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Efficient identification of
pre-flare features in SDO/AIA
images through use of spatial
Fourier transforms

Paolo Massa* and A. Gordon Emslie

Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY, United
States

In this “Methods” paper, we investigate how to compress SDO/AIA data by

transforming the AIA source maps into the Fourier domain at a limited set

of spatial frequency points. Specifically, we show that compression factors

of one order of magnitude or more can be achieved without significant loss

of information. The exploration of data compression techniques is motivated

by our plan to train Neural Networks on AIA data to identify features that

lead to a solar flare. Because the data is spatially resolved and polychromatic

(as opposed to spatially-integrated, such as GOES, or monochromatic,

such as magnetograms), the network can be trained to recognize features

representing changes in plasma properties (e.g., temperature, density), in

addition to temporal changes revealed by Sun-integrated data or physical

restructuring revealed by monochromatic spatially-resolved data. However,

given the immense size of a suitable training set of SDO/AIA data (more

than 1011 pixels, requiring more than one TB of memory), some form of

data compression scheme is highly desirable and, in this paper, we propose

a Fourier based one. Numerical experiments show that, not only Fourier

maps retain more information on the original AIA images compared to

straightforward binning of spatial pixels, but also that certain types of changes

in source structure (e.g., thinning or thickening of an elongated filamentary

structure) may be equally, if not more, recognizable in the spatial frequency

domain. We conclude by describing a program of work designed to exploit the

use of spatial Fourier transform maps to identify features in four-dimensional

data hypercubes containing spatial, spectral, and temporal information of the

state of the solar plasma prior to possible flaring activity.

KEYWORDS

flare forecasting, SDO/AIA data, data compression, Fourier transforms, neural networks, space

weather

1 Introduction

After more than a century and a half of ground-based optical observations of
solar flares (Carrington, 1859; Hodgson, 1859), nearly a century of ground-based radio
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observations (Reber, 1944), and more than 70 years of study in
wavelengths that can only be observed from spacecraft platforms
(Tousey et al., 1951), our ability to forecast if and when these
enigmatic events will occur, and to predict the likely nature
of those events that do occur (e.g., electromagnetic radiation
signatures; energy spectrum and elemental composition of
energetic particles that are released into interplanetary space;
extent, mass, and energy of the associated coronalmass ejection),
is still at a fairly rudimentary level. It is generally understood
(e.g., Tandberg-Hanssen and Emslie, 1988; Forbes et al., 2006)
that flares, and their associated solar eruptive events, occur
when energy stored in stressed, current-carrying magnetic fields
in a solar active region (AR) is released—on timescales that
are, perplexingly, orders of magnitude shorter than would be
expected from global electrodynamic considerations. However,
how magnetic energy is allowed to steadily build up in active
regions over hours to days, without significant dissipation,
only for a large fraction of this stored energy to suddenly be
released on timescales of seconds to tens of minutes, is not well
understood at all.

Prior to the occurrence of a flare, we can expect two main
types of changes in the physical conditions in an active region.

• Morphological. It is well known, since the seminal studies
of Hagyard et al. (1984a,b), that solar flares occur in regions
of enhanced magnetic shear; this shear is a critical
element in enabling magnetic field lines to reconnect
(see, e.g., Priest and Forbes, 2007) and so release their
stored magnetic energy as a flare and/or coronal mass
ejection (CME). Quantitative measures of magnetic shear
(i.e., deviation from a current-free potential magnetic
field configuration) have been developed for a variety of
complex magnetic field geometries (Falconer et al., 2008),
as observed by solar magnetogram instruments, which
can measure both line-of-sight field intensities (e.g., the
Michelson Doppler Imager (MDI) on the NASA Solar and
Heliophysics Observatory (SoHO); Scherrer et al., 1995) or,
of considerably greater scientific value, vector magnetic
field components determined from interpretation of the
Stokes polarization parameters in suitbale spectral lines
(e.g., Balasubramaniam and West, 1991). Such measures of
magnetic complexity (including twist alone, and twist in
concert with its longitudinal extent; Falconer, 1997) and/or
magnetic field intensity (Falconer et al., 2006)) have been
used to forecast coronal mass ejections from line-of-sight
magnetogram observations (Falconer et al., 2002, 2007). In
addition to large-scale morphological changes, it is also
likely, in view of the need for the formation of small-
scale regions (e.g., Drake et al., 2013) to efficiently dissipate
magnetic energy, that the degree of filamentation of AR
features (e.g., the striation of elongated structures into finer
scales) may presage flaring activity.

• Thermodynamic. The release of magnetic energy will cause
heating and the acceleration of non–thermal particles (see,
e.g., Zharkova et al., 2011; Petrosian, 2016). The ensuing
temperature and pressure gradients will drive changes in
the atmospheric temperature and density profiles (see,
e.g., Mariska et al., 1989), which are manifested in the
intensities of emission in different spectral lines, notably
in the ultraviolet and X-ray ranges of the spectrum
(Mrozek et al., 2007). Thus, either independent of, or in
concert with, morphological changes, we can expect
significant changes in the emissivity in defined wavelength
bands in the minutes leading up to the impulsive phase of a
solar flare.

In summary, both morphological and thermodynamic
changes can be expected to reveal important clues as to
the likelihood of imminent flaring activity. As discussed in
Section 2.3 below, the high-spatial-resolution, multi-wavelength
observations of ARs made possible by the Atmospheric
Imaging Assembly (AIA; Lemen et al., 2012) on the NASA Solar
Dynamics Observatory (SDO) make them especially suitable for
both types of measurement.

The ability to effectively forecast solar flares has two main
benefits—operational and scientific. On the operational level,
an empirical ability to predict flares (even without a deep
understanding of the underlying causes) would in and of itself
be valuable, inasmuch as it would allow prediction, and hence
some degree of mitigation, of space weather events (Baker, 1998;
Camporeale et al., 2018) that can occurwhen the flaring region is
magnetically well-connected to the Earth. The recently-enacted
Promoting Research and Observations of Space Weather to
Improve the Forecasting of Tomorrow (PROSWIFT) legislation
in the United States calls on federal research agencies such
as NASA and NSF to work collaboratively with academia and
public stakeholders, both public and private, to develop reliable
flare prediction and mitigation strategies in order to protect
several key elements ofmodern infrastructure, including satellite
communications networks and electric power grids. Reliable
flare predictions on timescales of hours to days can be used to
warn of impending space weather events (or even to issue “all
clear” forecasts for periods during which no significant space
weather event is anticipated). From a scientific perspective, the
ability to accurately predict flares requires (similar to the accurate
prediction of terrestrial weather) a thorough understanding
of the mechanisms through which flare energy is stored and
released, and such an understanding would not only be of
fundamental value to solar physics, but would also be applicable
to many other areas of astrophysical research. Finally, in an
intriguing blend of operational need and scientific investigation,
the ability to make predictions of impending flare activity
of timescales of minutes to tens of minutes can be used to
inform the launch of short-duration rocket science payloads (e.g.,
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Savage et al., 2021) that aim to “catch” a flare in its early stages, or
to command the pointing of spacecraft instruments toward the
Sun or a pertinent active region.

