough to correctly interpret the
magnetosphere response missing the inherent variability of the
solarwind, either due to en route processes or its formations at the
Sun (Viall et al., 2021). For example, different physical processes
can occur on different sides of the Earth’s magnetosphere
(Kessel et al., 1999; Nykyri et al., 2019) or observations from
a single L1 monitor may not represent the actual upstream
conditions [e.g., dusk-dawn aberrations of the solar wind plasma
and magnetic structure approaching Earth (Borovsky, 2022c)],
leading to misinterpretation of the magnetosphere response
(Piersanti et al., 2022; Villante et al., 2022).

An example of the inherent variability of the solar wind is
the observation of Periodic Density Structures (PDSs)—solar
wind density fluctuations on time scales ranging from a few
minutes to a few hours (Figure 1). When accounting for
the solar wind velocity, PDSs correspond to advected “meso-
scale” structures (Viall et al., 2021; Gershkovich et al., 2022) at
preferential length-scales ranging from a few Earth radii (RE)
up to 1000 RE (Kepko et al., 2020) The size-scales of the
periodic density structures are such that they can play a
fundamental role in regulating the dynamics of the Earth’s
magnetosphere. In fact, these transients produce sudden changes
in solar wind dynamic pressure that, in turn, can determine
periodic compressional fluctuations of the Earth’s magnetic field
(Borovsky and Denton, 2016) at similar frequencies (Kepko
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FIGURE 1
Solar wind periodic density structures (PSD) affects magnetosphere response. (A) comparison of solar wind proton density (red) and north-south
magnetic field component at GOES 10; (B) detail of solar wind density measured by Wind at L1, and electron residual flux in the radiation belts
by LANL-97A. Adapted from Di Matteo et al. (2022). Steady solar wind measurements at L1 does not guarantee steady local parameters in the
subsolar magnetosheath. (C) Location of DSCOVR and THEMIS spacecraft, (D) THEMIS measures substantial variation in local plasma
parameters, (E) DSCOVR measures very steady solar wind parameters at L1 during the corresponding period. Adapted from Walsh et al. (2019).

and Spence, 2003) which overlap with Ultra Low Frequency
(ULF) waves in the Pc5 range (=1.7–6.7 mHz). Magnetic field
compressional fluctuations at these time scale have important
consequences on the Earth’s magnetosphere system coupling
with Field Line Resonances and affecting the dynamics and
loss of radiation belt electrons (Zong et al., 2017). Recently,
Di Matteo et al(2022) provided a comprehensive study of the
Earth’s magnetosphere response to the impact of PDSs. On
9 November 2002, solar wind proton density observations at

the Wind spacecraft (Figure 1A) showed quasi periodic 90-
min fluctuations. The combination of spacecraft and ground
magnetometer observations showed that the magnetospheric
response was characterized by forced breathing by periodic
solar wind dynamic pressure variations (Figure 1A), field line
resonances and local changes in radiation belt particle flux
(Figure 1B).While these conclusions seem quite straightforward
when looking at the observations in Figure 1, our interpretation
of the magnetosphere response is different when using Geotail
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or ACE to monitor the upstream condition. Using these data, the
force breathing process would have been excluded.

An example of transverse gradient in solar wind properties
is in Figure 2A. In this case, we observed discrepancies in the
Bz component of the interplanetary magnetic field measured by
the Wind and ACE spacecraft (Figure 2B). In particular, on 11
November 2002, between 8:00 and 9:00 UT the two spacecraft
measured magnetic field of similar intensity, about 10 nT, but
of opposite sign. In summary, the use of single interplanetary
monitor could lead to misinterpretation of the magnetospheric
response.

These examples highlights the importance of studies directed
to the understanding of solar wind uncertainties and the need
for satellite constellations to improve: 1) our understanding of
solar-wind/magnetosphere coupling; 2) global magnetospheric
simulations; 3) space weather operational capabilities.

