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To investigate the meso-scale structure (100 s of km) of the ionosphere at

mid-latitudes, the spectral properties in calculated total electron content

(TEC) at a cluster of GPS receivers in and around Florida are analyzed. The

ionosphere does not respond exactly the same to periodic solar driving at

different locations around the planet, due to the complex electrodynamic

interactions of the coupled magnetosphere-ionosphere system. Therefore, at

each GPS receiver in the cluster we compare spatio-temporal variations of

the spectral amplitudes for diurnal, solar rotation, and seasonal oscillations.

The amplitudes for these dominant oscillations are organized with respect

to magnetic latitude of the receiver. A low-latitude and high-latitude station

are also included to put the mid-latitude ionospheric response into a global

context. The amplitudes of diurnal, seasonal, and solar rotation signals are

well ordered by magnetic latitude, superposed with meso-scale deviations

between stations separated by ∼100s of km. The results suggest that spatio-

temporal variations of spectral amplitudes in the mid-latitude ionosphere are

not dominated by a single process. This conclusion is based on our finding that

at high latitude, the shape of the diurnal signal varies significantly less with

solar activity compared to low- and mid-latitudes, and additionally, that the

ratio of annual to semi-annual amplitudes fluctuates around 1 with time and

from station-to-station only at mid-latitudes.
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1 Introduction

Meso-scale (100 s of km) structures form in the ionosphere due to different
plasma instabilities (Kelley, 1989a; Kelley, 1989b), some examples of their manifestation
including equatorial plasma bubbles (Woodman and La Hoz, 1976), storm enhanced
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density plumes (Foster et al., 2021), and (medium-scale)
traveling ionospheric disturbances (Hines, 1959, 1960;
Hunsucker, 1982). In addition, lightning- and thunderstorm-
induced generation of acoustic-gravity waves (Lay et al., 2015)
can directly impact the ionosphere at mid-latitudes
(Lay et al., 2018) and can be detected from analysis of very
low frequency (VLF) pulses (Cheng and Cummer, 2005).
The combination of all these processes impact the mid-
latitude ionosphere and create irregularities that can disrupt
radio-communication (Aa et al., 2019).

Dense arrays of ground-based Global Positioning System
(GPS) receivers, such as the National Oceanic and Atmospheric
Administration (NOAA) Continuously Operating Reference
Stations (CORS) Network (NCN), can be used to probe meso-
scale ionosphere structures. In principle, it is possible to resolve
strong gradients and ionospheric irregularities at a regional scale
using distributed sensors (Lay et al., 2018). A natural use of such
a data set would be to train an artificial intelligence (AI) to
predict the ionospheric total electron content at a regional scale
based on solar wind conditions. But, it is the case that the mid-
latitude total electron content is dominated by the diurnal signal,
withmeso-scale structures superposed as fluctuations.Therefore,
it is the goal of this study to characterize the ionospheric
response to persistent external driving on a regional scale, i.e.
what are the amplitudes of strong sinusoidal variations of total
electron content (TEC) for the different observatories in a closely
separated network of sensors and how do they change in time?

The harmonic response of the ionosphere has received
attention for decades through space and ground-based
measurements. Davies et al. (1980) compared diurnal variations
of TEC during magnetically quiet and disturbed conditions
from a total of 5 radio beacons in the United States and Europe.
Perevalova et al. (2010) used a widely distributed network of
GPS receivers to construct Global Ionospheric Maps (GIMs)
with a resolution of 5° longitude and 2.5° latitude. Based on the
GIMs, the authors seasonally characterized the heliomagnetically
quiet diurnal TEC response for low (0–20°), mid (40–55°),
and high (60–87.5°) latitudes, providing a global scale picture
of the daily response of the ionosphere. Huang and Roussel-
Dupré (2005) quantified the diurnal, seasonal, and solar cycle
variations of TEC using Fast On-Orbit Recording of Transient
Events (FORTE)-received Los Alamos Portable Pulser (LAPP)
signals in Los Alamos, New Mexico. Olwendo et al. (2016)
studied the diurnal and annual variations of TEC from 12
receivers in East Africa separated by 25° geographic latitude
containing the magnetic equator. They noted the difficulty of
accurately computing vertical TEC (vTEC) from slant TEC
(sTEC) due to large spatiotemporal gradients of the equatorial
ionization anomaly. Guo et al. (2015) constructed TEC time
series on a global 5° × 2.5° grid using more than 350 GPS
stations. Morlet wavelet analysis was used to determine periods
of TEC variations and the 1-day, 26.5-day, semi-annual and