In this “Methods” paper, we present a plan to use machine
learning models to identify features that presage a solar flare,
using images acquired by the SDO Atmospheric Imaging
Assembly. Distinct from other contemporary approaches
that are based either on extracting features from solar
images and using them for training Neural Networks
(NNs; see e.g., Bobra et al., 2014; Georgoulis et al., 2021),
or on feeding the networks with the images themselves
(see Guastavino et al., 2022, and references therein), our
methodology searches for patterns in the AIA images that
are evident at different scales, as evidenced in spatial Fourier
transforms of the native data. Fourier-based imaging algorithms
are already in common use in interferometric radio astronomy,
where each telescope-telescope baseline yields a corresponding
spatial Fourier component of the source, and have also been used
in hard X-ray imaging spectroscopy, providing much of the basis
for the proposed methodology (see Section 3).

The motivation behind the use of spatial Fourier transform
information for feature identification and extraction is
twofold. First, potential approaches that are based on training
NNs directly on AIA images are very demanding from a
computational point of view, both in terms of memory needed
for storing such a large amount of data and in terms of
the computational power needed for processing it. Standard
SDO/AIA images are 4,096× 4,096 pixels and, even if cropped
around an AR area of interest (say, 200× 200 pixels), a training
set consisting of 10,000 “datacubes,” each involving 20 min of
data (100 observing intervals at the highest—12 s—time
cadence), and using all seven AIA EUV channels, would contain
10,000× 100× 200× 200× 7 ≃ 3× 1011 pixels. Assuming 4
bytes per pixel, the resulting data set would bemore than one TB,
far too large to be easily stored and processed. Some degree of
data compression is therefore highly desirable. Second, certain
types of features (such as spatial periodic effects) are more
discernible in the Fourier domain, so that analysis of spatial
Fourier components may offer further insight into the nature of
the features that lead to a flare.

To the best of our knowledge, there have been no previous
attempts to address the flare forecasting task using spatial Fourier
components as primary data for training NNs. However, it is
known in the machine learning literature (Xu et al., 2020) that
data compression without significant loss of information can
be more easily achieved in the frequency domain, since many
spatial frequencies are simply not relevant for tasks addressed
by NNs. Moreover, several recent studies have demonstrated
that NN performance and training efficiency can indeed
be improved if the networks are provided with input data
that has been transformed into the frequency domain (e.g.,
Hertel et al., 2016; Xu et al., 2020; Zhang et al., 2020). These

results lend considerable encouragement to the idea of flare
forecasting utilizing “visibility” maps corresponding to the AIA
images instead of the images themselves.

Our approach is inspired by indirect Fourier imaging
techniques that have been applied to hard X-ray imaging
spectroscopy data from instruments such as the Reuven
Ramaty High Energy Solar Spectroscopic Imager (RHESSI;
Lin et al., 2002) and the Spectrometer/Telescope for Imaging X-
rays (STIX; Krucker et al., 2020) on board the Solar Orbiter
mission. For these bi-grid collimator instruments, the native
form of the data is a sparse set (30 for STIX and up to
an order of magnitude more for RHESSI) of spatial Fourier
components, termed “visibilities.” This fundamental nature of
the RHESSI and STIX data therefore required the development
and implementation (Piana et al., 2022) of image reconstruction
algorithms based on such sparsely-populated spatial frequency
information, with, as it turned out, considerable success. Thus,
although the native form of the SDO/AIA data is, of course,
a set of conventional pixel-by-pixel maps, it is still of interest
to explore converting this information into Fourier component
form, with a view to training NNs on such highly-compressed,
informationally-dense, data sets. We shall show below that much
of the useful information in an AIA image can indeed be
encapsulated in a relatively small number of sparsely-distributed
spatial Fourier components.

The outline of the paper is as follows. Section 2 is devoted
to the description of the AIA data under consideration, and
its potential to reveal properties of solar ARs that presage a
solar flare. In Section 3we present our spatial-Fourier-transform
approach to feature identification from the AIA data and we
show how to create data hypercubes that contain, in a dataset of
manageable size, essential information on the spatial, temporal,
and temperature structure of pre-flare ARs. Application of this
method to sample AIA data is presented in Section 4, and
the results discussed in Section 5. Finally, our conclusions are
presented in Section 6.

2 The potential of different data sets
for flare forecasting

2.1 GOES soft X-ray flux

The likelihood of imminent flaring activity can be
ascertained by monitoring changes in the emission in the
1–8 Å soft X-ray channel of the Geostationary Operational
Environmental Satellites (GOES; Nagem et al., 2018;
Ehrengruber and Melchior, 2020). However, while changes in
the thermodynamic properties of the solar corona during pre-
flare activity do produce excess emission in the GOES 1–8 Å
channel, such measurements suffer from four main drawbacks
as a reliable diagnostic of imminent flaring activity:
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• precursor soft X-ray emission takes place in an AR that may
have a substantially enhanced level of soft X-ray emission
already, so that the contrast in the pre-flare region is
relatively low;

• soft X-ray emission comes from heated ten-million-degree
material, and so the emission in this waveband becomes
substantial only after a significant amount of flare energy has
already been released;

• GOES measures soft X-ray emission from the entire solar
disk, and hence is not especially sensitive to strong local
enhancements, such as those that may precede a flare; and

• soft X-ray emission is dominated by broadband continuum
emission,which, although a valid indicator of energy release,
is not the best diagnostic of detailed information about the
evolving temperature structure of the solar atmosphere.

All of these factors imply that, while a rise in the GOES flux
maywell portend a subsequent flare event, it need not necessarily
do so. Moreover, useful signals may well be swamped by soft X-
ray emission unrelated to the flare development and, since the
signal is integrated over the entire solar disk, information on
the location of the impending flare would not be immediately
available. This could be a major drawback in an operational
context, such as observing campaigns (e.g., Savage et al., 2021)
involving instruments with a limited field of view that need to be
pointed toward the correct AR in order to observe the resulting
flare.

2.2 Magnetograms

Given the key role that the solar magnetic field plays in
storing and releasing the energy of a flare, a clearly appropriate,
and also more surgical, approach to flare forecasting relies
on the use of line-of-sight magnetograms, such as those
recorded by the Helioseismic and Magnetic Imager (HMI;
Scherrer et al., 2012) on board the SDO. Prominent features
in ARs that have configurations that are believed to lead
to subsequent flaring (e.g., regions of high magnetic shear;
Moore et al., 2001) are extracted and machine learning models
are trained on these features to predict the occurrence of a flare
several (e.g., 12, 24, 48) hours in advance. There are at least two
sets of features that are derived from HMI magnetograms: first,
features contained in the metadata of the Spaceweather HMI
Active Region Patch (SHARP) data products (Bobra et al., 2014)
and, second, features defined within the FLARECAST project
(Georgoulis et al., 2021). Both sets of features have been
proven to contain information related to flare occurrence, and
several works (e.g., Bobra and Couvidat, 2015; Liu et al., 2017;
Florios et al., 2018; Campi et al., 2019) have assessed the
predictive capabilities of machine learning methods trained
on those sets. More recently, approaches based on training

Convolutional Neural Networks (CNNs) directly on HMI
magnetograms (or on time sequences of HMI magnetograms)
have been investigated (see e.g., Huang et al., 2018; Li et al., 2020;
Yi et al., 2021; Chen et al., 2022; Guastavino et al., 2022).

