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Ensemble deep learning models
for prediction and uncertainty
quantification of ground
magnetic perturbation

Talha Siddique and Md Shaad Mahmud*

Department of Electrical and Computer Engineering, University of New Hampshire, Durham, NH,
United States

Geomagnetically Induced Currents are one of the most hazardous effects

caused by geomagnetic storms. In the past literature, the variations in ground

magnetic fields over time, dB/dt were used as a proxy value for GIC. Machine

Learning (ML) techniques have emerged as a preferredmethodology to predict

dB/dt. However, space weather data are highly dynamic in nature, and the data

distribution is subject to change over time due to environmental variability.

The ML models developed are prone to the uncertainty in the input data and

therefore suffer from high variance. In addition, a part of an ML architecture

performance is conditional on the variables used tomodel the system in focus.

Therefore, a single algorithm may not generate the required accuracy for a

given dataset. In this work, a Bayesian EnsembleMLmodel has been developed

to predict the variations over time of the local ground magnetic horizontal

component, dBH/dt. The Ensemble methodology combines multiple ML

models in the prediction process to predict dBH/dt. Bayesian statistics allow

the estimation of model parameters and output as probability distributions,

where the variance quantifies the uncertainty. The input data consists of

solar-wind data from OmniWeb for the years 2001–2010. The local ground

horizontal magnetic components for the corresponding time were calculated

using SuperMAG data for the Ottawa ground magnetometer station for the

yearsmentioned above. The years 2011–2015were selected formodel testing,

as it encompasses the 5 August 2011 and 17 March 2015 geomagnetic storms.

Five different accuracy metrics were considered; namely, Root Mean Squared

Error (RMSE), Probability of Detection (POD), Probability of False Detection

(PFD), Proportion Correct (PC), and Heidke Skills Score (HSS). The parameter

uncertainty of the models is quantified, and the mean predicted dBH/dt is

generated with a 95% credible interval. It can be observed that different

models perform better with different datasets and the ensemble model has

an accuracy comparable to the models with a relatively strong performance.
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1 Introduction

Geomagnetically Induced Currents (GICs) are currents
induced in long conductors located on the Earth’s surface and
galvanically connected to the ground (Camporeale et al., 2018;
Tsurutani and Hajra 2021). GICs are caused by Geomagnetic
Disturbances (GMD) or geomagnetic storms (Pirjola 2000).
GMDs occur due to the interaction of charged particles
from the Sun with the Earth’s magnetosphere (Lakhina and
Tsurutani 2016; Salman et al., 2020). GIC has the potential to
disrupt electrical devices as transformers on the Earth’s surface
(Rajput et al., 2021). For example, one of the strongest recorded
GMDs occurred in March 1989, causing a collapse of the power
system across the United States, Canada, and Europe. Around 6
million residents in Canada experienced power outage for over
9 h (Gannon et al., 2013;Wang et al., 2020).ThereforeGIC is one
of the most hazardous threats posed by space weather. With the
increasing dependence of humankind on technology, there is a
need to analyze and predict GIC to mitigate the risks of damage
caused by future geomagnetic storms.

GICs occur because changing magnetic fields induce
electric currents in conductors (Oliveira and Ngwira 2017). The
magnitude of GIC depends on the environmental conditions
and the system it affects (e.g., the topology of an electrical grid)
(Liu et al., 2009).There are different methods of measuring GIC.
A simple means is attaching a Hall effect probe to a transformer
ground (Blake et al., 2018). It would be ideal for measuring
GIC to install such sensors in every transformer ground,
but such an endeavor could prove expensive and disruptive
(Blake et al., 2018). In addition, GICs in the power network
can be simulated numerically, but this requires information
on the structure and components of the power networks
(e.g., transformer types, DC resistances etc.) (Boteler and
Pirjola 2014; Blake et al., 2018; Alves Ribeiro et al., 2021). The
literature includes studies detailing successful collaboration
between power transmission operators and researchers to study
GIC (Alves Ribeiro et al., 2021). However, it has been noted
that the information on power networks is not frequently
made available to the wider scientific community by the
power operators (Blake et al., 2018; Pinto et al., 2022). Also,
most countries have interconnected power networks with their
neighbors. Blake et al. (2018) successfully modeled Ireland’s
power network to study GIC. The authors did recognize that
this study was possible due to Ireland’s small and relatively
isolated network structure. Due to the above reasons, different
magnetic indices have been used throughout the literature as
a proxy measure for GIC. The scientific community has yet
to reach a consensus regarding a particular proxy measure.
Trichtchenko and Boteler (2004) studied the correlation of
measured peak GIC values with global and local geomagnetic
indices. The global index consisted of the 3-h Kp index, and
the hourly ranges of the magnetic field variations and hourly