annual cycles were found to be the dominant signals. Recently,
Yasyukevich et al. (2017) employed harmonic spectral analysis to
study annual, seasonal, and diurnal variations of the ionosphere.
They looked at a full solar cycle of data from 2 GPS receivers
in Russia and found oscillations with periods of 1, 1/2 … up to
1/5 of a day, and 27-day are clearly distinguished in the TEC
spectra at high and middle latitudes. During solar maximum,
the amplitude of harmonics was twice as high, and the number
of clearly manifested harmonics was more than during the solar
minimum. They also found using F10.7 solar radio flux that the
amplitude of all the ionospheric harmonics follows the solar
activity level changes.

Numerous other studies have indicated the presence of
periodic signatures in the ionosphere at various locations
on Earth (Xingliang et al., 2005; Cai, 2007; Afraimovich et
al., 2008; Amiri-Simkooei and Asgari, 2011; Chauhan et al.,
2011; Olwendo et al., 2012; Liu et al., 2014; Tariku, 2015;
Elemo et al., 2018; Ogwala et al., 2019; Akinyemi et al.,
2021). Note that the majority of characterization studies have
been performed in low-latitude or high-latitude regions where
geomagnetic activity dominates the physical processes. At mid-
latitudes, tropospheric and geomagnetic phenomena compete in
disturbing the ionosphere, and it is not well understood how
these multiple sources affect the ionospheric drivers. Even for
the relatively lower density night-time mid-latitude ionosphere
the Perkins instability produces periodic variations of TEC
(Perkins, 1973). The result of these many processes is that a solar
cycle spectrum of TEC is composed of signals spanning small-to
meso-to larger spatio-temporal scales.

2 Data and TEC calculation

Measurements from the NOAA CORS network can
be obtained from the National Geodetic Survey: https://
geodesy.noaa.gov/CORS/. The data rate varies between stations
but we use stations taking more than 1 sample per minute and
down-sample to 1 sample per minute. The data are daily GNSS
Observation fileswhich are provided in the receiver-independent
exchange (RINEX) format and must be converted to vTEC. The
GPS-TEC analysis software, developed by Gopi Seemala (Ma
and Maruyama, 2003; Seemala and Valladares, 2011), uses phase
and code values for both L1 and L2 GPS frequencies to eliminate
the effect of clock errors and tropospheric water vapor, and thus
calculate relative values of sTEC (Sardón et al., 1994; Sardón and
Zarraoa, 1997; Arikan et al., 2008). Then, the absolute values
of sTEC are obtained by accounting for the differential code
biases at the satellites (Valladares et al., 2009). The final vTEC
data is then calculated by including the geometric factor. The
equations used by the GPS-TEC software can be found in Ma
and Maruyama. (2003). It is known that the true value of TEC is
difficult to calculate due to the receiver biases, but this is largely
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FIGURE 1
Map of CORS GPS receivers with table giving magnetic latitude and longitude of each station (top), data coverage of stations in this study
(middle), and sunspot number (obtained from the NOAA Space Weather Prediction Center) with labeled phases of solar cycle 24 (bottom). The
stations BRFT (Brazil) and CLGO (Alaska) are not shown on the map. Large red pentagons on the station map show the GPS receivers used in this
study, and many other CORS stations are given by small squares or circles.

affecting the DC component of the spectrum so it is not relevant
to our study.