2.3 SDO/AIA data

An even more surgical approach to flare prediction is
suggested by the availability of high-spatial-resolution, multi-
wavelength, EUV observations obtained with the SDO/AIA
telescope, which has provided (along with other data) full–disk
4,096× 4,096 pixel images of the Sun, with 0′′.6× 0′′.6
resolution, in seven different EUV wavelengths (93 Å, 131 Å,
171 Å, 193 Å, 211 Å, 304 Å, 335 Å) every 12 s since its launch in
2012; this represents an unprecedented archive resource for the
investigation of the physical processes that lead to the onset of a
solar flare. Due to the immense amount of data available, and an
open policy for data distribution, this archive has attracted a lot
of attention in the past few years for the development of machine
learning methods (e.g., Huang et al., 2018; Galvez et al., 2019;
Inceoglu et al., 2022). Although several recent works have
dealt with combining HMI and AIA data for improving the
predicting capabilities of machine learning techniques (e.g.,
Jonas et al., 2018; Nishizuka et al., 2018), to the best of our
knowledge, no attempt has been made to forecast solar flares
by using information encoded in the AIA data alone.

By contrast with the broadband emission in the GOES
1–8 Å band, extreme ultraviolet (EUV) emission, produced in
the 105–107 K solar atmosphere, including the high and low
corona and the so-called “transition region” between the hot
corona and the relatively cool (∼ 104 K) solar chromosphere,
is characterized by a set of intense, relatively narrow, emission
spectrum lines, each produced by a given atomic species that is
formed over a fairly narrow range in temperatureT.The intensity
(erg cm−2 s−1) observed at a distance R = 1 AU in a given image
pixel of area A (cm2) and observing channel i is proportional to
the integral of the line-of-sight-integrated Differential Emission
Measure (DEM; cm−5 K−1; see, e.g., Phillips et al., 2008) in that
pixel multiplied by an emissivity function Gi(T) (erg cm3 s−1)
which accounts for a variety of effects, including the abundance
of the responsible atomic species and its ionization and excitation
states. Formally, the intensity in a given pixel (x,y) in the ith AIA
channel at time t is given by

Ii (x,y; t) =
A

4πR2 ∫DEM (x,y;T; t) Gi (T) dT. (1)

Changes in the plasma properties of the solar atmosphere
(e.g., heating, cooling, mass motions) during a magnetic
reconnection event can cause very significant changes in both
density and temperature profiles, with corresponding changes
in the differential emission measure profile DEM(x,y; T; t) and

Frontiers in Astronomy and Space Sciences 04 frontiersin.org

https://doi.org/10.3389/fspas.2022.1040099
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Massa and Emslie 10.3389/fspas.2022.1040099

hence in the observed intensities Ii(x,y; t). Cheung et al. (2015)
have shown how the integral Equation 1 may be inverted
to construct the emission measure profile DEM(x,y; T; t) at
each AIA pixel (x,y) and time t, given the time evolution
of the observed intensities Ii(x,y; t). Such data hypercubes
DEM(x,y; T; t) contain information on the spatial, thermal, and
temporal evolution of the plasma. They can reveal much more
information than monochromatic HMI data: both can identify
physical restructuring of features in the field of view, but the
AIA data hypercubes can also show changes in the DEM profiles
within a source of interest; changes that can reveal heating and
cooling processes, either in the absence of, or coupled with,
physical restructuring.

Figure 1 shows two 200-pixel × 200-pixel (120′′ × 120′′)
images, recorded in the 304 Å (panel (A)) and 131 Å (panel (B))
AIA channels on 26 October 2014 at 12:48:17 UT and 12:48:20
UT, respectively.The images showAR12192 a fewminutes before
it produced a C9.2 GOES class flare extending from 13:04 UT
and 13:16 UT. In an attempt to reproduce the essential features
of these images with fewer data points, Figure 2 shows these
“ground-truth” images binned into both 10-pixel by 10-pixel, and
5-pixel by 5-pixel blocks, resulting in images with 20× 20, and
40× 40 data points, respectively. Although the amount of data
required to produce these images is considerably less (factors of
100, and 25, respectively) than for the original images, there is
clearly a significant loss of information in the spatially-binned
images. On the other hand, as we shall show below, compressing
the data using spatial Fourier transforms still produces a much
smaller dataset, with a size comparable to that used to construct
Figure 2, but retains essential information on the features in the
source maps.

3 Visibilities: Sparsely-populated
spatial Fourier transforms of a map

The formal relationship between an image I (x,y) and its
spatial Fourier transform ̂I(u,v) is1

̂I (u,v) = ∬ I (x,y) e2πi(u[x−xo]+v[y−yo]) dx dy, (2)

where (xo,yo) is a suitably chosen reference point; it
corresponds to the point of zero phase in the image, and is
usually chosen near the region of brightest intensity, to avoid

1 Note that the definition of Fourier transform we adopt is typical of
astronomical applications and differs from the usual one used in harmonic
analysis by the use of a plus sign inside the complex exponential. Since the
information presented here (e.g., Figures 5, 9) regards visibility amplitudes,
this distinction has no significant impact on the results. Further, although
the choice of origin (xo,yo) does not affect the amplitude information
presented in those Figures, the images reconstructed from the visibility
data (see Figure 6) do use the phase information, and so the choice of
origin is important for the fidelity of these reconstructed images.

unnecessary phase oscillations in the brightest regions of the
source that contribute most to the integral in Eq. 2. The standard
Fast Fourier Transform (FFT) algorithm generates amplitudes
and phases of spatial Fourier components at a number of spatial
frequency (u,v) points that is equal to the number of pixels in the
original image, and hence results in little to no data compression.
However, as we shall show below, it is not necessary to evaluate
each and every spatial Fourier component in order to obtain
essential information on the features present in a typical pre-flare
AIA image; much of the useful information in an image can be
encapsulated in a relatively small number of sparsely-distributed
spatial Fourier components (or “visibilities”). Use of such a
sparse set of Fourier components permits not only a considerable
degree of data compression, but also the intriguing opportunity
to identify features that would not necessarily be immediately
obvious from spatial maps (e.g., striation of a filament into
longitudinal sub-filaments). Such a data compression scheme
is commonly used in image compression formats such as. png,
but its application to analysis of solar data, in particular with
application to flare prediction, is, to the best of our knowledge,
new.

Solar hard X-ray images over the last 2 decades have been
obtained through the use of bi-grid collimator instruments such
as RHESSI (Lin et al., 2002) and STIX (Krucker et al., 2020). As
explained in Hurford et al. (2002) and Piana et al. (2022), the
native data product of such instruments are spatial Fourier
transforms of the image, with the wavevector (u,v) components
reflecting the pitch (inversely proportional to √u2 + v2) and
orientation (tan−1 (v/u)) of the collimator grids. Years of
experience in workingwith these data sets have shown thatmuch
can be learned from information in the spatial Fourier domain,
and hence that even when direct spatial maps are available (as,
of course, they are for SDO/AIA), analysis of the associated
visibility maps can still yield significant additional insight into
the properties of the source. Each visibility ̂I(u,v) is a complex
number, with both an amplitude and a phase.Generally speaking,
the amplitude of the visibility measures the degree to which
structural features of characteristic extent Δℓ = 1/(2×√u2 + v2)
occur (in a direction perpendicular to the radial line from
the origin to the point (u,v) in the spatial frequency domain),
while the phase measures the location of the feature along this
perpendicular direction, and depends on the choice of reference
location (xo,yo).

