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Supervised Machine Learning (ML) models for solar flare prediction rely on

accurate labels for a given input data set, commonly obtained from the

GOES/XRS X-ray flare catalog. With increasing interest in utilizing ultraviolet

(UV) and extreme ultraviolet (EUV) image data as input to these models, we

seek to understand if flaring activity can be defined and quantified using

EUV data alone. This would allow us to move away from the GOES single

pixel measurement definition of flares and use the same data we use for

flare prediction for label creation. In this work, we present a Solar Dynamics

Observatory (SDO) Atmospheric Imaging Assembly (AIA)-based flare catalog

covering flare of GOES X-raymagnitudes C,M and X from2010 to 2017.We use

active region (AR) cutouts of full disk AIA images to match the corresponding

SDO/Helioseismic and Magnetic Imager (HMI) SHARPS (Space weather HMI

Active Region Patches) that have been extensively used in ML flare prediction

studies, thus allowing for labeling of AR number as well as flare magnitude

and timing. Flare start, peak, and end times are defined using a peak-finding

algorithm on AIA time series data obtained by summing the intensity across

the AIA cutouts. An extremely randomized trees (ERT) regression model is

used to map SDO/AIA flare magnitudes to GOES X-ray magnitude, achieving

a low-variance regression. We find an accurate overlap on 85% of M/X flares

between our resulting AIA catalog and the GOES flare catalog. However, we

also discover a number of large flares unrecorded or mislabeled in the GOES

catalog.
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1 Introduction

There is growing interest in using ultraviolet (UV) and
extreme ultraviolet (EUV) images from instruments such as
the NASA Solar Dynamics Observatory (SDO) Atmospheric
Imaging Assembly (AIA) or the NOAA Geostationary
Operational Environment Satellite (GOES) Solar Ultraviolet
Imager (SUVI) for prediction of solar magnetic eruptions, as
these images may contain more precursor features associated
with eruptions than the photospheric magnetic field data
that have been primarily used to date. Modern data analytic
methods for solar eruption prediction have centered on the
use of machine learning (ML) models to derive predictive
patterns from the increasing amounts of solar imaging data
accumulated over the past several decades , for example, the
work of (Qahwaji and Colak, 2007; Bobra and Couvidat, 2015;
Barnes et al., 2016; Nishizuka et al., 2017; Jonas et al., 2018;
Leka et al., 2019a; Leka et al., 2019b; Park et al., 2020). The most
common ML models to date rely on “supervised learning” in
which researchers must provide labeled data for training the
model. These labels must accurately identify eruptive from non-
eruptive states for each image in any given training data set as
well as eruptive magnitudes for studies that aim to provide both
timing and magnitude predictions.

Solar eruption timing and magnitude are currently defined
usingmeasurements of X-ray radiation from the associated “solar
flares” measured with the NOAA Geostationary Operational
Environment Satellite (GOES) X-ray Sensors (XRS) instrument.
GOES XRS measurements are full-disk, “Sun as a star,” spectral
irradiance measurements acquired at a 1-s cadence in two
wavelength bands: the XRS-A channel from 0.5–4 Å and the
XRS-B channel from 1 to 8 Å. Flare magnitude classes of A, B,
C, M and X are defined by their peak irradiance in the XRS-B
channel1. A key characteristic of GOES/XRS flare identification
is that until the recent GOES-R instruments, first launched in
2016, there was no spatial information to locate the eruption site
on the disk. Instead, human forecasters used X-ray, UV, and/or
EUV imaging observations (typically from the GOES Solar X-
ray Imager, SXI, AIA or SUVI) for post-facto identification of the
sunspot active region (AR) that generated the eruption, adding
potential for error since at least two separate observational
systems with a human in the loop are required. In fact, sunspot
ARs are identified and numbered based on a third observational
data type (solar continuum images), adding yet another source
for error in associating an AR number with any given eruption.
The GOES-R instruments added the ability to estimate flare

1 Historically the alphabetical scale stood for “Common”, “Medium”, and
“eXtreme” flares. “A” and “B” flares were subsequently added below C
flares to account for flares during solar minimum periods. See https://
www.swpc.noaa.gov/products/goes-x-ray-flux for details on X-ray flare
data and flare classification.

locations using a quad-diode sensor rather than the single
pixel sensor of previous XRS implementations, however the
locations from this system are only accurate for large flares,
and the instruments have only been in operation since 2016
(Chamberlin et al., 2009), which was approaching the minimum
of activity in Solar Cycle 24 (c.2008–2019).