The data for this study includes 15 mid-latitude stations
within 10 degrees of geographic latitude and longitude
(corresponding to an area of ∼700 mi2) of one another (see table

of geomagnetic latitude and longitude in Figure 1) covering
solar cycle 24 from 2009 to 2019. The station in Jacksonville,
Florida (ZJX1), a central location in the cluster, is at magnetic
latitude ∼40°. Stations in Fairbanks, Alaska (magnetic latitude
= ∼65°), and Eusebio, Brazil (magnetic latitude = ∼4°) are
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FIGURE 2
TEC time series (top) and Lomb-Scargle periodogram (bottom) for station ZMA1 during solar cycle 24 (1 January 2009 to 1 January 2020).
Annual and semi-annual signatures can be easily identified in the time series, along with higher amplitude diurnal variations. In the spectrum a
vertical pink (cyan) dashed line is overlaid at the fundamental frequency of 1/year (365/year) along with some harmonics n = ,2,3, … The solar
rotation peak also appears as a broadband source.

FIGURE 3
Lomb-Scargle periodograms for the TEC time series from ZMA1 during solar minimum (top left), rising (top right), solar maximum (bottom left),
and falling (bottom right) phases of solar cycle 24.
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FIGURE 4
Each blue dot is the amplitude of the 365/year signal calculated from a Lomb-Scargle periodogram for the corresponding phase of solar cycle
24 (solar minimum on top and rising phase on bottom). The amplitudes are plotted with respect to the magnetic latitude of the station. Error
bars are calculated as the smallest and largest amplitudes from a sliding window periodogram over 90 days sub-intervals of each solar phase. As
a general trend the amplitudes align with magnetic latitude and solar activity. Meso-scale deviations from this trend indicate the presence of
meso-scale ionosphere structure.

also included to put the mid-latitude cluster of stations into
larger-scale context. The magnetic latitude and longitude of
each station was calculated from the IGRF-13 dipole model. A
map of the mid-latitude stations is shown in Figure 1. All of
the NOAA CORS receivers in the region are plotted as little
squares while the stations in this study have large red pentagons
and labels. To calculate power spectra, we use a Lomb-Scargle
periodogram (VanderPlas, 2018) which has the advantage over a
traditional Fourier decomposition in that the data do not have to
be uniformly sampled. From N observations, xi for i ∈ [1,N],
taken at times ti, the Lomb-Scargle Periodogram is defined
(Lomb, 1976):

P (f) = 1
2σ
{
{
{

[∑i=1
N
(xi − x̄)cos(2πf(ti − τ))]

2

∑i=1
N
cos2 (2πf(ti − τ))

+
[∑i=1

N
(xi − x̄) sin(2πf(ti − τ))]

2

∑i=1
N
sin2 (2πf(ti − τ))

}
}
}

with x̄ = 1/N∑i=1N xi the mean of the data and σ2 =
1/(N− 1)∑i=1N (xi − x̄)

2 the variance. The offset τ is chosen such
that ∑i=1N cos(2πf(ti − τ))sin(2πf(ti − τ)) = 0. The data gaps in the
time series used for this study are generally a few days or less but
some stations are missing periods of a year or more. The middle
panel of Figure 1 shows the data coverage during solar cycle 24
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FIGURE 5
Each blue dot is the amplitude of the 365/year signal calculated from a Lomb-Scargle periodogram for the corresponding phase of solar cycle
24 (solar maximum on top and falling phase on bottom). The amplitudes are plotted with respect to the magnetic latitude of the station. Error
bars are calculated as the smallest and largest amplitudes from a sliding window periodogram over 90 days sub-intervals of each solar phase. As
a general trend the amplitudes align with magnetic latitude and solar activity. Meso-scale deviations from this trend indicate the presence of
meso-scale ionosphere structure.

for each GPS station. We have chosen not to sort the data into
disturbed and quiet intervals for two reasons. 1) Geomagnetic
disturbances can occur at regular intervals when associated with
a feature on the Sun that persists for longer than a solar rotation,
which is a sinuosoidal signal that we want to characterize. 2)
The diurnal variation of day-night photoionization is always the
dominant signal for a long time series (20 + days) of TEC, even
if it contains storm-time intervals.