peak dB/dt values were considered the local counterpart.
They concluded that local geomagnetic indices are a better
proxy for describing GIC as its correlation with measured
peak GIC values is stronger than the global indices. Several
past studies used the change in local ground horizontal
magnetic component over time (dBH/dt), as a proxy measure
for GIC (Viljanen 1998; Viljanen et al., 2001; Wintoft 2005;
Keesee et al., 2020; Pinto et al., 2022). However, dBH/dt as a
proxy measure is only useful as an indicator of GIC activity
(Bailey et al., 2022). The scale of the GIC magnitude is primarily
dependent on the horizontal electric field E (Wintoft et al., 2015;
Bailey et al., 2022). The mapping between dBH/dt and E is
conditional on the frequency-dependent magnetotelluric
transfer function (Chave and Jones 2012). The effectiveness of
dBH/dt as a proxy measure is contingent on the assumptions
made about the frequency content (Pulkkinen et al., 2006). For
example, Wintoft et al. (2015) made an approximation that the
electric field E is directly proportional to dBH/dt. The authors
noted that such an approximation discards ground conductivity
which affects E (Cagniard 1953; Viljanen et al., 2014). They
observed a linear relationship between the maximum E and
dBH/dt across all the site data considered for their study. This
allowed them to express E as the product of dBH/dt and an
empirical coefficient. The coefficient value depends on the test
site and on the local ground conductivity model. Therefore, the
authors used the assumption of E being directly proportional to
dBH/dt, as a first order approximation for a given site.

Over the years, data relevant to space weather have become
readily available. For example, data on solar wind magnetic field
and plasma are available to the greater scientific community
via OMNIWeb. Another example is SuperMAG, which curates
changes in the Earth’s magnetic field from ground-based
magnetometers. With the availability of such data, there is an
increased interest in Machine Learning (ML) for the purpose
of prediction and analysis of space weather phenomena. In
the past literature studies have been conducted where ML
techniques, like Deep Learning (DL), have been used for
dBH/dt prediction. For example, Wang et al. (2020) developed
a hybrid model which used two filtering techniques- Wavelet
Transform and Short-Time Fourier Transform for feature
extraction, and then combined it with a DL architecture for GIC
prediction (Wang et al., 2020). The variant of DL architecture
they implemented was a Convolutional Neural Network (CNN).
Although CNN is primarily used for image classification, it has
also been effective in time series forecasting, as it can effectively
extract features from the time series data (Lu et al., 2020). A
drawback of CNN is that it is not recurrent, i.e., it does not retain
the memory of previous time-series patterns. Instead, it can only
train based on the data themodel inputs at a particular time step.
As correlations exist between observations in a time series data
(autocorrelation), a standard CNN would treat all observations
as independent, causing misleading results.
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Recurrent Neural Network (RNN) architectures can
account for sequential dependencies in a time series data.
Unlike traditional Neural Networks (NN), a standard RNN
consists of a feedback loop. The loop feeds information to
the RNN from the previous time step to the current time
step. However, RNNs in their standard form tend to suffer
from a “long-term dependency” problem, i.e., as the gaps
between consecutive information grow, RNNs become unable
to connect the information. A special kind of RNN called Long
Short Term Memory (LSTM) networks have been specially
designed in the past literature to tackle the issue of “long-
term dependency” (Manaswi 2018; Sherstinsky 2020). Within
the context of dBH/dt prediction, a comparative study was
carried out where a feed-forward Neural Network and an LSTM
Neural Network (Keesee et al., 2020) used to predict the East and
North components of the ground magnetic field. The magnetic
components are then used to derive the dBH/dt.

A part of an ML architecture performance is conditional
on the variables used to model the system in focus
(Siddique et al., 2022). Therefore, the accuracy of a model
architecture varies depending on the problem at hand. In
recent years, ensemble ML has gained popularity within the
scientific community for time series and regression forecasting.
The ensemble methodology combines multiple ML models
in the prediction process to obtain better generalization and
performance (Murray 2018). Different approaches exist to
implement the ensemble methodology. The basic approach can
be grouped into either one of two categories- 1) different model
architectures have been implemented, or 2) the same model
architecture is used with different parameter estimations, using a
different subset of training data. The predictions from each unit
model are then combined using a weighted average, or the best
model result is selected using a voting mechanism. Because of
this, ensemble forecast models have been used by both the ML
and space science communities. For example, Murray (2018),
highlights the importance of using ensemble techniques in space
weather forecasting. Mays et al. (2015) implemented the first
ensemble prediction system for CME propagation in a real-
time prediction. Although, their ensemble approach is based on
the WSA-ENLIL + cone model, a simulation-based technique.
Guerra et al. (2015) used a linear combination of probabilistic
models to forecast solar flares. They observed that the linear
combination improves the overall probabilistic prediction for
certain values of decision thresholds.