The GOES X-ray flare catalog2, which has entries from 1975
to the present, is the most extensive record of solar eruptions
to date. It includes peak X-ray irradiance, disk location in
heliographic coordinates, the associated sunspot AR number, as
well as start, peak, and end times for flares from B-magnitude
(XRS-B peak irradiance between 10–7 and 10–6 Wm−2) and
above. It is one of the most common source of labels for
supervised ML model development, but it has compatibility
problems when used with ML models that use training data
based on images of individual sunspot ARs rather than full-disk
data. Specifically, if the training data are individual ARs, it is
imperative that the labels derived from the GOES catalog are 1)
available for each AR in the training set, and 2) accurate across
the entire training set for all flare intensities. ML models are
particularly sensitive to training set labelling errors, particularly
when studying episodic and impulsive events like solar eruptions
in which the training set is inherently highly imbalanced: the
high temporal cadence of modern solar telescopes ensures that
there are alwaysmanymore “no flare” labelled images than “flare”
labelled images for any predictive time window.

We note that there are additional flare catalogs available. In
fact, there is a new GOES database3, which is recommended for
use and includes a reprocessed flare summary for data from 2010
to 2020. While this database will be useful for future studies,
flare locations are currently only available from 2017 onward, so
the summary of flares from 2010 to 2020 based on the GOES-
15 satellite only includes flaring timing and magnitude data, not
even corresponding ARs. Another commonly used catalog is
obtained from the Heliophysics Event Knowledgebase (HEK)4.
For this analysis, we compare to the older GOES flare catalog 2,
which is known to have errors, allowing us to test the robustness
of our AIA-based catalog in detecting those errors. We refer to
this event list as the GOES flare catalog for the remainder of this
work.

Because of their higher occurrence frequency and the
ambiguity inherent in locating smaller flares during periods
when multiple ARs are on the disk, many flares at and below
C-class lack an associated disk location and/or AR number in
the GOES catalog, making these events unusable for ML model
training. Even a significant fraction of M-flares lack a disk

2 Available at https://www.ngdc.noaa.gov/stp/space-weather/solar-data/
solar-features/solar-flares/x-rays/goes/xrs/.

3 Available at https://www.ngdc.noaa.gov/stp/satellite/goes-r.html.

4 Available at https://www.lmsal.com/heksearch/.
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position or associated AR number in the catalog. In addition,
a number of C- and even many M-class flares are assigned to
incorrect ARs in the GOES catalog. Cursory investigation has so
far identified on the order of 20 cases in which M-class flares are
either lacking a disk position and/or AR number, or are assigned
to the incorrect AR number in the GOES catalog.We show below
that we have also discovered on the order of 50 cases in which
M-class flares , as estimated by our AIA-based flare magnitude
regression model, are entirely absent from the catalog, some of
whichmay be due to amismatch in timing between the GOES X-
ray measurements and flaring activity in AIA. For our associated
ML flare prediction project which relies on training images of
flaring and non-flaring ARs from Solar Cycle 24, which was
a relatively weak activity cycle, this translates into a potential
increase of approximately 15% of images in the training set that
should be labelled as “flare” images, which would significantly
compromise our model’s predictive skill without correction.

In this study, we explore the possibility of defining and
classifying flares using only UV and EUV imaging data of
individual ARs, thus producing an internally consistent process
for labelling ML training data: since we are already creating AR
cutout images as the training data, there is no need to rely on a
secondary data source or catalog for event labelling ormagnitude
classification. In addition, studies of the upper atmospheric
impacts of flares show that the majority of ionization above
about 100 km in the thermosphere is caused by enhancements
in EUV radiation in the 10–300 Å range (Solomon, 2005;
Qian et al., 2012). Thus GOES/XRS magnitude alone is often
not indicative of the ionospheric impact of major flares. For
example, the largest X-ray flare in the GOES catalog (X28.0
on 4-November-2003) had a lesser impact on ionospheric total
electron content (TEC) than the significantly smaller X10.0
flare on 14-July-2000 due to a much lower broadband EUV
enhancement, possibly related to the limbward disk position
of the larger flare (Tsurutani, 2005). Studies have attempted
to correlate GOES/XRS 1–8 Å measurements to broadband
EUV irradiance (e.g., 13) with limited success. The SDO
mission includes the Extreme ultraviolet Variability Experiment
(EVE) instrument specifically to address this issue. Having an
independent “EUV flare” definition from imaging data may
aid both ML model development as well as upper atmospheric
ionization studies. The main questions being investigated here
are:

• Can we use AIA data to identify solar flares and reliably
quantify their magnitudes?
• How well do the resultant EUV flare magnitudes

correlate with the historically important GOES X-ray flare
magnitudes?
• Can we create a ML-based regression model to predict the

flare GOES class from EUV magnitudes?

In Section 2 we describe the SDO/AIA data and pre-
processing steps. Section 3 shows the correspondence between
flare start and end times defined in UV and EUV images
with those listed in the GOES flare catalogs and verifies
prior studies looking at correlation of UV and EUV flare
emission relative to X-ray flare emission (Wood andNoyes, 1972;
Mahajan et al., 2010; Le et al., 2011). In Sec. 4 we investigate the
correlation between UV and EUV image intensity in AR cutout
images with GOES X-ray irradiance for M- and X-class flares
via a machine learning (ML) regression model based on an
extremely randomized tree (ERT) model. Finally, we discuss our
conclusions in Section 5.

2 Data

For our studies, we use SDOAIAUV and EUV solar imagery
data. AIA provides full-Sun images at 12–24 s cadence for 6
EUV and 3 UV channels, respectively (Lemen et al., 2012). For
this study, we create AR cutouts from the original full-disk
AIA images congruent with the Space weather HMI Active
Region Patches (SHARPs) (Bobra et al., 2014) defined from the
SDO Helioseismic and Magnetic Imager (HMI) photospheric
magnetic field data. We choose six wavelength channels for
our study: the 94, 131, 171, 193, 304, and 1600 Å channels,
and we subsample the AIA data to 1-min cadence for all
wavelengths but 1600 which is subsampled to 72 s. We call
these SHARP congruent AIA cutouts “AIA SHARPs” for brevity.
We preprocess the AIA SHARPs using the aiapy python library
to normalize the images based on exposure time and correct
for instrument degradation (Barnes et al., 2020). The fine-scale
inter-wavelength alignment is not applied to the AIA SHARPs
data since the aiapy routine for this correction is specific to
full-disk AIA images. This does not pose a problem for our
study since we are not relying on inter-wavelength spatial
relationships for flare identification. In addition to AIA SHARPs
image data, we make use of the HMI SHARPs metadata, using
the physics-based features derived from the vector magnetic
field data as additional inputs to our ML regression model as
shown in Section 4.1. The HMI data is available at 12 min 
cadence.

We consider only flares that occurred in AR cutouts with
centers between ±65° heliographic longitude from disk center.
This ensures that the SHARPsmagnetic fieldmetadata associated
with each flare is optimally accurate but has the disadvantage of
eliminating limbflares fromour study.We also remove flareswith
corresponding missing or corrupted HMI SHARPS metadata,
which eliminates 93 SHARPS from the data set. In addition, we
only consider nonempty SHARPS with an associated sunspot
AR. Note that the flares considered and their corresponding
ARs were based on the GOES flare catalog, which we will show
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FIGURE 1
Examples of GOES-associated flares as observed in AIA summed-pixel intensity time series for (A): a M2.9 flare in SHARP 211 on 2010/10/16, (B):
a X1.4 flare in SHARP 1834 on 2012/07/12, (C): a M9.9 flare in SHARP 3535 on 2014/01/01, and (D): a M1.3 flare in SHARP 5011 on 2015/01/04.
The solid lines show the sum of the AIA pixel intensities over the AIA SHARP image for various wavelengths, the dashed line shows the GOES
XRS-B intensity with the right hand y-axis for scale. The blue box depicts the time window of the flare specified in the GOES catalog. The black
“x” markers indicate peaks as obtained by our peak finding procedure, and black “.” markers indicate start times. The AIA curves have not been
shifted or normalized in these plots. Note that the AIA DN/s scales are different for each plot. The oscillations in the 193 Å and 131 Å curves in
panel (B) are due to undercompensation for the AIA auto-exposure function.