In addition to calculating the spectrum for an entire solar
cycle of data, we also sequester portions of the time series
corresponding to the different phases of solar cycle 24. We have
defined these intervals as shown in the bottom panel of Figure 1,
which gives the sunspot number time series for 1 January 2009
to 1 January 2020. The phases are defined as Solar Minimum: 1
January 2009–15 May 2010 and 16 August 2018–1 January 2020,

Rising toward Maximum: 16 May 2010–15 February 2013, Solar
Maximum: 16 February 2013–15November 2015, Falling toward
Minimum: 16 November 2015–15 August 2018.

3 TEC spectra

The Miami (ZMA1) TEC time series for 1 January 2009 to
1 January 2020 is shown in the top panel of Figure 2. Note that
the sunspot number (bottom of Figure 1) peaks strongly during
solar maximum from 2014 to 2015 but also has a peak of similar
magnitude during the second half of 2011. On the longest visible
time-scale, the TEC time series from Miami reflects the shape of
the sunspot number curve. Also easy to pick out are the annual
and semi-annual cycles of TEC. The diurnal variation dominates
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FIGURE 6
Ratio of fundamental diurnal vs. first harmonic amplitudes as a function of magnetic latitude during solar minimum (top) and rising phase
(bottom). Error bars are the smallest and largest ratios from a sliding window periodogram over 90-day sub-intervals of each solar phase.

the signal being too high frequency to easily identify in the 11-
year time series. However, the second panel of Figure 2 shows
the Lomb-Scargle periodogram for the TEC time series, which
indicates the signal with a frequency of 365/year has the largest
power at about 20 TECU. The magenta (cyan) vertical dashed
lines indicate the location of a fundamental frequency at 1/year
(365/year) and the corresponding harmonics for n = 2,3, … The
fundamental and first harmonic of the seasonal cycle have similar
power. In the case of the diurnal cycle, many harmonics are well
resolved. The fundamental dominates the harmonics in power
but it is noteworthy that the first harmonic has similar power to
the seasonal signal.The power in the signal at the solar rotation∼
27 day period (∼14/year, see red arrow) is broadband and lacking
in discernible harmonics, because it results frommultiple sources
on the Sun which do not always last a full solar rotation.

Figure 3 shows Lomb-Scargle periodograms for the TEC
time series from Figure 2 split into the different phases of the

solar cycle. The diurnal cycle (365/year), first harmonic, and
many more harmonics (not shown), are well resolved during
all phases of the solar cycle. The solar rotation is well resolved
during all phases except for solar minimum. At solar minimum,
the annual signal dominates the semi-annual signal. During the
rising phase, the semi-annual signal is slightly more powerful
than the annual signal. At solar maximum, the annual signal is
slightly more powerful than the semi-annual signal. During the
falling phase, the annual signal is significantly more powerful
than the semi-annual signal but not so much as during solar
minimum. Splitting the data into phases of the solar cycle shows
also that the frequency for “annual”, “semi-annual”, and “solar
rotation” is not fixed in time. Only from an entire solar cycle
of data are the annual and semi-annual signals present as well-
resolved peaks very close to 1/year and 2/year. Later, we will
discuss the solar rotation peak for the different solar cycle
phases.
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FIGURE 7
Ratio of fundamental diurnal vs. first harmonic amplitudes as a function of magnetic latitude during solar maximum (top) and falling phase
(bottom). Error bars are calculated from 90-day sub-intervals. Errors bars approaching a ratio of 1 suggest the presence of a strong semi-diurnal
driver.

