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In this study, we assume that the magnetic configuration of active regions (ARs)

in quiet periods has certain similarities and can be considered “normal” features.

While there are some other magnetic features of active regions that are related

to strong flares, they can be considered the precursor of strong flares and

“anomaly” features. Our study aims to identify those “anomalies” and apply them

in strong-flare forecasting. An unsupervised auto-encoder network has been

used to understand and memorize these “normal” features, and then, based on

the mean squared errors between the pictures of the ARs and the

corresponding reconstructed pictures derived by the network, an anomaly

detection algorithm has been adopted to identify the precursor for strong

flares and develop a strong-flare classification model. The strong-flare

classification model reaches an F1 score of 0.8139, an accuracy of 0.8954, a

recall of 0.8785, and a precision of 0.7581. Moreover, for those correctly

predicted strong-flare events (94 M-class flares and above), the model

reaches an average first warning time of 45.24 h. The results indicate that

the anomaly detection algorithm can be used in precursor identification for

strong flares and help in both improving strong-flare prediction accuracy and

enlarging the time in advance. Also, the obtained average maximum warning

period for strong-flare prediction (nearly 2 days) will be useful for future

applications for space-weather solar flare prediction.
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1 Introduction

A solar flare is one of the major eruptive phenomena that occur in the solar

atmosphere (Kahler, 1992). It is often accompanied with solar energetic particle

acceleration (Reames, 1999) and coronal mass ejections [CMEs (Chen, 2011; Webb

and Howard, 2012)] erupting into interplanetary space and sometimes, impacting the

Earth and our technology, navigation, and communication systems (Gosling et al., 1991;

Low, 1996;Wang and Zhang, 2007). Intense solar flares might lead to several kinds of geo-

effectiveness, for example, ground level enhancement [GLE (Gopalswamy et al., 2012)]
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and sudden ionospheric disturbances [SIDs (Deshpande et al.,

1972; Liu et al., 2004; Nie et al., 2022)].

There are many research studies based on observations and

theoretical models of solar eruptions, focusing on the pre-

eruption structures, triggering mechanisms, and the precursors

indicating the potential eruption (Zirin and Liggett, 1987;

Schrijver, 2009; Schrijver et al., 2011; Zhang et al., 2012;

Kusano et al., 2020). It is widely accepted that solar flares are

related to reconnection of topologically complex magnetic fields

(Titov and Démoulin, 1999). The occurrence of solar flares is

usually sensitive to somemagnetic configuration of active regions

(ARs), such as the polarity inversion lines, twisted flux tubes, and

sheared loops. These magnetic structures of ARs and their

statistical properties play an important role in discriminating

the flaring and flare-quiet ARs (Barnes and Leka, 2006).

Developing solar flare prediction is one of the essential

methods to prevent possible storm-like geo-effectiveness. One

of the most widely used databases by the community is Space-

Weather HMI Active Region Patches [SHARPs; (Bobra et al.,

2014)]. It consists of the vector magnetic field images and many

magnetic properties of ARs, such as the total unsigned flux

(USFLU), the mean shear angle (MEANSHR), and the mean

angle of field from radial (MEANGAM).

Many research studies have investigated the dataset and then

developed and applied solar flare prediction models on them. In

recent years, machine-learning algorithms have been applied in

many research studies and made progress (Huang et al., 2018;

Camporeale, 2019; Bhattacharjee et al., 2020; Krista and Chih,

2021; Nishizuka et al., 2021; Li et al., 2022). One of the most

important achievements is the extraction of predictive features

for flare classification. For example, Ahmed et al. (2013) applied

machine-learning algorithms to extract and select the features

highly related to solar flare prediction. Wang et al. (2019) applied

the polarity inversion line (PIL) gradient masks and found that

they have the potential to improve flare prediction. Then, Wang

et al. (2020) extracted the features representing these PIL

gradient masks by a machine-learning algorithm for strong-

flare prediction. Sun et al. (2021) extracted both the spatial

and topological features from SHARP patches and implied

that using a single magnetic field component (radial magnetic

field) can also derive strongly predictive features for flare

classification. These studies were mainly focused on

forecasting solar flares in 24-h in advance.