contained some errors. It would be of interest to run our analysis
on the full set of SHARPs including those which are “non-
flaring” according to the GOES catalog, however, as this would
entail months more of data downloading, we leave this to future
investigation.This leaves us with 457 flaring AIA SHARPs, which
contain 968 B-flares, 2269 C-flares, 243 M-flares and 16 X-flares
between 2010, the initial year of SDO operations, and 2017
when Solar Cycle 24 declined beyond producing M- or X-flares,
according to theGOES catalog. To avoid the difficultymentioned
in the introduction with flares at and below C-class in the GOES
catalog, we consider only flares ofmagnitude≥M1 for comparing
flare timing between AIA and GOES. We extend our analysis to
includeC-flareswhen estimating flaremagnitudes.This relatively
low number of events to study emphasizes the severe impact of
having even a few mislabelled events, particularly when working
with ML prediction or regression models. Efforts to extend
available ML training data by including EUV and magnetic field

data from the ESA/NASA Solar and Heliospheric Observatory
(SOHO) mission (1997–2011), are currently ongoing.

3 Estimating and comparing flare
onset and peak times

3.1 Peak finding algorithm

For a given AIA SHARP cutout image, we first calculate the
sum of intensity over all the pixels in the image, reducing the
image to a scalar number.This is done for each frame in time, i.e.,
every minute, and for each of the 6 wavelengths, giving 6 scalar
time series. We refer to each wavelength time series as an “AIA
light curve.” Over a flaring event this light curve experiences a
peak, as shown in the examples in Figure 1. By identifying the
peaks and defining their duration as detailed below, we define
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TABLE 1 Parameters for the find_peaks routine. Height is theminimumpeak height to be considered, and relative height is theminimum relative height
from start to peak. These were chosen based on a conservatively low threshold for detecting ≥C1 flares andwere found to give robust results.

AIA 94 AIA 131 AIA 171 AIA 193 AIA 304 AIA 1600

Absolute Height 3.0e5 1.0e6 1.5e7 2.5e7 9.0e6 5.0e6
Relative Height 5.0e4 2.0e5 1.5e6 2.5e6 9.0e5 5.0e5

FIGURE 2
Comparison of start and peak times for flaring as measured in AIA. (A), discrepancy in minutes between AIA flare start times and GOES flare start
times. (B), discrepancy in minutes between AIA flare peak times and GOES flare peak times (note that the GOES flare catalog does not contain
peak times for flares after 2017/06/30 so we only include available data). (C), time between flare start and peak for AIA flares.

TABLE 2 Mean, standard deviation andmedian inminutes for comparison of flare timing in AIA channels vs. GOES.

AIA Channel Time from GOES start to AIA start Time from AIA start to AIA peak
Mean Std Median Mean Std Median

94 2.3 12.3 1.0 17.1 13.0 13.0
131 2.2 9.9 0.0 13.7 10.5 10.0
171 2.7 14.8 0.0 13.6 15.9 7.0
193 2.4 12.2 0.0 14.2 15.7 9.0
304 −0.3 10.0 −1.0 13.6 15.0 8.0
1600 0.4 11.7 −1.0 10.1 13.3 6.0

the start, peak and end times of the flare for each of the AIA
wavelengths. As expected, these quantities will differ between
AIA wavelengths and from the GOES/XRS definitions.

From the generated light curves for each AIA SHARP, the
algorithm proceeds as follows:

1) We apply the peak finding routine find_peaks from the
SciPy signal processing toolbox to find the peak locations
across the AIA SHARP time window, as well as the locations
on either side of the peak where the peak has decayed
to 80% of its relative height. This routine takes certain
parameters as input to filter peaks, including the minimum
absolute height, relative height (called prominence in the
find_peaks input parameters), and width. We specify a
wavelength dependent absolute and relative height, given in
Table 1, and a minimum width of 3 min.