We construct periodograms for each station similar to
Figures 2, 3 and extract the amplitudes for the diurnal, annual,
and seasonal oscillations, as well as the relevant harmonics. The
power in the fundamental diurnal frequency for each station
is plotted in Figures 4, 5 as a function of magnetic latitude
of the station. Figure 4 shows solar minimum (top) and rising
phase (bottom) and Figure 5 shows solar maximum (top) and
falling phase (bottom). The error bars are computed from a
90-day sliding window (with 30-day separations) periodogram
for the corresponding phase. The smallest fundamental diurnal
amplitude from all sub-intervals is the value of the downwards
error bar and like-wise for the upwards error bar. The error bars
thus represent the variability of the signal over the corresponding
solar cycle phase. The amplitude at all stations corresponds
to solar activity level and magnetic latitude. If we assume the
stations should fall on a straight line connecting CLGO and

BRFT, deviations from such a line represent the meso-scale
ionospheric structure of interest to this study. At solar minimum
and falling phase, within the mid-latitude cluster of stations the
power deviates from a straight line by 1-2 TECU, while the
deviation is 10–20 TECU for rising phase and solar max. It may
be alarming to the reader that the error bars are much larger
than these variations, but since the error bars represent the time-
variation of the amplitudes, it can be expected that all the stations
are having their largest or smallest amplitudes at a similar time of
the year. Note also that the variation between stations is similar
at the top and bottom of the error bars, compared with the
variations between stations for the blue points. This is an effect
of meso-scale variations (from station-to-station) superposed
onto the fundamental signal which does not have a constant
frequency in time. A final consideration to take into account
when comparing the error bars with the blue points is that the
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FIGURE 8
Periodogram annual amplitudes (top) and ratio of annual vs. semi-annual amplitudes (bottom) as a function of magnetic latitude. Error bars are
the smallest and largest values from a sliding window periodogram over 3-year sub-intervals from the entire solar cycle. Note the
spatio-temporal variations around 1 of the annual-to-semi-annual ratio for the mid-latitude stations.

error bars are computed from the spectrum of a time series that
is shorter than the spectrum which produced each blue point.

The diurnal signal mostly results from the day-night cycle of
photoionization, and the reason to characterize this signal with
high accuracy is because the amplitude is much greater than that
ofmost isolated ionospheric structures.Whatwe aim to predict is
the location and extent of ionosphere structures associated with
strong TEC gradients generated by geomagnetic disturbances
originating from the Sun (i.e., storm enhanced density plume).
Of course, these disturbances would not be resolved as peaks
in the spectra (unless they are associated with a feature on the
Sun that lasts longer than a solar rotation), but by knowing what
the diurnal amplitude is at any station and any time, it becomes
possible to subtract out this component of the signal and have
remaining only the variations due to meso-scale ionospheric
structures.

A sequence of harmonics in the spectra can be indicative
of a signal that is more fundamentally a square wave than a
sinusoid. This is an expected feature of the ionospheric TEC
because the steady-state ionospheric density is determined by
the balance of ionization and recombination. At night-time
photoionization ceases but there is still a residual ionization
from cosmic rays Webber. (1962), so the recombination rate
will decrease throughout the night until it is in balance with
the cosmic-ray ionization rate. To identify a square wave, the
spectrum must have a series of harmonics with amplitudes that
decrease with n. Figures 6, 7 illustrate the presence of meso-
scale ionosphere structure based on the ratio of the amplitudes
in the fundamental vs n = 1 harmonic, in the same way as
Figures 4, 5. In Brazil, the amplitude ratio maximizes at solar
maximum and minimizes at solar minimum, and, surprisingly
(because it is a log scale plot), has a larger upward error bar
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FIGURE 9
Periodogram amplitudes as a function of magnetic latitude for the solar rotation signal during solar minimum (top) and rising phase (bottom).
Error bars are calculated from 360-day sub-intervals of each solar phase. This broadband signal is intrinsically harder to quantify than the diurnal
and annual signals, but regardless exhibits a general trend of aligning with both magnetic latitude and solar activity.

for all phases except the falling phase. In Alaska, the amplitude
ratio is mostly constant throughout the solar phases, having the
smallest variation from minimum to maximum of all stations
in this study. Quantitatively, the standard deviation of amplitude
ratio across the 4 solar phases is 1.8 in Alaska, 7.8 in Brazil, and
an average of 13.7 from all mid-latitude stations in this study.
Similar to low-latitude, at middle-latitude the amplitude ratios
correspond well with solar activity (higher ratio for more solar
activity). Averaged across all mid-latitude stations the amplitude
ratio is 19.1 at solar minimum, 43.9 in rising phase, 53.3 at solar
maximum, and 31.9 in falling phase. Note also that from station-
to-station at middle latitudes the ratio can vary by 10 or greater
during all solar phases, similar to the variations demonstrated in
Figures 4, 5. Additionally, during the solar minimum and falling
phases, a few of the downward error bars approach 1. This is not
the result of a square wave but suggests at these stations there

is a driver at a frequency of twice per day rather than being
a harmonic of the diurnal signal, potentially the semi-diurnal
atmospheric tide (Oberheide et al., 2015).