Figure 3 illustrates the capability of computed visibilities to
yield essential information on source structure, using synthetic
maps containing single elliptical Gaussian sources with varying
eccentricity, starting with a zero-eccentricity (circular) Gaussian
(panels (A1-A4)). For the circular Gaussian source, the Fourier
transform (visibility) amplitude map is, of course, another
Gaussian, with a width in the spatial frequency domain that
is inversely proportional to the width of the spatial Gaussian
source. As the eccentricity increases, the characteristic scale
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FIGURE 1
Images taken in the 304 Å (A) and 131 Å (B) SDO/AIA channels on 2014 October 26 around 12:48 UT. The images have the standard 0′′.6 × 0′′.6
pixel size; each image is 200× 200 pixels, or 120′′ × 120′′.

associated with the minor axis decreases, so that the spatial
Fourier transforms of the source maps (computed using the FFT
algorithm; panels (B1-B4)) extend to higher and higher spatial
frequencies, with the orientation of the line from the origin in the
spatial frequency plane to the region of high Fourier power being
oriented parallel to the minor axis (i.e., perpendicular to the
major axis) of the spatial ellipse. Panels (C1-C4) in Figure 3 show
the spatial Fourier transform (visibility) amplitudes computed
using the sparse set of (u,v) points shown in panel (B) of
Figure 4. We have verified that the apparent distortion of the
expected elliptical Gaussian shape is entirely due to the manner
in which the sampled (u,v) values, plotted as a uniformly-
spaced pattern here, are actually unevenly distributed in the (u,v)
plane in accordance with the “square-root” grid of Figure 4;
furthermore, the calculated visibility amplitudes on the relatively
coarse grid of spatial frequency (u,v) values sampledmatch those
obtained on the finer grid used by the FFT.

Although the native form of the RHESSI and STIX data was
such a sparsely-distributed set of visibilities, the high-quality
pixel-by-pixel images of the AIA dataset do not, of course,
compel us to examine images in the spatial Fourier domain.
But our experience with the RHESSI and STIX datasets show
that it nevertheless may be advantageous to do so anyway.
First of all, it allows us to compress a considerable quantity
of data into a relatively small number of Fourier components
without significant loss of information, as proved by the
results obtained by means of many algorithms which have
been developed for solving visibility-based image reconstruction
problems (seeMassa et al., 2022; Piana et al., 2022).This is useful
in significantly reducing the computational time and effort

needed to train NNs for analyzing datacubes with high data
content. But there is another possible advantage to a shift to
the spatial frequency domain: as we shall show below, it also
allows ready identification of features that might otherwise
escape recognition. Since each visibility ̂I(u,v) is associated with
a specific spatial frequency, integrated over the entire source
map, visibilities inherently recognize recurring patterns that are
present in an image. For example, the gradual striation over time
of a filament into several strandsmay not be immediately evident
in a time series of images, but would clearly manifest itself as a
rather obvious shift in signal power from one spatial frequency
to another over time. This is especially true if similar spatial
effects are occurring at multiple places within the field of view.
The ability to ascertain spatial features by looking at the general
features in a visibility plot does take some practice, but it will be
very useful in the sequel, and it is a task that machine learning
algorithms can adapt to readily.

We now discuss the range of spatial frequencies necessary to
provide adequate coverage of the range of spatial scales present
in the images of Figure 1. At one extreme, spatial frequencies |u|
must be sampled up to a value corresponding to the physical scale
of an image pixel, viz. 0.6′′; using the standard Cauchy-Schwartz
“uncertainty principle” inequality ΔuΔx ≳ 1/2, this requires that
we sample up to values of |u| at least as large as 1/(2× 0.6) ≃ 0.8
arcsec−1.We have therefore chosen |umax| = |vmax| = 1 arcsec−1,
so as not to over-resolve fine features on the scale of individual
pixels. At the other extreme, the maximum value of |x| in
the images is 60′′, corresponding to |u| = 1/(2× 60) ≃ 0.08
arcsec−1; accordingly, we choose |umin| = |vmin| = 0.01 arcsec−1.
The range of sampled |u| values thus spans a range of 100:1,
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equal to the ratio of the maximum value |x| to the pixel size.
Between 0.01 and one arcsec−1, we selected |u| and |v| values
that are equally spaced in √|u| and √|v|, thereby concentrating
the sampling points (Figure 4) at smaller values of |u| and |v|,
corresponding to larger (multi-pixel) scales. To fill the gaps
between − umin < u < umin and − vmin < v < vmin, we added
sampling points with u = 0 and v = 0, with the non-zero
coordinates of such points matching those in the bulk of the
grid.

Figure 4 shows two such samplings of the spatial frequency
(u,v) space. Panel (A) shows a relatively coarse 21× 21 point
grid, corresponding to the sampled values [0,0.1,0.2,… ,0.9,1.0]
of √|ui| and √|vj|, while panel (B) shows a finer 39× 39 point

grid, in which the intermediate sampled values √|ui| = √|vj| =
[0.15,0.25,…,0.95] are also used. We note that in the results of
the following sections, the maps of visibility amplitude values
are represented by pixels in a grid that is equally spaced in √|u|
and √|v|, and we caution the reader that, to the eye, this can
create an apparent distortion from the expected shapes of the
Fourier-space maps (cf. Figure 3).

Given a finite set of visibilities ̂I(ui,vj), a straightforward
reconstruction of a map can be obtained by carrying out the
discrete inverse Fourier transform (cf. Equation 2), viz.

I (x,y) = ∑
i
∑
j

̂I(ui,vj) e
−2πi(ui[x−xo]+vj[y−yo]) (ΔuΔv)i,j, (3)

where (ΔuΔv)i,j is the area in the (u,v) plane represented
in the Riemann sum by the value ̂I(ui,vj). The so-called
“back-projection” (Hurford et al., 2002) image that results
usually suffers from spurious “ringing”2 features caused by
the discretization and truncation of the sum, compared to the
exact integral representation of the inverse Fourier transform.
However, several sophisticated techniques (summarized in
Massa et al., 2022; Piana et al., 2022) have been developed that
significantly reduce these artifacts by imposing reasonable
constraints (e.g., smoothness, positivity) on the reconstructed
images.

4 Application to AIA images

Figure 5 shows the visibility amplitude maps constructed
using sets of 21× 21 (panels (A) and (B)) and 39× 39 (panels
(C) and (D) spatial frequencies (u,v), distributed as shown in
Figure 4. Eq. 2 shows that the visibility ̂I(0,0) is simply the total

2 “Ringing” effects are a manifestation of the Gibbs phenomenon in the
context of image reconstruction. They appear as periodic repetition of
artifacts representing the true source structure and are fundamentally
due to the loss of information associated with the truncation of high-
spatial-frequency embedded in the signal (see page 123 of Bertero and
Boccacci, 1998).

image-integrated intensity ∬I (x,y)dx dy, and this datum has
been removed from the visibility maps in order to highlight the
other visibilities that contain information on the spatial structure
of the source. Since the intensity I (x,y) is a real function, the
visibility ̂I(−u,−v) has a magnitude equal to that of ̂I(u,v) (and
the conjugate phase), so that visibility amplitude maps have 180°
rotational symmetry, with the data in one half-plane being an
exact duplicate of that in the other half plane. Thus, for the
21× 21 visibility grid there are only 21× 11 ≃ 200 independent
amplitudes; this represents a compression of a factor ∼ 200 from
the original 200-pixel× 200-pixel image; for the 39× 39 visibility
grid there are≃ 800 independent amplitudes, representing a data
compression factor of ∼ 50. These data compression factors are
twice as large as those of the spatial rebinned datasets shown in
Figure 2.