Moreover, considering the need for solar flare forecast in the

operational application at space weather prediction centers, there

is more work to do, especially in increasing the prediction

accuracy and enlarging the prediction window (time-in-

advance of solar flares), that is, it is important to develop an

available model that can provide quantitative time-in-advance

with promising evaluation metrics (i.e., prediction accuracy).

In this study, we assume that the magnetic configuration of

active regions in quiet periods has certain similarities and can be

considered “normal.” On the other hand, there should be some

kinds of magnetic configuration of ARs that are related to strong

flares. These magnetic features of ARs can be considered the

precursor of strong flares and defined as “anomaly” compared to

“normal.” We focus on two questions: first, whether these

“anomaly” features can be detected and used to predict strong

flares. Second, when these “anomaly” features occur, and whether

they can be used to enlarge the prediction window and thus

provide a quantitative time-in-advance in solar flare prediction.

Here, we introduce the data and methodology in Section 2

and then demonstrated a strong-flare classification model based

on an anomaly detection algorithm and conduct result analysis in

Section 3. The conclusion and discussion are presented in

Section 4.

2 Data and methodology

2.1 Data preparation

According to the flare list from the National Oceanic and

Atmospheric Administration (NOAA), we first divide the ARs

into two categories: strong-flare ARs (which should be related to

at least one strong flare) and non-strong-flare ARs. Strong flares

are defined as M-class flares and above. Non-strong-flare ARs

consist of both the ARs that produced no flares and the ARs that

produced C-class flares and below.

To investigate the magnetic features of ARs, we used the

radial magnetic field of SHARP patches in CEA coordinates

(hmi.sharp_cea_720s) from 2010 to 2019. To avoid the projection

effect, only those SHARP patches with centers located within 60°

from the solar central meridian have been used in this study. We

divided the datasets of SHARP patches into three groups as

follows:

(1) Group train: it contains SHARP patches of the non-

strong-flare ARs from 2010 to 2014. This group is used

for model training. In this group, there are 845 non-

strong-flare events.

(2) Group test normal: it contains SHARP patches of the non-

strong-flare ARs from 2015 to 2019. This group is used for

model testing on the non-strong-flare ARs. Thus, for the ARs

that produced B-class flares and below, only one patch is

selected randomly from each of the ARs and treated as a non-

strong-flare event, while for the ARs that produced C-class

flares, only the independent C-class flares are selected and

treated as non-strong-flare events. Here, an independent

C-class flare should meet the criteria that it is the only

C-class flare in 4 days. In this group, there are 304 non-

strong-flare events.

(3) Group test anomaly: it contains SHARP patches of the

strong-flare ARs from 2010 to 2019. This group is used

for model testing on the strong-flare ARs. Thus, only the

independent M- and above class flares are selected and
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treated as strong-flare events. Here, an independent strong

flare should meet the criteria that it is the only M- and above

flare in 4 days. In this group, there are 107 strong-flare

events.

It should be noted that the three groups (group train, group

test normal, and group test anomaly) are independent. The data

of each AR are assigned to one of the three groups. Moreover, for

group test (including group test normal and group test anomaly),

we only select the SHARP patches within the 3-day prediction

window before the non-strong-flare events and the strong-flare

events for model evaluation.