For the 1/year signal derived from a periodogram of the
entire solar cycle time series only a single harmonic is well
resolved and the amplitude ratio between fundamental and
first harmonic fluctuates about 1. This indicates a competition
between drivers with frequencies of 1/year and 2/year, which
are otherwise known as the annual and semi-annual cycles.
Figure 8 quantifies the mid-latitude meso-scale structure of
these different drivers. The top panel shows the amplitude of the
annual signal as a function of magnetic latitude and the bottom
panel shows the ratio of annual to semi-annual amplitudes. The
error bars are constructed the same as Figure 4 but using a
3-year sliding window. From the top panel, there is a similar
general dependence on magnetic latitude as for the fundamental
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FIGURE 10
Periodogram amplitudes as a function of magnetic latitude for the solar rotation signal during solar maximum (top) and falling phase (bottom).
Error bars are calculated from 360-day sub-intervals.

diurnal signal and also a station-to-station deviation that is
maximally 1-2 TECU from a power law fit. The bottom panel
contains information about the competition of drivers with
1/year and 2/year frequencies. Within the cluster of mid-latitude
stations the ratio of periodogram amplitudes from the entire
cycle solar varies from less than 1 in some locations to greater
than 1 in others. The error bars also indicate many of the stations
go from a ratio that is less than 1 to greater than 1 or vice versa
throughout the course of the solar cycle. In Brazil and Alaska,
the error bars show the ratio is never greater than 1. The source
of this meso-scale mid-latitude structure in the spectra is not the
result of transient solar driving, as those effects occur on much
shorter time scales, but must result from the interaction of the
ionosphere with the neutral atmosphere and ground.

Finally, Figures 9, 10 quantify the solar rotation amplitude
during the different solar cycle phases. Because of the broadband
nature of the solar rotation signal, it is intrinsically more difficult

to quantify.Wehave taken the largest amplitude froma frequency
window centered at 1/26.5 = 0.038 days−1 (labeled as solar
rotation in Figure 3) with a width 0.01 days−1. For reference,
the reader may note in the top left panel of Figure 3 there is a
strong peak to the left of the solar rotation peak at a frequency
of 1/45 days−1, which is outside of the tolerance window. The
error bars in Figures 9, 10 use a 360-day sliding window. The
fact that many of the lower error bars are very small is due to
the different sources on the Sun, since each sinuosoidal driver
will in this case exist for a much shorter time than an entire solar
cycle phase. Similar to the diurnal frequency, the amplitudes are
generally alignedwith solar phase andmagnetic latitude. Atmid-
latitude the typical station-to-station deviation is about 0.1–0.2
TECU during solar maximum and rising phases and just slightly
smaller during solar minimum and falling phases. The driver
for this signal, being mostly coronal hole high speed streams
and co-rotating interaction regions, results in a broadband signal
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because these features are appearing and disappearing on the
Sun. Since the solar rotation signal is lower frequency than the
diurnal signal but higher frequency than the annual signal, the
ionospheric response on these time scales is in between that
produced by transient solar wind drivers and the interaction of
ionosphere with neutral atmosphere and ground.

4 Discussion and conclusion

The strong diurnal signal of ionospheric TEC is mainly due
to Earth’s rotation. At mid-latitudes, the amplitude of this signal,
in addition to the seasonal and solar rotation frequencies, were
found to vary on a scale of a hundred to a few hundreds of
kilometers. In order to build a predictive capacity for regional-
scale TEC at middle-latitudes, which is important at locations
such as the Space Coast of Florida or near large airports,
it is therefore necessary that whatever model employed be
able to reproduce these spectral responses. Without a good
characterization of the strong diurnal signal there is no way to
predict the strong gradients of TEC which can develop over the
Southeastern United States Foster and Rideout. (2007).