A critical challenge for most ML techniques is dealing
with imprecise or incomplete information Hariri et al. (2019).
For example, the OMNI dataset contains approximately 20% of
missing data distributed through the years (Keesee et al., 2020).
In addition to missing data, the space weather data are
subject to stochasticity due to environmental variability. Also,
historical occurrences of intense geomagnetic storms are scarce
(Salman et al., 2018). Given that the ML models are trained

using these datasets, the model parameter estimates and output
tends to suffer from high variance and uncertainty (Ayyub
and Klir 2006; Siddique et al., 2022). Even with the implemented
models having low error during laboratory testing, these
predictions, due to their inherent uncertainty, could fail in
a real-world deployment (Siddique et al., 2022). Therefore, in
addition to model accuracy, ensuring the reliability of the model
results should also be at the forefront. Hence, there is a need to
quantify uncertainty, as it is a means through which a confidence
interval can be quantified on the model prediction and
accuracy.

A key strength of ensemble models is their ability to reduce
model prediction uncertainty (Murray 2018).The uncertainty in
the model parameters is known as epistemic uncertainty, and it
can be reduced with more data and parameter optimization
(Siddique and Mahmud 2021). However, the uncertainty
inherent in the training dataset itself is known as aleatoric
uncertainty (Siddique and Mahmud 2021). Unlike epistemic
uncertainty, aleatoric does not diminish with more data. A
vital component of an ensemble model is the aggregation
technique it uses. In recent years, Bayesian Model Averaging
(BMA) has been proposed as a statistical method to aggregate
numerical model forecasts (Vrugt et al., 2008). BMA is a form
of a probabilistic averaging scheme, and, to the best of our
knowledge, it has yet to be used in space weather forecasting
research. However, its implementation in other scientific
domains like molecular biology and atmospheric weather
predictions has exhibited its superiority over the member model
forecasts (Raftery et al., 2005; Gosink et al., 2017).

This paper aims to address the gap mentioned above in the
literature. Using solar wind and ground magnetometer data, a
Bayesian ensemble DL model has been implemented to predict
dBH/dt. The model leverages Bayesian inference to obtain a
posterior distribution for the target variable and parameters.
The dispersion of the distribution represents the uncertainty.
Given a probability distribution, theory in statistics dictates that
confidence bound can be applied. Therefore, the implemented
model quantifies the parameter and model uncertainty and
predicts the dBH/dt with a 95% credible interval. The purpose
of quantifying uncertainty is to ensure reliability in the
model’s existing prediction and accuracy (Siddique et al., 2022).
In addition, the ensemble methodology reaffirms that the
results from the model with the relative best performance are
considered with greater weight during the averaging of the final
prediction.

The remainder of the paper is arranged in the following
manner- Section 2 describes the data set, model variables
and gives an overview of the implemented model. Section 3
covers the results obtained from the model, followed by
Section 4 discussing the pros and cons of the implemented
methodology and gives recommendations for future research.
Finally, Section 5 concludes the paper.
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2 Methodology

2.1 Data acquisition and model variables

The implementedmodel was trained and tested using ground
magnetic components, interplanetary magnetic field (IMF),
and solar wind data. The baseline corrected ground magnetic
component data was obtained from SuperMAG, which curates
data from ground magnetometers across the world. For this
paper, Ottawa (OTT) was the ground magnetometer station
selected from SuperMAG. The OTT station has a magnetic
latitude of 54.98° N, and the local midnight occurs at 05:00 UT.
The solar wind and IMF data were collected from OMNIWeb,
managed by NASA’s Space Physics Data Facility (Gjerloev 2012).
Linear interpolation was used to address the missing values
in both datasets. The input data consists of IMF and solar
wind data from OMNIWeb. The input vector x⃗ contains the
IMF components, BX , BY , and BZ , along with the pressure,
temperature, speed, and proton density of the solar wind. The
target vector y⃗, represents the change in local ground horizontal
magnetic component over time (dBH/dt). The dBH/dt values are
derived using the BN and BE, ground magnetic component data
from SuperMAG. The derivation of dBH/dt is shown in Eq-1 as
the resultant value of BN and BE ground magnetic component,
where the derivatives are approximated by first differences of
BN and BE over a time interval of 1 min. For this study, the
years 2001–2010 were used for model training, and the years
2011–2015 were used for testing. The years 2011 and 2015
were specifically chosen for testing because of the 5 August
2011 and 17 March 2015 geostorms (Pulkkinen et al., 2013;
Welling et al., 2018).The training dataset was further split, where
a proportion of 20% of the data was used for validation during
model training.

dBH

dt
= √(

dBN

dt
)
2
+(

dBE

dt
)
2

(1)