According the flow chart shown in Figure 1A, to obtain

uniform and standard datasets that can be applied by machine-

learning algorithms, we first randomly cut the SHARP patches

into several square slices (with a size of 320 × 320 pixels). Then,

we compressed the slices into smaller ones (with a size of 32 × 32

pixels) for fast computation purpose. Finally, we obtained

datasets consisting of uniform and standard gray pictures

(with a value in the range of 0–255). In this study, for each

patch of strong-flaring ARs, which usually have a larger size than

that of the square slices, we cut 10 slices randomly, while for each

patch of those non-strong-flaring ARs, which usually is not

obviously larger than the square slices, we cut no more than

FIGURE 1
Flow chart for data preparation and model development. (A) is the flow chart. (B) illustrates the structure of the auto-encoder network.
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FIGURE 2
Illustration of the data preparation and the results by the auto-encoder network. (A) is the radial magnetic field of AR11158 (corresponding to
SHARP patch number 377) before the X2.2 flare erupted at 01:56 UTC, on 15 Feb 2011. There are ten slices (with a size of 320 × 320 pixels) cut
randomly from the original observations. (B) are the ten compressed slices in the first and third rows (with a size of 32 × 32 pixels, according to the ten
slices in Figure 2A) and the corresponding reconstructed slices in the second and fourth rows derived by the auto-encoder network.
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FIGURE 3
Illustration of the data preparation and the results by the auto-encoder network, similar to Figure 2. (A) is the radial magnetic field of AR12192
(corresponding to SHARP patch number 4698) before the X1.6 flare erupted at 14:28 UTC, on 22 Oct 2014. There are ten slices (with a size of 320 ×
320 pixels) cut randomly from the original observations. (B) is similar to Figure 3B.
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five slices randomly. Finally, we obtained 31,372 pictures for

group train, 11,467 pictures for group test normal, and

58,099 pictures for group test anomaly.

We consider AR11158, for example, an X2.2 flare that

erupted at 01:56 UTC, on 15 Feb 2011. The radial magnetic

field of the SHARP patch corresponding to the onset of the flare

is shown in Figure 2A. There are ten slices (with a size of 320 ×

320 pixels) cut randomly from the patch. The locations of these

slices are shown by colorful squares in Figure 2A. The final small

slices (with a size of 32 × 32 pixels) compressed from the original

slices are shown in the first and third rows in Figure 2B.

Another example is AR11192, an X1.6 flare that erupted at

14:28 UTC, on 22 Oct 2014. Similar to Figure 2, we illustrate the

original radial magnetic field of the SHARP patch corresponding

to the onset of the flare and the ten slices from it in Figure 3A, as

well as the final compressed small slices in Fig 3b.

Comparing Figure 2 and Figure 3, it can be observed that for

a relatively small patch (for example, AR11158), the cut slice

strategy might lead to larger overlapping areas for those slices,

while for a relatively large patch (for example, AR11192), it might

lead to several non-overlapping areas which may represent

widely differing magnetic structures and physical features. For

example, slices 4, 8, and 9 are far away from the center of the

patch in Figure 3A and do not capture the key magnetic features

of AR11192. Therefore, we suggest cutting more slices randomly

for larger patches in applications.

2.2 Unsupervised network

We assume that in group train, there might be a certain

similarity in the magnetic configuration of the non-strong-flare

ARs. As shown in the flow chart in Figure 1A, we first developed

an unsupervised network using group train, aiming to

understand and memorize these “normal” magnetic features

of the non-strong-flare ARs and then identify the “anomaly”

magnetic features of the strong-flare ARs by an anomaly

detection algorithm using group test.

In this study, we adopt the auto-encoder network using the

Keras package (https://keras.io) consisting of two-dimensional

convolution layers (Conv2D), max pooling layers (MaxPooling),

and up pooling layers (UpPooling). This network is an

unsupervised machine-learning algorithm that reconstructs its

input and extracts low-dimensional features as a representation

of its inputs. The structure of the auto-encoder network is

illustrated in Figure 1B. As shown in the flow chart in

Figure 1A, we take the original pictures (slices with a size of

32 × 32 pixels) in group train as the input and feed them into the

auto-encoder network to obtain reconstructed pictures (slices

with a size of 32 × 32 pixels). During the training process, the

unsupervised network will understand and memorize the

“normal” magnetic features of the non-strong-flare ARs.

Moreover, after training, we can also feed the group test as an

input into the network and obtain reconstructed pictures for

further analysis.

Taking the two strong-flare ARs, AR11158 in Figure 2B and

AR11192 in Figure 3B, for example, the ten slices (input of the

auto-encoder network) are shown in the first and third rows and

the reconstructed slices (output of the auto-encoder network) in

the second and fourth rows accordingly. It can be observed that

the reconstructed pictures are blurred due to the limitations of

the auto-encoder network with a relatively simple structure. In

some other pictures, the main features are well-captured.

However, in some pictures, there are apparent differences

between the original pictures and reconstructed pictures. It

indicates that the network has not understood and memorized

this type of magnetic features because they probably are not one

of the typical features in the group train (consisting of the non-

strong-flare ARs).