Panels (A) and (B) of Figure 6 show the original SDO/AIA
304 Å and 131 Å images of Figure 1. Panels (C) through
(F) show images reconstructed from the visibility maps
of Figure 5 (including the associated phases, where the
point (xo = 539,yo = −300) was chosen as the phase origin).
The reconstructions were performed using the MEM_GE
method (Massa et al., 2020), which has already been applied
with considerable success in the rendition of RHESSI and
STIX images. This algorithm minimizes the χ2 discrepancy
between the observed visibilities and those predicted from
the reconstructed image, subject to a regularization constraint
involving the magnitude of a suitably-defined entropy function.
As described by Massa et al. (2020) and Piana et al. (2022),
the method significantly reduces the “ringing” effects (which
appear in this case as a periodic repetition of the main feature,
oriented approximately along a direction corresponding to the
longitudinal axis of the principal source—see, for example, panel
(J) of Figure 6) by imposing a smoothness constraint to the
solution. Although “ringing” artifacts are still present in the
MEM_GE reconstructed image, their intensity is much less
pronounced compared to what they would be if the image had
been reconstructed through a direct inverse Fourier transform
(Eq. (3)). The reconstructions in panels (C) and (D) were
performed using the 21× 21 grid of sampled (u,v) points (panel
(A) of Figure 4), while the reconstructions in panels (E) and (F)
were performed using the 39× 39 grid (panel (B) of Figure 4).

Panels (G) through (M) show the same information as panels
(A) through (F), but using a square-root-scaled color table in
order to highlight pixels with weaker intensity. Panels (J) and
(K), both of which were reconstructed using the relatively coarse
21× 21 grid of sampled (u,v) points, reveal four rather obvious
“ghost” sources, located at positions Δx ≃ 25′′ above/below and
left/right of the actual principal source. Such a displacement
corresponds to a spatial frequency u = 1/(2Δx) ≃ 0.02 arcsec−1,
showing that the region of the (u,v) plane around this value
is not adequately sampled by the 21× 21 grid. Indeed, this
value of u corresponds to √u ≃ 0.14, which lies approximately

Frontiers in Astronomy and Space Sciences 07 frontiersin.org

https://doi.org/10.3389/fspas.2022.1040099
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Massa and Emslie 10.3389/fspas.2022.1040099

FIGURE 2
The images of Figure 1, binned into “blocks” measuring 10-pixels by 10-pixels (panels (A) and (B) and 5-pixels by 5-pixels (panels (C) and (D)).
Panels (A) and (B) each contain 20× 20 = 400 data points, while panels (C) and (D) each contain 40× 40 = 1,600 data points. Note the
significantly degraded information content in these images compared to the 40,000-data-point images of Figure 1.

midway between the √u = 0.1 and √u = 0.2 values sampled by
the 21× 21 array (panel (A) of Figure 4). However, this value of
√u is effectively sampled by the finer 39× 39 grid of sampled
points (panel (B) of Figure 4). This increased sampling3 greatly
reduces the discretization “ringing” effects (panels (L) and (M)),
to a point where these artifacts are reduced to a very low level

3 It should also be possible to substantially eliminate these artifacts without
significantly increasing the number of sampled spatial frequency points,
if the selected spatial frequencies are chosen with sufficient care—see
Section 5.

(typically≲ 10% of peak intensity), as evidenced by their absence
in the corresponding (linear color table) maps of panels (E) and
(F). Indeed, the reconstructed images (E) and (F) formed from
the visibilities associated with the 39× 39 array of sampled (u,v)
points are a remarkably faithful rendition of the original maps
(Panels (A) and (B), respectively), even though they were created
with a much lower number of data points, similar to the number
of points used to construct the clearly inferior spatially-binned
images of Figure 2.

To evaluate the reliability of the MEM_GE reconstructions,
and hence to show that visibility maps do indeed retain essential
information about the original AIA images, we can compare the
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FIGURE 3
(A1––A4) A series of idealized elliptical Gaussian sources with different eccentricities, starting with a zero-eccentricity (circular) Gaussian.
(B1–B4) Amplitudes of the spatial Fourier transforms (“visibilities”) of these sources, calculated using the FFT algorithm. (C1–C4) Visibility
amplitudes obtained using the discrete Fourier transform 2, considering a relatively small (39× 39) number of spatial frequency points selected
in accordance with panel (B) of Figure 4. Note that the FFT-generated transforms in panels (B1–B4) are generated at spatial frequency points
that have equal spacing in both u and v, whereas panels (C1–C4) use a grid with equal spacing in √|u| and √|v|; the differences in the shapes in
the spatial frequency maps in the middle and bottom rows are primarily due to this difference in gridding, rather than to the values of the
visibility amplitudes generated.

pixel values of the reconstructed images to those of the ground-
truth maps. Figure 7 shows two-dimensional histograms of the
pixel values of the MEM_GE reconstructions (ordinate) plotted
as a function of the corresponding pixel values (abscissa) in
the original AIA images. Since the dynamic range of the AIA
maps is rather large, and there are only a few very intense
pixels, we applied a logarithmic binning to both the x- and
y-axes of each histogram, which are plotted with respect to
logarithmic axes. The color scale shows the number of points
that belong to each (AIA intensity, reconstructed intensity)
bin.

Panels (A) and (C) of Figure 7 shows that MEM_GE,
when used with the limited (21× 21) number of visibilities
corresponding to the (u,v) points in the left panel of Figure 4,
generally fails to reproduce the original AIA images with high
fidelity. The MEM_GE reconstructions generally underestimate
the intensities in bright pixels, while overestimating the

intensities of weaker pixels (e.g., the yellow areas above the red
line that represents equality of the original and reconstructed
pixel intensities). This is due to an insufficient sampling of the
(u,v)-plane: the resulting “ringing” effects in the reconstructions
smear out the information in low and high pixel values (as shown
also in Figure 6, panels (C), (D), (J), and (K)), resulting in a
smaller dynamic range than in the original images, as evidenced
by the fact that the “symmetry axis” of the 2-D histogram shapes
lies at an angle less than 45° to the horizontal axis. However,
panels (B) and (D) of Figure 7 demonstrate that sampling the
set of 39× 39 visibilities (right panel of Figure 4) significantly
increases the accuracy in the reconstruction, consistent with
what was shown in panels (E), (F), (L), and (M) of Figure 6. In
those histograms, amuch larger number of points is concentrated
around the red 45° identity line, although the MEM_GE
reconstructions still tend to slightly underestimate the peak
values in the AIA images.
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FIGURE 4
Spatial frequency points at which visibility information is computed. Two sets of sampled points are shown. (A) A relatively coarse 21× 21 grid;
(B) a finer 39× 39 grid. In panel (B) we plot the 39× 39 grid in blue and, for comparison, we overlay the 21× 21 grid in red.

To compare the loss of information associated with
Fourier–based data compression with that of straightforward
binning of spatial pixels, we quantitatively evaluated the
differences between the original AIA images and the images
formed by MEM_GE reconstructions, and spatial rebinning,
respectively. We considered different values for the data
compression factor, defined as DCF = (200/N)2, where N2 is
either the number of spatial Fourier component values used
(because of the Fourier transform antisymmetry with respect to
the origin of the (u,v)-plane, theseN2 values areN2/2 amplitudes
and N2/2 phases) or the number of original pixels binned into
each “metapixel, ″respectively. We used three metrics: (1) the
mean Structural SIMilarity index (SSIM, Wang et al., 2004),
which compares4 intensities, contrast and structure of the
original and reconstructed images; (2) the Normalized Root
Mean Squared Error (NRMSE), a dimensionless metric that
measures the pixel-averagedRMSdifference between the original
and reconstructed images, expressed as a fraction of the mean
pixel intensity; and (3) the Peak Signal to Noise Ratio (PSNR),
which is the ratio of the intensity of the brightest pixel to the
(un-normalized) root mean square error (RMSE), expressed
in decibel (dB) units, such that PSNR = 20 log10(Imax/RMSE).
We note that for the PSNR and SSIM metrics, a larger number
represents a better agreement (in particular, a 1.0 value for SSIM

4 For the computation of SSIM, we set the constant values C1, C2 and C3

equal to zero (see Eqs 6, 9 and 10 in Wang et al., 2004), since there are
no instabilities due to values close to zero in the denominators.

represents a perfect match), while for the NRMSE metric, a
smaller number represents a better fit. Thus, the y axis of the
NRMSE plot is reversed.