2.2 Model overview

The Bayesian ensemble DL model implemented in this
paper consisted of three separate unit models, namely- Bayesian
Neural Network (BNN), Bayesian Convolutional Neural
Network (Bayesian CNN), and Bayesian Long Short Term
Memory (Bayesian LSTM) network. The three unit models
have been distinctly implemented in past studies to predict
ground magnetic perturbations using solar wind data, using
a dataset similar to this current work (Keesee et al., 2020,
Pinto et al., 2022). Therefore, the unit models were chosen to
explain and validate any formof improvement or limitation of the
ensemble methodology. Finally, the individual predictions from
eachmodel are combined using aweighted average scheme called

FIGURE 1
Bayesian ensemble model overview.

Bayesian Model Averaging (BMA) to derive the final model
result. An overview of the implemented Bayesian ensemble DL
methodology is illustrated in Figure 1.

2.2.1 Bayesian neural network
Bayesian Neural Network (BNN) architecture is the Bayesian

counterpart of a traditional feed-forward Artificial Neural
Network (ANN) (Mullachery et al., 2018; Jospin et al., 2022;
Siddique et al., 2022).The parameters in an ANN are the weights
that connect the neurons between two layers. These weights
and the final model prediction by an ANN are quantified as
point estimates. In contrast, due to the probabilistic nature
of a BNN model, both the weight parameters and the model
output are derived as a posterior probability distribution
(Fortuin et al., 2021; Siddique and Mahmud 2021). BNN
leverages Bayesian inference which dictates that the posterior
probability is proportional to the product of the likelihood
function and the prior probability (Eq. 2) (Hennig et al., 2015;
Siddique and Mahmud 2021; Siddique et al., 2022). The BNN
model is expressed as p(y|x,D), where y, x, and D, represents
the target variable, input variable, and dataset, respectively. The
measure of dispersion of the posterior weight distributions
p(w|D), and the posterior predictive distribution p(y|x,D),
is a quantification of the parameter and output uncertainty,
respectively (Tran et al., 2019; Siddique and Mahmud 2021).
The output uncertainty is a combination of both epistemic
and aleatoric uncertainty (Yao et al., 2019; Siddique et al., 2022).
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Mathematically, p(y|x,D) can be formulated as shown in Eq. 3
(Siddique and Mahmud 2021). The likelihood function is
exhibited in Eq. 4, where D = {x⃗, y⃗}, represents the training
dataset. The negative of the log-likelihood function is
maximized to obtain themaximum likelihood estimate (Gómez-
Vargas et al., 2021; Siddique and Mahmud 2021). The posterior
weight distribution p(w|D) is derived using Variational Inference
(VI), where it is approximated using Kullback-Leibler (KL)
divergence. Given a variational distribution z(w|D) of Gaussian
form, the KL-divergence of r (w—D) and p (w—D) is obtained
by minimizing the objective function (shown in Eq. 5) with
respect to θ. Given, the mathematical intractability of Eq. 5,
it’s negative form called the evidence lower bound (ELBO),
is maximized instead (Siddique and Mahmud 2021). The
mathematical expression for the ELBO function is shown in
Eq. 6. The implemented BNN consisted of 5 hidden layers, with
Rectified Linear Unit (ReLU) as the activation function. The loss
function, Mean Squared Error (MSE), was minimized using an
Adam optimizer. Unlike LSTMs, ANN are incapable of utilizing
time history on it’s own. Therefore, the temporal factor was
incorporated into the ANN by including a feature vector t that
consists of previous time steps, e.g., t− 1, t− 2, etc.

posterior probability∝ likelihood× prior probability (2)

p (y|x,D) = ∫p (y|x,w)p (w|D)dw. (3)

p (D|w) =∏p (y|x,w) . (4)

KL (r (w|θ)‖p (w|D)) = 𝔼[log r (w|θ)] −𝔼[log p (w)]

−𝔼[log p (D|w)] + log p (D) . (5)

ELBO (r) = 𝔼[log p (w)] +𝔼[log p (D|w)] −𝔼[log r (w|θ)] . (6)

2.2.2 Bayesian convolutional neural network
The second unit model in the ensemble is the Bayesian

convolutional neural network (Bayesian CNN). A CNN has an
architecture similar to a feed-forward ANN. The difference lies
as three additional layers exist between the input and hidden
layers (O’Shea and Nash 2015). The first of these layers is called
a convolutional layer, which acts as a feature extraction method
(Gu et al., 2018). The second layer is the pooling layer, which
reduces the size of the feature map from the convolutional layer
by filtering the most relevant information (Sun et al., 2017). The
last of these three layers is the fully connected layer which
flattens the reduced feature map into a column vector, which
is then forwarded to the hidden layers (Siddique et al., 2022). A
Bayesian CNN consists of a variational distribution as its weight

parameters (Gal and Ghahramani 2015; Shridhar et al., 2019).
The posterior weight distribution is derived using VI, as
discussed in Section 2.2.1. The implemented model consisted of
3 hidden layers. It uses ReLU as the activation function andMSE
as the loss function. The loss function is minimized using the
Adam optimizer. Since CNN reads in the inputmatrix all at once,
the historic temporal factor was not explicitly given as an input.