2.3 Anomaly detection algorithm

Anomaly detection is a widely used algorithm to detect the

anomaly features or patterns that do not fit the normal features or

patterns of a dataset. Here, to identify the “anomaly” that

indicates the precursor of strong flares in ARs, it is essential

to define the “normal” first. Based on the assumption that the

auto-encoder network performs well in understanding and

memorizing the “normal” magnetic features of non-strong-

flare ARs, it can be inferred that

(1) the network has been trained in group train so that it should

perform well in group train such that the reconstructed

pictures should be similar to the original pictures, that is,

the differences between the input and output in group train

should be relatively small.

(2) The network should also perform well in group test normal,

which consists of non-strong-flare ARs, that is, the

differences between the input and output of the network

in group test normal should also be as small as in group train.

(3) The network would not perform as well in the group test

anomaly that consists of strong-flare ARs as in the other two

groups, that is, the differences between some of the input and

output of the network in group test anomaly (indicating

“anomaly”) should be relatively large compared to those of

group train and group test normal.

Here, we adopt the mean squared errors (MSEs) of the

original pictures and reconstructed pictures derived by the

auto-encoder network to quantitatively describe the

differences between them. We computed and analyzed the

MSEs using the group train, group test normal, and group

test anomaly. The histograms of MSEs of the three groups are

shown from the top to the bottom in Figure 4. It can be observed

that Figure 4 is in accordance with the earlier mentioned points.
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To identify when these “anomaly” features occur before

strong flares, we investigate the MSEs of the pictures that

belong to three different time windows before strong flares in

group test anomaly and illustrate the histogram in Figure 5. The

pictures in group test anomaly are divided into three subsets

according to their time windows:

(1) Subset 1 contains pictures in the time range of (48h, 72h)

before strong flares and is represented by a red histogram.

(2) Subset 2 contains pictures in the time range of (24h, 48h)

before strong flares and is represented by an orange

histogram.

(3) Subset 3 contains pictures taken no more than 24h before

strong flares and is represented by a green histogram.

In Figure 5, the green dashed vertical line refers to the

maximum MSE of group train. All pictures in group train

have fewer MSEs by the reconstructed network, while it turns

out that many pictures in group test anomaly have larger MSEs

by the reconstructed network, which exceed the maximum MSE

of group train. Even for some pictures which are of more than

1 day before the strong flares, their MSEs are also located on the

right side of the green dashed line. It seems that the MSE of the

original and reconstructed picture derived by the auto-encoder

network is a good predictor to discriminate the pictures that

indicate the magnetic “anomaly” of strong-flare ARs from other

pictures that indicate the magnetic “normal” features of non-

strong-flare ARs.

3 Model development and result
analysis

3.1 Strong-flare classification model

As shown in the flow chart in Figure 1A, we developed a

strong-flare classification model on the basis of identifying the

precursor of strong flares using an anomaly detection algorithm.

FIGURE 4
Histograms of MSEs of the original and reconstructed pictures derived by the auto-encoder network. From the top to the bottom, there is a
histogram of MSEs calculated using group train, group test normal, and group test anomaly. The red, orange, and green vertical lines refer to the
mean value, mean + 2 × standard deviation (std: dev), and maximum of MSEs using group train, respectively.
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We choose the MSEs of the original pictures and reconstructed

pictures derived by an auto-encoder network as a discrimination

threshold for strong-flare forecasting.

For the strong-flare classification model, we carry out the

following steps:

(1) For SHARP patches within the 3-day prediction window

before the non-strong-flare events in group test normal, the

ground truth should be classified as 0 (“normal,” “non-

strong-flare”). For SHARP patches within the 3-day

prediction window before the strong-flare events in group

test anomaly, the ground truth should be classified as 1

(“anomaly,” “strong-flare”).

(2) Set a specific discrimination threshold, TMSE.

(3) For N pictures (N is the number of the pictures and N equals

10 in this study) cut randomly from each SHARP patch in

group test, we derive the corresponding reconstructed

pictures by the auto-encoder network and compute N

MSEs of them.