Compared to the higher latitude station in Alaska and the
lower latitude station in Brazil, the deviation from expected
diurnal amplitude (i.e., a straight line fit with respect to magnetic
latitude) at mid-latitudes is of the order of a few TECU for
each phase of the solar cycle. The number and amplitudes of
the diurnal harmonic signals indicate the daily variation is not
a perfect sine wave but partially a square wave. This is due
to the fact that the night-time recombination rate falls until it
reaches the residual ionoziation rate from cosmic rays, defining
the trough of a square wave. Our results show that the shape of
the diurnal signal varies from station to station and throughout
the different phases of the solar cycle. In addition, some stations
suggest a significant influence from a twice-daily driver. A key
result from the analysis of the diurnal harmonics is that in
Alaska the ratio of fundamental and first harmonic amplitudes
is constant throughout the solar cycle, while at middle and low
latitudes the amplitude ratios have a correspondence with solar
activity. Although this could have been expected because the
ionospheric drivers are different at those magnetic latitudes,
this is the first study to systematically characterize mid-latitude
variations of TEC spectral amplitudes for a cluster of observator-
ies with appropriate separation to resolve meso-scale structures.

Based on a ratio of amplitudes that fluctuate around 1
with time, we find that the annual and semi-annual drivers of
ionospheric TEC exhibit a competing dominance that varies
from station-to-station at mid-latitudes. Olwendo et al. (2016)
explain that during equinoxes the sub-solar point is near the
equator, where the eastward electric field is often larger, and this
intensifies the fountain effect which controls ionization levels at
the equator. Near solstices, the subsolar point moves to higher

latitudes, and the fountain is expected to wane at the equator.
The peak of ionization occurring when solar radiation hits the
ionosphere most perpendicularly throughout the year would be
at the summer solstice in high latitudes and at the equinoxes at
the equator. Therefore, at mid-latitudes we expect the source of
strong annual and semi-annual drivers to be a competition of
these two effects. In Alaska and Brazil the ratio can approach
but always remains greater than 1, indicating the competition
of processes plays out less dramatically than at mid-latitudes, i.e.
ionosphere TEC is more strongly controlled by a single process.

The mid-latitude meso-scale station-to-station variations
of spectral amplitudes (which represent meso-scale spatial
structures) and their ratios results from the complex interaction
of solar wind-magnetosphere-ionosphere as well as the neutral
atmosphere. This interaction can be a source of ionospheric
structure for both short (1–10 s of hours) and longer (months to
years) time scales. This is further complicated by the fact that the
magnetospheric state is determined by instantaneous as well as
the time-history of solar wind conditions Lavraud et al. (2006);
Borovsky and Valdivia. (2018). It is also the case that space
climate is coupled to the neutral atmosphere climate. For
instance, transequatorial winds can change the recombination
rate by lifting the ionosphere on either side of the equator
(Olwendo et al., 2016). The neutral composition has also been
shown to have effects on ionospheric storms (Liou et al., 2005).
The meso-scale structure of ground conductivity may also play
a role in the ionospheric response. The ground conductivities
between the different mid-latitude stations in this study vary
between 1 and 8 millimhos/meter. Although the more important
factor may be proximity to the ocean, where conductivity is
close to 5,000 millimhos/meter. However we have not attempted
to classify any of these specific effects in this study, only to
characterize what are the sum total sinuosoidal responses of
the ionosphere due to the combination of driving forces. In
this way, it may not be necessary for a predictive model to
include the physics of the many competing affects that drive
regular TEC oscillations in the ionosphere, just the observed
spectral amplitudes. It is also worth noting that for the solar
rotation signal a predictive model would benefit from additional
information beyond the spectral amplitude, such as the number
of sunspots on the solar disc, for example.
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