2.2.3 Bayesian Long Short Term Memory
The Long Short Term Memory (LSTM) is a variant

of recurrent neural network (RNN) (Song et al., 2017). A
traditional feed-forward NN is useful for dealing with data
independent of each other. RNN differs from a feed-forward NN
as they consist of an extra dimension of “memory” that aids
in storing information from the previous state to generate the
output for the next state in a sequence (DiPietro andHager 2020).
Thismakes RNNs suitable for dealingwith time series prediction.
As mentioned in Section 1, RNNs suffer from a “long-term
dependency” problem; as the gap in the stored information
sequence grows, it is incapable of connecting the information
(Sherstinsky 2020). LSTMs address this “long-termdependency”
issue. A typical RNN has repeating chain-like modules of NN.
A single module takes the previous cell state Ct−1 and the data
at current time step xt as inputs and passes it through a single
tanh layer to store the current cell state information Ct , as ht .
LSTM has a similar repeating structure, but in addition to the
tanh layer, it consists of three additional sigmoid layers and
five pointwise operators, namely, three for multiplication, one
for addition, and one for tanh operation. In a cell, the stored
information from the previous cell ht−1 and the current data
xt goes through each of the four layers. The first sigmoid layer
produces ft , the second sigmoid generates it , and the last one
gives ot .The tanh layer gives the candidate state Ĉt as output.The
outputs of the layers, ft , it , and Ĉt combines with the previous cell
state, Ct−1 through pointwise operations of multiplications and
additions, to generate the current cell state Ct . A tanh operation
is performed on Ct along with a pointwise multiplication of ot to
store the information as ht . Both Ct and ht are then passed on
to the next cell. The mathematical operations described thus far
is exhibited in Eqs 7, 8, 9, 10, 11, 12. The final output from the
LSTM gets passed to a Dense layer, which maps all the predicted
outputs ŷ to the output layer. In Eqs 7, 8, 9, 10, Wo and bo
represents the weights and biases. Given that the implemented
model in the paper is Bayesian, the weights are a variational
posterior distribution, which is derived by using VI described in
Section 2.2.1.

ft = σ(Wf [ht−1,xt] + bf) (7)

it = σ(Wi [ht−1,xt] + bi) (8)

ot = σ(Wo [ht−1,xt] + bo) (9)
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Ĉt = tanh(Wc [ht−1,xt] + bc) (10)

Ct = ftCt−1 + itĈt (11)

ht = ot tanh(Ct) (12)

2.2.4 Bayesian model averaging
As mentioned above, the ensemble methodology involves

the combination of results from multiple models using a form
of voting or average scheme. Given our Bayesian approach,
the output from the unit models is in the form of a posterior
probability distribution instead of point estimates. In order
to combine the posterior distributions from each model, the
past literature suggests Bayesian Model Averaging (BMA)
(Hoeting et al., 1999; Yao et al., 2018). In BMA, the results are
combined by taking a weighted average of the different model
results, and the weights are the marginal posterior probability
(Yao et al., 2018). This ensures that the aggregation step is
performed based on probability as well, making the implemented
ensemble methodology an end-to-end probabilistic approach.
If y⃗ = y1,y2,…yn are the set of observed data, and M⃗ =
M1,M2, ..Mk are the set of unit models in the ensemble, then
the posterior distribution of the combined result, ŷ is p(ŷ|y⃗) and
the mathematical formulation is shown in Eq. 13. Each model
is weighed by it’s posterior probability distribution, p(Mk|y⃗),
as exhibited in Eq. 14. The posterior probability distribution
depends on the marginal likelihood of each model, p(y⃗|Mk),
which is illustrated in Eq. 15.

p (ŷ|y⃗) =
K

∑
k=1

p(ŷ|Mk, y⃗)p(Mk|y⃗) (13)

p(Mk|y⃗) =
p(y⃗|Mk)p(Mk)

∑K
k=1

p(y⃗|Mk)p(Mk)
(14)

p(y⃗|Mk) = ∫p(y⃗|θk,Mk)p(θk|Mk)dθk. (15)

3 Results

The implemented models use Bayesian statistics to derive
the weight parameters as a posterior probability distribution.
Figure 2 shows an instance of posterior weight distribution
for each unit model obtained during training. Each weight
distribution is labeled with the mean and variance, where
the variance quantifies the model parameter uncertainty. A

credible interval was placed to ensure the robustness of the
parameter estimates. Parameter values that lie between the 95%
Highest Density Interval (HDI) were taken forward for the next
iteration of the model training. An HDI is the smallest possible
interpretation of the credible bound. A narrow credible interval
means low distribution variance; therefore, HDI is the minimum
dimension of a credible interval. With each training iteration,
the variance of the posterior weight distribution is expected
to decrease, leading to a reduction in the level of epistemic
uncertainty.