Panels (A) through (C) of Figure 8 show the values of these
three metrics, for the AIA 304 Å image, as a function of the
data compression factor. Since each of the metric evaluations
used require images with the same number of data points,
we replicated each pixel of the rebinned images to create
a 200/N× 200/N square of identically-valued pixels at each
location, so that the final map size is again 200× 200 (but the
compression effect remains unaltered). Panels (D) through (F) of
Figure 8 show the values of the same three metrics for the AIA
131 Å image.

We first consider the AIA 304 Å results (Panels (A)
through (C)). For high data compression factors DCF ≳ 100,
the visibility-based MEM_GE reconstructions and spatially-
rebinned images have comparable (and quite poor) values
for all three metrics, showing that such a high level of data
compression is simply not feasible using either method. As the
DCF is reduced to more reasonable values, the SSIM metric
shows an improvement of a factor of about 10 (from ≃ 0.05
to ≃ 0.5) for the spatially-rebinned compression method, and
an slightly smaller factor of ∼5 (from ≃ 0.05 to ≃ 0.25 for the
MEM_GE method. The absolute value for the SSIM metric for
the MEM_GE reconstruction is still lower than that for the
spatially-rebinnedmaps, showing that, as a whole, theMEM_GE
metric results in a poorer overall correlation between the original
and reconstructed images (see, however, below).

By contrast, as the DCF is reduced, the RMSE and PSNR
metrics for both methods improve, but now more markedly

Frontiers in Astronomy and Space Sciences 10 frontiersin.org

https://doi.org/10.3389/fspas.2022.1040099
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Massa and Emslie 10.3389/fspas.2022.1040099

FIGURE 5
Spatial Fourier transform (“visibility”) amplitude maps of the images in Figure 1, using Eq. 2 applied at the spatial frequency (u,v) points shown in
both panels of Figure 4. Panels (A) and (B) contain 21× 21 points, while panels (C) and (D) contain 39× 39 points, respectively.

so for the visibility-based MEM_GE method. Quantitatively,
on reducing the DCF from ≃ 400 to ≃ 16, the NRMSE
for the spatially-rebinned images decreases by a factor of
∼1.8 (from ≃ 1.6 to ≃ 0.9), while the PSNR, being inversely
proportional to the NRMSE, improves by 20 log101.8 ≃ 5 dB
(from ≃ 30 dB to ≃ 35 dB). At the same time, the NRMSE
for the MEM_GE reconstructed images decreases by a much
larger factor of ∼4 (from ≃ 1.8 to ≃ 0.45), while the PSNR
concomitantly improves by 20 log104 ≃ 12 dB (from ≃39 dB
to ≃42 dB).

Next considering the AIA 131 Å results (panels (D)
through (F)), for high data compression factors the MEM_GE

reconstruction method gives consistently poorer metrics than
for the spatially-rebinned images, with NRMSE values about
1.3 times larger, and corresponding PSNR values about 2 dB
lower. This poorer performance reflects the more complicated
spatial structure in the 131 Å image, which renders an accurate
reconstruction with a limited number of visibility values more
challenging, especially when high data compression factors are
involved. However, as the DCF is reduced, the metrics associated
with the MEM_GE method improve by a more significant factor,
resulting, by DCF ≃ 16, in NRMSE and PSNR values that are
comparable to those for the spatial rebinning data compression
method.
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FIGURE 6
Reconstructed images using the visibility maps of Figure 5 (including the associated phases, see text for details) and the MEM_GE algorithm.
(A and B) original images; (C and D) reconstructed images using 21× 21 visibility points (panel (A) of Figure 4); (E and F) reconstructed images
using 39× 39 visibility points (panel (B) of Figure 4). (G–M) show the same information, with a square root intensity scaling applied to provide
greater detail on relatively weak pixels. The color map is shared by panels in the same row.
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FIGURE 7
Histograms of the pixel values of the MEM_GE reconstructions, shown in Figure 6, plotted (vertical axes) versus the corresponding pixel values
in the AIA maps (horizontal axes). Both the x- and y-axes have been binned in logarithmic steps and the color map refers to the number of
points falling within each bin. Panels (A) and (B) show the histograms of the MEM_GE reconstructions of the AIA 304 Å image from 21× 21 and
from 39× 39 visibilities, respectively. Panels (C) and (D) show the same information, but for the AIA 131 Å image. In each panel, a logarithmic
scaling is applied to both the x- and y-axes and a red line representing equality is plotted as a reference.

A possible reason for the apparent poor performance of the
MEM_GE reconstructions when the SSIM metric is applied, is
as follows. As shown in panels (E) and (F), and (L) and (M)
of Figure 6, MEM_GE is able to retrieve with greatest accuracy
the most intense parts of the AIA images, while the areas with
lower-intensity pixels are significantly corrupted by the “ringing”
artifacts caused by the limited number of Fourier components
utilized. Hence, comparing MEM_GE image reconstructions of
the entire map with the original AIA data includes a significant
area in which these “ringing” artifacts are present and hence
in an overall degraded representation of the performance of

the method. This could lead to an apparent conclusion that
Fourier-based data compression methods are less effective than
straightforward rebinning of pixels in physical space.

However, it is important to point out, particularly for
the purposes of flare forecasting, that it is generally only the
brightest areas of the AIA images that are most likely to contain
information about the underlying physical processes that lead
to a flare. Recognizing this, in Panels (H) through (K) and
(M) through (O) of Figure 8 we compare the methods using
only a 70-pixel × 70-pixel subregion (Panels (G) and (L)) that
is centered around the most intense features, and contains
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FIGURE 8
SSIM, NRMSE, and PSNR metrics associated with the MEM_GE reconstructions (red) and the spatially rebinned images (blue) for different data
compression factors. Panels (A) through (C) show the metrics for the AIA 304 Å image shown in Figure 1, while panels (D) through (F) show the
same information for the AIA 131 Å image. Panels (H) through (K), and (M) through (O), are analogous to Panels (A) through (C), and (D) through
(F), respectively. However, in this case, the metrics are computed with respect to a cropped 70-pixel × 70-pixel subregion of the original images,
as shown in panels (G) and (L). A logarithmic scaling has been applied to the x-axis of each metrics panel; in addition, in order that “better” be
represented by a point nearer the top of each panel, the y axes of panels (B), (E), (J), and (N), representing the NRMSE metric, have been
reversed. The vertical lines at DCF ≃ 25 and 100 in each panel represent the data compression factors corresponding to the rebinned images
shown in Figure 2. The DCF values adopted for the MEM_GE reconstructions are slightly different from those of the rebinned images, as shown
by the small horizontal shifts between the red and blue points.
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FIGURE 9
Top left quadrant: 304 Å images at 12:48:07 UT (A) and 12:48:19 UT (B), and their difference image [(B)–(A)] (panel (C)). Bottom left quadrant:
Visibility amplitude maps (D) and (E) corresponding to maps (A) and (B), respectively, and their difference [(E)–(D)] (panel (F)). Top right quadrant:
Normalized intensity maps (G) and (H), corresponding to images (A) and (B), respectively, and their difference [(H)–(G)] (panel (J)). Bottom right
quadrant: Visibility amplitude maps (K) and (L) corresponding to the normalized intensity maps (G) and (H), respectively, and their difference
[(L)–(K)] (panel (M)). Contour levels corresponding to 20% of the minimum (negative) value (light blue) and 33% of the maximum value (light
green) are overlaid in each of the visibility difference maps (F) and (M). Specifically, the light blue contours correspond to values of − 9,900 (panel
(F); un-normalized) and − 0.001 ((panel (M); normalized), while the light green contours correspond to values of 66,000 and 0.004, respectively.
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FIGURE 10
Neural network architecture that can be used for learning the best (u,v) coverage for representing an AIA image.