(4) If at least one in N MSEs from each SHARP patch exceeds

the specific discrimination threshold (TMSE), the forecast for

the patch should be 1 (“anomaly,” “strong-flare”). Otherwise,

the prediction should be 0 (“normal,” “non-strong-flare”).

3.2 Evaluation metrics

For a binary classification task like the strong-flare

prediction, the confusion matrix is listed in Table 1. The true

positive (TP) is the hit case where the strong-flare samples are

correctly classified as the strong-flare category. The false positive

(FP) is the false alarm case where the non-strong-flare samples

are falsely classified as the strong-flare category. The false

negative (FN) is the missing case where strong-flare samples

are falsely classified as a non-strong-flare category. The true

negative (TN) is the correct non-event case where non-strong-

flare samples are correctly classified as the non-strong-flare

category.

Based on the confusion matrix, we adopt six evaluation

metrics: accuracy, recall, precision, F1 score, ROC_AUC, and

the first warning time-in advance for strong flares (FWT). The

FWT is defined as the prediction time window for a strong flare.

When our model sends the first warning (strong-flare forecast)

for a strong-flare event, we calculate the time difference between

the first warning time point and the start time of the strong-flare

event according to the NOAA flare list and define it as the FWT.

The average FWT is a good statistical parameter for model

evaluation. The first four metrics are computed as follows:

FIGURE 5
Histograms ofMSEs of the original and reconstructed pictures in the group test anomaly derived by the auto-encoder network. The red, orange,
and green histograms refer to the MSEs using subset 1 (pictures which are in the time range of (48h, 72h) before strong flares), subset 2 (pictures
which are in the time range of (24h, 48h) before strong flares), and subset 3 (pictures which are nomore than 24h before strong flares), respectively.
Similar to the vertical lines in Figure 4, the red, orange, and green vertical dashed lines refer to the mean value, mean + 2 × standard deviation
(std: dev), and maximum of MSEs using group train, respectively.
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accuracy o, p( ) � 1
Nsamples

∑
Nsamples

i�0
1 oi � pi( ), (1)

recall � TP

TP + FN
, (2)

precision � TP

TP + FP
, (3)

F1 � 2 × precision × recall

precision + recall
. (4)

In addition, the receiver operating characteristic (ROC) curve

illustrates the performance of a binary classification task as its

discrimination threshold is varied. It is the fraction of the true

positives out of the positives vs. the fraction of the false positives

TABLE 1 Confusion matrix for binary classification.

Actual class (observations)

Predicted class (forecasts) True positive (TP) hit case False positive (FP) false alarm case

False negative (FN) miss case True negative (TN) correct non-event case

FIGURE 6
Evaluation metrics based on the group test with varying discrimination thresholds (set for MSEs of the original and reconstructed pictures). The
accuracy, recall, precision, F1 score, ROC_AUC, and first warning time for strong flares in advance (FWT) are represented by the black, blue, orange,
red, green, and purple points, respectively.
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out of the negatives. The ROC_AUC computes the area under the

ROC curve and summarizes it as one number.

For these first five metrics (accuracy, recall, precision,

F1 score, and ROC_AUC), larger values indicate better

discrimination ability of a binary classification model. The

Scikit-learn package (https://scikit-learn.org) is used to

calculate the abovementioned metrics. Moreover, a larger

FWT indicates a longer time window before strong flares.

3.3 Model performance

To find the best strong-flare classification model, we need to

find the best discrimination threshold of the MSEs. In Figure 6,

the discrimination threshold is varying along the x-axis, and the

six evaluation metrics (accuracy, recall, precision, F1 score,

ROC_AUC, and FWT) for strong-flare classification are drawn

accordingly. We find that the best classification model gives

94 hit cases (TP) and 13 miss cases (FN) from the group test

anomaly (107 strong-flare cases) and 30 false alarm cases (FP)

from the group test normal (304 strong-flare cases), thus

providing the maximum F1 score of 0.8139. Also, the

corresponding accuracy is 0.8954, the recall is 0.8785, the

precision is 0.7581, the ROC_AUC is 0.8899, and the FWT is

45.24 h.