As mentioned in the previous section, the data from the 5
August 2011 and 17March 2015 storms were used for testing the
trained unit and ensemble model. The storms were selected in
accordance with the recommendations from the Pulkkinen-
Welling validation set for ground magnetic perturbations
(Pulkkinen et al., 2013; Welling et al., 2018). The storms also
correspond to two distinct solar cycle characteristics, with
the 2011 storm representing a solar cycle maximum and the
2015 storm characterizing the opposite. Figure 3 illustrates
the predicted mean dBH/dt along with 95% credible interval
bound for the storms mentioned above. The ground truth
of dBH/dt for each storm was included for comparison. The
figure only shows the first 150 min of the storm for better
visual details and exhibition of the prediction uncertainty. The
supplementary material includes the graphs containing the
predicted and observed storm data over 24 h (1,440 min). An
arbitrary predicted mean dBH/dt has been highlighted in both
the figures, along with its corresponding upper and lower bound.
This is to display that each time step, the ensemble model gives a
prediction in the form of (μ± 2σ), where μ is the predicted mean
dBH/dt, and σ is the standard deviation representing the level of
prediction uncertainty. This standard deviation is a combination
of aleatoric and epistemic uncertainty, as mentioned in
Section 1.

To further validate the performances of the models, five
distinct metrics were employed; namely, Normalized Root
Mean Squared Error (NRMSE), Probability of Detection (POD),
Probability of False Detection (PFD), Proportion Correct (PC),
and Heidki Skill Score (HSS). NRMSE is a popular metric
for evaluating the regression performance of machine learning
models (Siddique et al., 2022). It is a measure of the deviation
of the predicted value from the observed data. It is calculated
as the squared root of the mean squared difference between the
observed and predicted value (Eq. 16). The RMSE is normalized
as shown in Eq. 17. The range of NRMSE lies between 0 and
1, with 0 representing no error or perfect model performance.
The NRMSE results for each model are summarized in Table 1.
It can be observed from the table that the models performed
better for the 2015 storm compared to the one that occurred in
2011. In the case of the 2011 storm, Bayesian CNNoutperformed
all the other unit models by a small margin, and the Bayesian
LSTM performed the poorest. The NRMSE of the ensemble
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FIGURE 2
Instances of Posterior Weight Distribution For The Three Unit Models- BNN, Bayesian CNN, and Bayesian LSTM. Each Distribution is Labelled
With Their Respective Mean and Variance.

FIGURE 3
The predicted mean rate of local horizontal magnetic component (dBH/dt), with corresponding variance at each time step, for the 05 August
2011 and 17 March 2015 storms. In each graph, an arbitrary predicted mean has been highlighted along with its corresponding upper and lower
bounds, to exhibit the level of prediction uncertainty at that particular time step. The first 150 min have been shown in this figure for better visual
details and exhibition of the prediction uncertainty. The graphs containing the predicted mean and observed dBH/dt over a time period of 24 h is
included in the supplementary material.

model is comparable to the Bayesian CNN. This similarity
in performance between the Bayesian ensemble and Bayesian
CNN model was expected, given that the latter is an ensemble
unit. The unit models with relatively better performance will
be considered with more significant weight during the Bayesian
averaging step. In the case of 2015 data, the performance of
the BNN is the strongest among the unit models. It can again
be observed that the Bayesian Ensemble model has an NRMSE
which is comparable to the unit models with the relatively better
performance.

RMSE = √ 1
N

N

∑
i=1
(yi − ̂yi)

2 (16)

NRMSE = √ RMSE
ymax − ymin

(17)

The remaining metrics are chosen based on the
recommendations from Pulkkinen-Welling for the validation of
ground magnetic perturbation forecast (Pulkkinen et al., 2013;
Welling et al., 2018). The four metrics are based on binary
event analysis, where the observed and predicted time series
values are divided into non-overlapping windows consisting of
20 min each. Four thresholds are considered for the analysis,
18 nT/min, 42 nT/min, 66 nT/min, and 90 nT/min. The local
maximum dBH/dt value fromboth observed and predictedmean
is determined for each window. If the observed and predicted
mean crosses a given threshold, it is a true positive or a Hit
(H). If neither crosses the threshold, there is a true negative
(N). If the predicted local maximum crosses but the observed
counterpart does not, then there is a false positive (F). In the
case where the observed local maximum crosses the threshold
whereas the predicted local maximum does not, then there is a
false negative (M). The four metrics POD, PFD, PC, and HSS
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TABLE 1 Normalized rootmean squared error (NRMSE) for each of the unit models, and the bayesian ensemblemodel.