2.2 Effect of bow shock and
magnetosheath on solar wind
parameters

Even if the solar wind plasma measured at L1 is the same as
that which impacts the Earth, it can be significantly altered by the
foreshock, structured bow shock, and magnetosheath processes.
In fact, there are a variety of processes that can affect solar wind
plasma upstream of the magnetopause interaction region. They
include foreshock bubbles, hot flow anomalies, mirror mode
waves, cavitons, and high-speed jets (Zhang et al., 2022). Even
when an L1 monitor measures very steady solar wind values,
the plasma that impacts the Earth’s magnetosphere can be highly
variable. Figures 1D,E presents an example where very steady
solar windmeasured at L1 still leads to substantial fluctuations in
magnetic field and density within the magnetosheath. Figure 1E
shows steady solar wind measurements made using DSCOVR
spacecraft at L1, while Figure 1D shows that during the same
time simultaneous measurements made by THEMIS spacecraft
within themagnetosheath observed substantial fluctuations in its
measurements. These fluctuations are due to unknown physics
happening in this region. Figure 1C shows the configuration of
the two satellites.

A statistical analysis of the variability of local plasma
parameters near the magnetopause interaction region suggests
that the uncertainty in the clock angle of the interplanetary
magnetic field (IMF) can reach a standard deviation of ∼50°.
The IMF clock angle substantially influences the day-side
reconnection rate. When the clock angle is 0° IMF Bz is
northwards, solar wind magnetosphere coupling is low. When
the clock angle is 180°, the IMF Bz is southward, leading to
maximum coupling. Hence a ∼50° uncertainty in the clock
angle is a significant error in our estimates generated by plasma
processes in the magnetosheath.

3 Uncertainty leads to a bias in the
inferred geomagnetic response

A common perception within the community is that
uncertainties in the solar wind estimates do not affect studies
of average magnetospheric response to solar wind forcing
since the uncertainties are random and “underestimates will
cancel overestimates”. However, this is not true when using
solar wind parameters as input or independent variable in
correlation studies (Borovsky, 2022a; Borovsky, 2022b; Sivadas
and Sibeck, 2022). These uncertainties can create an appearance
that magnetosphere or ionosphere response saturates with
increasing solar wind driving even when it does not. The effect
results from a statistical bias because the observed response is
more likely the result of a lower and more common solar wind
driver value than the measured extreme driver value. In fact, the
statistical bias is more severe for extreme and rare solar wind
driver values.

Figures 2C,D shows an example of this effect by comparing
available time-shifted 1-min ACE andWindmeasurements from
the OMNI database. If ACE and Wind measure the same
solar wind plasma, the average Wind measurement given an
ACE measurement will lie along the line of equality. ACE
and Wind, however, do not measure the same plasma ∼70%
of the time during which the Impact Parameter (King and
Papitashvili, 2005) between the spacecraft is greater than 60 RE
(Sivadas and Sibeck, 2022). Hence, a statistical bias creeps in,
leading to Wind measuring a lower value than ACE on average
(Sivadas and Sibeck, 2022). At extreme values, the average Wind
measurements for increasing ACE measurements appear to be
saturating. Clearly, this is a statistical effect and can be corrected
if we have a quantitative estimate for the solar wind uncertainty,
its statistics, and how it correlates with the measured parameter.

The implication of quantifying the uncertainty becomes
apparent in the context of an important open question in
magnetospheric physics: what is the geomagnetic response
to solar wind forcing? A well-established inference from
observations is that certain geomagnetic indices like the polar
cap index, a measure of the cross-polar cap potential, and the
auroral electrojet index, a measure of the auroral electrojet
strength, increase linearly for low solar wind driving but saturate
at high values (Borovsky, 2021). However, a literature survey
shows vast disagreements in the extent of saturation and at least
ten models proposing to explain the effect (Borovsky et al., 2009;
Lopez et al., 2010), with no theory emerging as the dominant
explanation. Preliminary analysis suggests that uncertainties in
the solar wind driver estimates might be the source of this
saturation effect. And correcting for this uncertainty reveals
that geomagnetic response may be linear for the range of our
measurements (Sivadas et al., 2022).

Statistical bias caused by uncertainties in solar wind that
affects the magnetosphere can lead to 1) underestimating
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FIGURE 2
Solar wind measurements at L1 are an uncertain measure of the solar wind that affects the magnetosphere. (A) Northward component of solar
wind magnetic field time-shifted to the nose of the bow shock based on measurements from ACE and Wind, (B) spacecraft positions in the
ecliptic plane. (C) Comparing solar wind electric field measured by Wind and ACE. Solar wind uncertainty statistically biases the average Wind
measurements to lower values than the corresponding ACE measurements. Without measurement uncertainty, the result would lie along the
“Line of equality.” The bias creates an appearance of Wind measurements saturating with increasing ACE measurement on average. (D)
Comparing the ratio of IMF By and Bz estimated from Wind and ACE measurements. Adapted from Sivadas and Sibeck (2022).

the response of the magnetosphere-ionosphere system to
extreme space weather, 2) misinterpreting the bias as a
physical process or instrumental bias, 3) incorrect model
validation due to incorrectly biased data, and 4) biased
predictions from coupled global models. Quantifying and
removing this bias is important for the accuracy of many
previous, current, and future studies within Heliophysics, as a
large number of Heliophysics studies rely on uncertain estimates
of solar wind parameters and their association with planetary
responses.