FIGURE 11
Schematic of a CNN that applies 3-D (u,v; T) filter layers to an D̂EM(u,v;T; t) hypercube of AIA-based data.

(200/70)2 ≃ 8× fewer pixels than the original 200-pixel × 200-
pixel image.

Panels (H) and (M) show that the SSIM values for both
methods, applied to both the 304Å and 131Å cropped images,
are now almost identical, and they both show about a tenfold
improvement with reduction in the DCF. For the 304 Å image,
as the DCF is progressively reduced to lower values, the
NRMSE (panel (J)) reduces by a factor of almost two for
spatial rebinning, but by an even greater factor of five for
MEM_GE. These improvements in the NRMSE correspond
to PSNR improvements (panel (K)) of ≃ 6 dB and ≃ 14 dB,
respectively. Thus, in comparing only the maps in the vicinity
of the brightest pixels, the MEM_GE method significantly
outperforms the spatially-rebinning method by about 10 dB
PSNR (or, equivalently, produces an NRMSE that is a factor of 3
less) at more practicable data compression factors. For the 131 Å

image, the SSIMmetrics are again comparable for both methods,
while the NRMSE (panel (N)) now improves from ≃ 1.0 at a
DCF ≃ 400 to ≃ 0.6 (rebinning) and ≃ 0.4 (MEM_GE) at DCF
≃ 16. The PSNR (panel (O)) similarly varies from ≃25 dB at a
DCF ≃ 400 to ≃ 29 dB (rebinning) and ≃ 33 dB (MEM_GE),
respectively, at DCF ≃ 16.

We finally observe that, while reconstructing an image
from the visibilities and comparing it to the original AIA
map is one method of evaluating the effectiveness of the
compressionmethod, this test is potentially biased for at least two
reasons. First, the results depend heavily on the reconstruction
algorithm used. The MEM_GE algorithm used was initially
developed to analyze sparse visibility data from the RHESSI
and STIX instruments (Massa et al., 2020; Massa et al., 2022;
Piana et al., 2022), the data from which are inherently spatial
Fourier transforms corresponding to a pre-selected set of
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(u,v) points, chosen to address the science requirements of
those missions (Hurford et al., 2002; Krucker et al., 2020). It is
therefore distinctly possible that results shown in Figures 7, 8
could improve if a reconstruction method were used that was
more tailored to the form of the AIA data. Second, once the
number of Fourier components to be used for compressing AIA
images (and hence the data compression factor) has been fixed,
we still have the freedom to adjust the location of the sampled
spatial frequencies in order to “capture” the maximum amount
of information in the images themselves. The grids of (u,v)-
points that we adopted, as shown in Figure 4, apparently do
represent a reasonable choice, given their success in replicating
features in the orginal image, but they are almost certainly not
optimal. We refer the reader to Section 5 (and Figure 10) for
a discussion about a machine learning technique that could
be used for adapting the location of the (u,v)-frequencies
to best represent AIA images for a given data compression
factor.

Looking at the top left and (conjugate) bottom right
quadrants of the panels in Figure 5, there is a rather obvious
difference in intensity (i.e., Fourier spectral power) between the
left (304 Å; panels (A) and (C)) and right (131 Å; panels (B)
and (D)) sets of frames. In the 304 Å visibility amplitude maps,
there is considerable spectral power along a region connecting
the second and fourth quadrants, but such a feature is not
as evident in the 131 Å visibility maps. The presence of such
a feature in a visibility map corresponds (cf. Figure 3) to the
presence of a source with a narrowwidthmeasured in a direction
oriented parallel to the line joining the origin and the (u,v)
region in question (in this case, top-left to bottom-right). Indeed,
inspection of the original data of Figure 1 shows just such a
bright narrow-width source in the 304 Å image, which is not
as pronounced in the 131 Å image. We submit that this feature
is just as evident, and possibly even more pronounced, in the
visibility maps, even though these maps contain far fewer data
points than in the original spatial maps.

We pursue this further in Figure 9. Panels (A) and (B) show
SDO/AIA 304 ÅAIA images taken 12 s apart, at 12:48:07UT and
12:48:19 UT, respectively. There is a rather obvious brightening
with time of a core region within the principal source, which is
clearly revealed in panel (C), which is the difference map [(B)-
(A)]. Panels (D) and (E) are the corresponding 39× 39 visibility
amplitude maps, and their difference [(E)-(D)] is shown in
panel (F).

The interpretation of visibility amplitude difference maps is
rather subtle. Changes in visibility amplitude can result from
two main effects: an overall change in the source brightness,
and/or a restructuring of the source to different spatial scales.
To emphasize the latter effect, panels (G) and (H) show
normalized (to the total signal in the overall map) source maps
corresponding tomaps (A) and (B), and panels (K) and (L) show
the corresponding visibility amplitude maps. Panel (J) shows the

difference in the normalized spatial maps [(H)-(G)] and panel
(M) shows the difference [(L)-(K)] in the normalized visibility
maps.

Panel (M), showing the shift over time in the distribution
of visibility amplitude over the spatial frequency plane, is the
key result. For this particular event, it shows a clear reduction
(red contours) of Fourier power at higher spatial frequencies
in the second and fourth quadrants, with a corresponding
enhancement - white contour—at lower spatial frequencies. As
pointed out in the discussion regarding Figure 3, such a change
corresponds to a thickening (shift to larger spatial scales and so
smaller spatial frequencies) of a source in the direction parallel to
the line from the origin to the region of enhanced Fourier power.
Close examination of the spatial maps in panels (A) and (B), and
of the difference map in panel (C), does indeed reveal such a
thickening of the principal source in the associated second-to-
fourth-quadrant direction. However, while these spatial maps do
present adequate evidence of such a change in source structure,
we suggest that the contrast evident in the visibility amplitude
difference maps (panels (F) and (M)), reveals this change in
source structure in a rather striking way. Further, panel (M)
quantifies this thickening as a shift in normalized spectral power
from spatial frequencies √u2 + v2 ≃ 0.3√2 ≃ 0.42 arcsec−1 to
much lower spatial frequencies of order 0.1√2 ≃ 0.14 arcsec−1.
These high and low spatial frequencies correspond respectively
to spatial scales ≃ 1.2′′ and ≃ 3.5′′, corresponding to a threefold
thickening of the source width from about two pixels to about six
pixels. In this analysis, we concentrated on the difference between
visibility maps of normalized images, shown in panel (M), for
demonstrating that changes in the source shapes can be detected
in the visibility maps. However, similar considerations apply to
the visibility maps of un-normalized images (panels (D) and (E))
and to their difference (panel (F)), whichwould be the actual data
used for training of NNs and which will of course also contain
information related to changes in brightening. We finally note
that, while the sum of the pixel contents in the normalized image
difference map (panel (J)) is, by construction, equal to zero, the
same property does not hold true for the corresponding visibility
amplitude difference map (panel (M)), because, even though the
Fourier transform (2) is a linear operation, this linearity does
not extend to the Fourier transform amplitude that is plotted in
panel (M).