Model 05-08-2011 storm NRMSE 17-03-2015 storm NRMSE

BNN 0.50 0.27
BAYESIAN CNN 0.49 0.29
BAYESIAN LSTM 0.58 0.31
BAYESIAN ENSEMBLE 0.48 0.28

TABLE 2 Validationmetrics for the 05 August 2011 and the 17March 2015 geomagnetic storms using predicted dBH/dtmaximum values for every
20 min time period. The threshold values (18, 42, 66, and 90) have a unit of nT/min.

Model Metric 2011 storm 2015 storm
Thresholds (nT/min) Thresholds (nT/min)

18 42 66 90 18 42 66 90

BNN POD 0.38 0.00 — — 0.15 0.15 0.19 0.00
PFD 0.08 0.00 0.00 0.00 0.01 0.02 0.11 0.00
PC 0.88 0.97 1.00 1.00 0.78 0.88 0.90 0.89
HSS 0.39 0.00 — — 0.29 0.11 0.19 0.00

BAYESIAN CNN POD 0.40 0.01 — — 0.17 0.15 0.20 0.00
PFD 0.13 0.00 0.00 0.00 0.08 0.14 0.14 0.00
PC 0.81 0.84 1.00 1.00 0.73 0.73 0.87 0.89
HSS 0.32 0.00 — — 0.27 0.09 0.19 0.00

BAYESIAN LSTM POD 0.10 0.00 — — 0.17 0.00 0.00 0.00
PFD 0.11 0.01 — — 0.05 0.10 0.02 0.10
PC 0.78 0.97 1.00 1.00 0.69 0.76 0.87 0.87
HSS 0.10 0.00 — — 0.12 0.01 0.01 0.00

BAYESIAN ENSEMBLE POD 0.39 0.01 — — 0.13 0.15 0.16 0.00
PFD 0.11 0.00 0.00 0.00 0.07 0.10 0.11 0.00
PC 0.85 0.90 1.00 1.00 0.75 0.81 0.87 0.89
HSS 0.37 0.00 — — 0.26 0.12 0.19 0.00

are calculated for each of the four thresholds. POD measures
the fraction of observed threshold crossing that was correctly
predicted (Pulkkinen et al., 2013), and it is calculated as shown
in Eq. 18. POD ranges from 0 to 1, with 1 representing a perfect
score. POD is used with PFD, which denotes the number of
intervals where the threshold crossings were predicted but did
not occur.Themathematical formulation for PFD is exhibited in
Eq. 19. PFD also ranges from 0 to 1, but 0 represents the ideal
score in this case. The third metric is PC, which measures the
proportion of correct prediction and is calculated as illustrated
in Eq. 20. PC is of particular interest when calculating HSS. HSS
is the proportion of correctly predicted threshold crossings after
deducting the crossings due to random chance. The reference
model used in calculating theHSS is the PC obtained for random
predictions, statistically independent of the observations. The
formula for calculating HSS is given in Eq. 21. HSS has a range
of −∞ to 1. A negative HSS indicates that the random predictions
are better than themodel predictions; 0 indicates that the random
and model predictions are the same, that is, the model has no
skills; and a positive scoremeans themodel predictions are better

than random, with 1 corresponding to a perfect score.

POD = H
H+M

(18)

PFD = F
F+N

(19)

PC = H+N
H+N+ F+M

(20)

HSS =
2 (HN−MF)

(H+M) (M+N) + (H+ F) (F+N)
(21)

Table 2 summarizes the validation metric scores for each
model when tested with the storms mentioned above. The
missing values in the table are due to no occurrences of the
observed and predicted dBH/dt crossing the higher thresholds.
The overall POD and HSS values show that the models have
a better performance with the 2015 storm than with the 2011
storm. This is consistent with the findings from the NRMSE
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metric above. It can be deduced that not only do the models
perform better in predicting point estimates of dBH/dt, but it is
also able to capture the time series trend better and spikes in
dBH/dt for the 2015 storm relative to its 2011 counterpart. In
the case of the 2011 storm, the BNN outperforms the other unit
models. This is evident in the high POD and PC values and the
low PFD values. However, all the models only show a positive
HSS score for the first threshold and have skills equal to that of
a random reference model for the remaining three thresholds.
Even amongst the first threshold, BNNhas the highest skill score.
In the case of the 2015 storm, the POD and PFD values are
comparable.