Uncertainty analysis impacts a broad set of studies thatmight
focus on extreme space weather, solar wind magnetosphere-
ionosphere coupling, OMNI database, global geospace model
validation, machine learning, and data science models. It can
change our understanding of how the Earth system responds to
solar wind forcing. In addition, there is currently a proliferation
of machine learning and data science projects that use large
amounts of solar wind data as input, so it becomes even more
important to quantify the uncertainties and understand their
effects on them. Being misled by unidentified uncertainties and

statistical biases can be very costly in terms of research time and
expense, and we must dedicate resources to avoid such errors.

4 Discussion

The improved knowledge of the properties of solar wind
structures will advance our understanding of solar wind
coupling with the Earth’s magnetosphere. The advancement
of our understanding of the connections between solar
variability and the Earth’s environment requires synergy
between different research fields e.g., solar physics, solar wind
physics, magnetosphere physics, planetary science, ionospheric
physics, astrostatistics, data science, machine learning, and
other.

The next decades will provide an unprecedented view of
the interplanetary environment thanks to the combination
of in situ and remote sensing observations from recent
missions, e.g. Parker Solar Probe (Fox et al., 2016), Solar Orbiter
(Müller et al., 2013), BepiColombo (Benkhoff et al., 2010),
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and (possible) future ones, e.g., Polarimeter to UNify the
Corona and Heliosphere (PUNCH; DeForest et al., 2022), Seven
Sister (Nykyri et al., 2022), HelioSwarm (Klein et al., 2019;
Matthaeus et al., 2019), Magnetic Topology Reconstruction
Explorer (MagneToRE; Maruca et al., 2021), Interplanetary
Mesoscale Observatory (InterMeso; Allen et al., 2022), Solar-
Terrestrial Observer for the Response of the Magnetosphere
(STORM; Sibeck et al., 2018). These missions have the
capability to resolve transverse gradients, spatial scales, and
temporal dynamics of the solar wind as well as provide new
wealth of data for the characterization of “uncertainties”
in combination with spacecrafts such as Time History
of Events and Macroscale Interactions during Substorm
(THEMIS Burch and Angelopoulos, 2009), Magnetospheric
Multiscale (MMS; Burch et al., 2016; Fuselier et al., 2016),
Cluster (Escoubet et al., 2001) and possibly Magnetospheric
Constellation (MagCon; Kepko et al., 2022) that orbit closer to
the magnetopause.

Over the next decade we will have the capability to address
these overarching questions:

• What creates the meso-scale structures and dynamics of the
solar wind, and how do they affect the magnetosphere?
• What are the uncertainties in upstream solar wind

conditions that affect planetary magnetospheres?
• How does solar wind uncertainty affect our interpretation of

the magnetosphere response and dynamics, and accuracy of
space weather forecasting?

To answer these open questions its pertinent that we plan for
the following in the next decade:

1. Promote Heliophysics community projects which include
the quantification and correction for uncertainties in studies
of solar-wind/magnetosphere/ionosphere coupling for Earth
and other planets.

2. Plan for innovative multi-spacecraft missions that help
quantify the scale-size and structure of the solar wind, the
3D structure of the solar-wind/magnetosphere interaction
region, as well as the uncertainties from using L1 monitors
(Collier et al., 1998; Weimer et al., 2002; Weimer and
King, 2008).

Though multi-spacecraft missions will help us improve the
spatial and temporal resolution and scales of our measurements,
uncertainties resulting from our assumptions are unavoidable
in solar-wind/magnetosphere/ionosphere coupling studies.
Therefore, we stress the need for more research in the area of
solar wind uncertainties and innovative techniques to correct
them, as a large number of projects in Heliophysics depends on
these measurements. Nevertheless, to fully resolve the scale-sizes
of solar wind transients and distinguish between their spatial
advection and/or time dynamics, simultaneous multi-point

measurements that span 3D spatial directions on meso-scales
are also essential.
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