Taking AR11158 in Figure 2A and AR11192 in Figure 3A as

examples, we first cut ten pictures randomly from them and draw

them in Figure 2B and Figure 3B, respectively. Then, we applied

the auto-encoder network to the ten small pictures and computed

the MSEs between them and the corresponding reconstructed

pictures. At last, we apply the best classification model to the

MSEs, and it turns out that

(1) for all of the ten pictures in Figure 2B obtained from

AR11158, their MSEs exceed the threshold, that is, there

are “anomalies” as the precursor of strong flares found in

these ten slices. Thus, we obtained a positive (strong-flare)

forecast for AR11158 in Figure 2A.

(2) For the ten pictures in Figure 3B obtained fromAR11129, the

MSEs of the five pictures (slices 1, 3, 6, 7, and 10) exceed the

threshold, that is, there are “anomalies” as the precursor of

strong flares found in these five slices, while the MSEs of the

other five pictures (slices 2, 4, 5, 8, and 9) are below the

threshold. Thus, we obtained a positive (strong-flare)

forecast for AR11192 in Figure 3A.

4 Conclusion and discussion

In this study, we assume that the magnetic configuration of

ARs in quiet periods has certain similarities and can be

considered “normal,” while there are some other magnetic

features of ARs that are related to strong flares. They can be

considered the precursor of strong flares and can be defined as

“anomaly.” Our study aims to identify those “anomalies” and

apply it in strong-flare forecasting.

Those similar features of non-strong-flare ARs can be

understood and memorized by an unsupervised auto-encoder

network. The SHARP dataset of non-strong-flare ARs in

2010–2014 has been used to train the auto-encoder network.

We investigated the MSEs of the original pictures and

reconstructed pictures derived by the auto-encoder and

conducted a statistical analysis of the non-strong-flare

samples. Then, we carried out the precursor identification for

strong flares on the basis of an anomaly detection algorithm and

developed a strong-flare classification model. Applying the

classification model to the non-strong-flare AR samples in

2015–2019 and strong-flare AR samples in 2010–2019, we

take the MSEs computed from the results by the auto-encoder

network as a predictor and compare them with a specific

threshold and finally obtained a strong-flare or non-strong-

flare forecast for each sample.

We find that the “anomaly” magnetic features of ARs that

indicate strong flares can be detected and used to predict strong

flares. Also, we evaluate the performance of the classification

model and obtain the quantitative time-in-advance for strong-

flare prediction.

Our strong-flare classification model reaches an F1 score of

0.8139, an accuracy of 0.8954, a recall of 0.8785, a precision of

0.7581, and an ROC_AUC of 0.8899. Moreover, for those

correctly predicted strong-flare events (94 M-class flares and

above), our model reaches an average first warning time of

45.24 h. The results indicate that 1) the anomaly detection

algorithm can help in both improving strong-flare prediction

accuracy and enlarging the time in advance. 2) The precursor

magnetic structures of ARs appear sometime before the strong-

flare eruption, and thus the average maximum warning period

for strong-flare prediction is close to 2 days. The results from

our study about the application of the anomaly detection

algorithm and the obtained average first warning time will

be useful for future applications for space-weather solar flare

prediction.

We noticed that the classification model falsely classify

13 strong-flare events into the non-strong-flare category.

Moreover, 10 of them are M1 flare events. Two of them are

M2 flare events; hence, these low-level strong flares are harder to

predict than intense flares.

We also used the anomaly detection algorithm on another

experiment based on the samples of group A (20 M5 class flares

and above events) and group B (328 M4 class flares and below

events). We trained a classification model based on independent

group C (908 M4 class flares and below events). The model

reaches an F1 score of 0.9626, an accuracy of 0.6501, a recall of

0.6842, a precision of 0.6667, and an ROC_AUC of 0.8159. The

evaluation metrics of this experiment are relatively lower than

those from the strong-flare classification model. It implies that
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there are obvious differences between the strong-flare ARs and

non-strong-flare ARs.

We agree with Camporeale (2019) that embracing machine-

learning into the space weather community is both a challenge

and an opportunity. In the future, the application of machine-

learning approaches in solar eruption prediction has the potential

to help us develop models with better accuracy and longer

prediction window to meet the needs of operational forecasting.
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