Regarding HSS, all the unit models have positive skills scores
by a small margin for the first three thresholds, with BNN
having the highest score among the three. For both storms,
the ensemble model has a performance comparable to the
performance of the best unit model. This is again consistent
with the findings from the NRMSE metric, as the ensemble
model considers the best model results with a greater degree of
weight. Amongst the four metrics, HSS was the primary metric
used for comparison, as has been the case for other studies
using a similar dataset (Keesee et al., 2020; Pinto et al., 2022).
However, using a single metric can be restrictive as, at times,
it can fail to provide deeper insight into the model’s strengths
andweakness (Pinto et al., 2022). For example, in the case ofHSS
(Eq. 21), in case of aweak event, the numerator and denominator
could both end up being zero, in which case we would end
up with “NaN” values (Pulkkinen et al., 2013). Therefore, other
supporting metrics must be incorporated into the study as well.

4 Discussion and future work

The ensemble methodology implemented in this paper
exhibits as a result that the performance of different model
architectures varies based on the data set used for testing. This is
evident from the NRMSE values in Table 1, where the Bayesian
CNN had the best performance for the 2011 storm, whereas the
BNN had the strongest performance for the 2015 storm. The
ensemble nature of the approach ensures that the result from the
bestmodel architecture is carried forward towards the final result
with greater weight during averaging. In addition, a substantial
portion of the training dataset consists of quiet times with
low geomagnetic fluctuations, whereas the models were tested
against geomagnetic storms, which consist of high fluctuations.
This could cause the model outputs to suffer from a degree of
biasness. Bayesian statistics allows the models to quantify model
uncertainty and predict the output with a confidence interval,
thus ensuring reliability in the model’s obtained output, in case
there are any biasness. However, there is room for improvement
in the implemented approach. The Bayesian nature of the
model, especially the BayesianAveraging step, is computationally

expensive. Therefore, in its current form, any attempt at real-
time prediction with the existing ensemble model will have
significant time lags. This can be addressed by introducing a
form of distributed DL. In distributed ML, multiple Graphics
Processing Units (GPUs) are employed to speed up the training
and testing process. This is achieved by either performing model
parallelism or data parallelism. In model parallelism, the model’s
different layers into separate GPUs. In data parallelism, the
same model versions exist in distinct GPUs, and a different
subset of data is run on each version of the model. A similar
principle of distributed learning can be applied in ensemble
learning, where each unit model is executed on different GPUs,
along with the weighted average scheme for the final prediction
being performed in a distinct GPU. Depending on the time and
space complexity issue at hand, data parallelism can also be
applied.

Keesee et al. (2020) used a dataset similar to this study, where
they tested a trained ANN and LSTM model against the 2011
and 2015 storms using data set from the Ottawa station. In
their work, only the ANN came close to predicting the initial
spike of the 2011 storm, whereas both models failed to capture
the initial spike for the 2015 storm. However, in our case, the
implemented ensemble model was close to capturing the initial
spike for both storms. This improvement for the 2015 storm
forecast can likely be attributed to the inclusion of the CNN
as a unit model of the ensemble. Furthermore, the findings
of our LSTM are consistent with the paper mentioned above.
The LSTM model generally performed the poorest across both
storms in their study. They suggested that the poor performance
can likely be attributed to their model implementation. In their
LSTM, they did not include the time history of the features,
despite it being the strength of such a model. However, the
LSTM implemented for our work does consist of the temporal
history but still fails to show a marked improvement. Therefore,
this paper recommends that different cell structures for LSTM
be explored in future research endeavors to determine the best
design for forecasting ground magnetic perturbation. Given the
black-box nature of DL, researchers have adopted practices to
explain how the model maps the inputs features to the outputs
(Ras et al., 2022). Therefore, similar practices can be explored
when applying DL in future ground magnetic perturbation
forecast studies to understand better a model’s performance and
how its architecture can be improved tomap the problem in focus
adequately.

5 Conclusion

This paper developed a Bayesian Ensemble DL model to
quantify model uncertainty while predicting dBH/dt values
using solar wind and ground magnetometer data. The ensemble
consisted of a BNN, Bayesian CNN, and Bayesian LSTM. A
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Bayesian weighted average scheme was employed to determine
the final prediction with a 95% confidence interval. Five
metrics were used to evaluate the model performance: NRMSE,
POD, PFD, PC, and HSS. The models were tested against
the storm data from 05 August 2011 and 17 March 2015.
All the models performed better with the 2015 storm than
the one that occurred in 2011. Amongst the unit models,
BNN outperformed the others, and the accuracy and skill
of the ensemble model are comparable to the BNN. The
paper further discusses the implemented approach’s pros and
cons and recommends future improvements and research
avenues.
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