In summary, not only does an analysis of source structure
in the spatial frequency domain allow a significant level of data
compression compared to the original spatial maps, without
losing significant information on the overall source structure; in
formation on the source structure can also be enhanced by the
data complexity reduction that is obtained by means of such a
transformation.Accordingly,we argue that visibilitymaps provide
an excellent opportunity for the identification of features associated
with evolving source structures, and hence for training NNs in the
recognition of pre-flare signatures.
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5 Discussion

We have shown that analysis of SDO/AIA images in terms
of visibilities (spatial Fourier transforms of the source map)
can rather straightforwardly reveal differences (whether between
different wavelength channels, or associated with temporal
evolution within a single channel) in source structure, with a
significantly fewer number of data points.

We now briefly discuss possible explanations for the
appearance and behavior of the bright elongated filamentary
structure in the 304 Å images. Any viable physical explanation
must take into account the obviously less dominant appearance
of this feature in the co-temporal 131 Å images (Figure 1).
Since the 131 Å channel contains spectral lines formed
(Lemen et al., 2012) at quite high temperatures (log T(K) ≃ 5.7
and 7.2), while emission in the He II 304 Å channel is produced
by plasma at much lower temperatures log T ≃ 5.0, it is
reasonable to conclude that the enhanced 304 Å emission is
due to the presence of relatively cool plasma in that region. The
presence of this cool material, and its observed spreading in a
direction transverse to the filamentary channel in which it is
found (Figure 9), could result from cooling of plasma in place,
from the injection of relatively cool plasma into the region,
from a draining of relatively hot material from the region, or
perhaps from the transverse diffusion of (quasi-neutral) material
across the magnetic field lines that define the direction of
the bright filament. Which of these (or even other) possible
explanations is correct can best be determined by placing the
maps in the context of a longer temporal sequence that also
includes information from the other five AIA EUV channels,
thus providing additional information across the broad range of
temperatures represented (Lemen et al., 2012) by the AIA data.
Such a characterization of the spatial and temporal properties of
the density and temperature distributions in a solar active region
has enormous potential for diagnosis of conditions that could
lead to a flare.

The results of Section 3 were obtained using rectangular
grids of sampling points in the (u,v) plane that (intentionally)
involved equal square-root spacing between adjacent grid points,
in order to concentrate more sampled (u,v) points at low spatial
frequencies. Although such a heuristic grid is apparently quite
well-suited to the study of a wide range of spatial scales, it is
unlikely to be the optimum choice for reconstructing observed
AIA images, and it would clearly be advantageous to more
densely sample regions of spatial frequency (u,v) that reflect
the size scales of dominant features in the original image.
Here machine learning tools can again be brought into play.
Figure 10 shows a schematic of an algorithm to optimize the
grid of (u,v) points used to best represent an image with a
relatively sparse set of spatial Fourier components (visibilities).
It consists of an encoder-decoder scheme, where the encoder is
the Fourier transform computed in a set of spatial frequencies

(u,v) and the decoder is a standard NN consisting of transposed
convolution layers (Zeiler et al., 2010). The decoder maps an
array of visibilities back into an image, which can then be
comparedwith the original by using the ℓ2 squared difference loss
function.The (fixed number)N spatial frequency points (u,v) are
not determined a priori, but are instead conceived as parameters
of the NN. During the training process, the NN determines
the optimal locations in the (u,v) plane of the N points that
best reconstruct, by means of the decoder, the AIA images
from the corresponding visibilities. The spatial frequency points
{(ui,vi)}

N
i=1 thus determined are therefore those that contain the

maximal information on the spatial structures that are present in
the original spatial map.

Such a process will result in the most useful datacubes for
flare prediction. Moreover, it has value in informing instrument
design: up to this juncture, the set of (u,v) values corresponding
to the native data obtained from bi-grid occulting instruments
such as RHESSI and STIX has been determined on the basis of a
somewhat arbitrary selection of desired spatial (actually, angular)
resolutions, coupled with other factors such as technological
limitations. Clearly it would be advantageous to select the
sampled (u,v) points based on the features of the Fourier
spectrum that are likely to be present in actual sources. Repeating
a similar training process using images with configurations
typical of solar hard X-ray sources could thus reliably inform the
design of future instrumentation.

In future works we will investigate how to predict the
occurrence of a flare by implementing and training NNs with
architectures similar to the one used by Guastavino et al. (2022)
(see Figure 11). Specifically, the architecture consists of 3-D
Convolutional Neural Networks (CNNs) which are applied to
each one of the time steps t1,… , tM of the AIA datacube. Then,
the processed information passes through fully-connected layers
and through a Long-Short Term Memory (LSTM) network that
takes into account the temporal evolution of the AIA data.
Finally, the application of a sigmoid function returns an output
between 0 and 1, representing the probability of a future flaring
occurrence. However, in contrast to Guastavino et al. (2022),
which was designed for use with monochromatic HMI images,
and hence used 2-D CNNs, we shall make use of 3-D CNNs
in order to effectively look for patterns across the different
channels in the AIA data (or, equivalently, across the temperature
domain).

The generation of reliable flare predictions through
application of such an NN must await a significant amount of
future work, including:

1. since the AIA images in different wavelength channels are
produced sequentially, these images must be “synchronized”
by interpolating (e.g., using Lagrange polynomials) to
produce a time sequence of AIA images in each channel that
all correspond to the same time;
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2. apply the Cheung et al. (2015) DEM inversion algorithm to
these synchronized images in order to obtain DEM(x,y; T; t)
data hypercubes;

3. use Equation 2 to convert these into D̂EM(u,v;T; t) data
hypercubes; and, finally

4. train a NN (see Figure 11) on these data hypercubes to
recognize features that lead to a correct prediction of the
label associated with the data hypercube (e.g., a [0,1] binary
“flare/non-flare” prediction, or the prediction of a continuous
value such as GOES intensity, duration, integral of intensity
over time, etc.).

However, the main message of the present work is to stress
the overall value of using spatial Fourier components (visibilities)
to accurately encode source spatial information in a relatively
small number of data points, and so reduce the computational
burden relative to what would be needed to train NNs on the
much larger datasets associated with direct spatial images.

6 Conclusion

We have seen that using a sparsely populated set of spatial
Fourier components (visibilities) to represent AIA images of
solar ARs not only allows a very significant compression (by
a factor of ∼ 50) without significant loss of information on
source features, but also allows identification of features that
might be challenging to detect directly from spatial maps. Such
highly compressed data sets can therefore be used to train
NNs to recognize features that presage a solar flare. Further,
compression of the data into spatial Fourier components admits
the implementation of reasonably-sized three-dimensional NNs
that also sample the data across temperature space, and so can be
trained to recognize features corresponding to thermodynamic
processes such as heating and cooling, in addition to the
spatial signatures revealed by monochromatic images such as
magnetograms.
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