2) We define the flare start time based on when the curve
starts to steepen before the peak. Given the light curve for

a wavelength, f(t), we approximate the first derivative f ′

with a first-order forward finite difference and the second
derivative f ′′ using a second-order finite difference. We
then find the time before each flare peak where f ′′ > 0
and f ′ > 0.05max ( f ′(t)). We define the start time as the
closest point in time to the 80% threshold level that satisfies
these derivative conditions and is within 60 min of the flare
peak. This point may be before or after the 80% threshold
is achieved. If no point prior to the flare peak satisfies the
derivative conditions, we define the start as the time of the
80% threshold level for the flare peak. The reason we use
derivative conditions when possible for the start time rather
than the 80% threshold level is because there is often a
definitive point in time where the EUV irradiance starts to
increase rapidly as the flare begins, as can be seen in Figure 1,
and we wish to capture this point as accurately as possible.

3) The flare end time can be defined as the closest point to where
the curve has decayed by 80% of its peak within 2 hours or
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FIGURE 3
Peak intensity in AIA wavelengths as a function of GOES flare magnitude. Units of AIA intensity are “Data Numbers” (DN) per second, i.e., raw
detector output not calibrated to irradiance units. In all cases, decreasing GOES magnitude is associated with higher spread in AIA intensities.
The 131 and 94 Å channels show the tightest correlation with GOES X-ray magnitudes.

the time to the next peak. Unlike the flare onset, the
decay of a flare is gradual and there are usually no sharp
changes in the EUV irradiance or its derivative, so we
use different conditions for the end time than the start
time.

4) We locate the start, peak, and end times in each of the 6
AIA wavelength time series and then define an “AIA flare”
as an event where at least three of four wavelengths (94 Å,
131 Å, 304 Å and 1600 Å) have overlapping peaks. We say
that two wavelengths have overlapping peaks if the flare start
time in one wavelength is after the flare start time but before
the flare end time of the other wavelength. This subset of the
six original wavelengths was chosen because the remaining
two (171 Å and 193 Å) are noisier signals and undergo more
intensity enhancements not associated with the impulsive
flare phase (e.g., post-flare loop enhancements).

We note that the number of detected events depends strongly
on the parameters given in Step 1. We selected conservatively
low parameters in order to detect the majority of ≥ C1 flares
in the GOES flare catalog. Doing so means that the algorithm
may detect multiple events for larger flares with more than one
peak. For the purposes of labelling machine learning data sets
for solar flare forecasting where one is often trying to detect
the largest flare in a given time window, this behavior proved
acceptable. If one was interested in only largerM/X flares, setting
the parameters higher than the given values in Table 1 might be
more appropriate.

3.2 Comparison of AIA-defined flares
with GOES definitions

Prior work has investigated the relationship between EUV
flare observations and X-ray observations, including use of
integrated EUV intensity as a scalar timeseries. An early study
in (Wood and Noyes, 1972) looked at EUV observations of
solar flares and found correlation between EUV and X-ray peak
times. A study of several X class flares in EUV demonstrated
poor correlation between EUV peak flux and X-ray flux, which
was improved by including central meridian distance (CMD)
(Mahajan et al., 2010), while a statistical study of X-ray and EUV
flux enhancements for solar cycle 23 showed that this CMDeffect
was primarily seen in X-class flares and much weaker for M- and
C-class flares (Le et al., 2011). Flare timing was also qualitatively
compared in (Mahajan et al., 2010). Images in AIA 94 have
been used to detect flares (Kraaikamp and Verbeeck, 2015), and
statistical correlation between these detected flares and peak
GOES X-ray flux was shown in (Verbeeck et al., 2019). Here we
conduct a wider statistical study of both flare times and peak flare
intensity in several AIAwavelengths as found by our peak finding
algorithm, and compare these to the GOES definitions.

The resulting list of AIA flares from the algorithm in
Section 3.1 is compared to the GOES flare catalog automatically
to find overlapping events. For AIA flares that align with
GOES flares, we compare flare times and magnitudes. For AIA
peaks that do not correspond to a GOES catalog entry of any
magnitude, we generate movies of large events and perform a

Frontiers in Astronomy and Space Sciences 06 frontiersin.org

https://doi.org/10.3389/fspas.2022.1031211
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


van der Sande et al. 10.3389/fspas.2022.1031211

qualitative study to determine if these events were missed by the
GOES instrument (e.g., because the event may not have had X-
ray irradiance above the B-class level), mislabelled in the catalog,
or are due to other intensity enhancements than flaring. These
large events were those whichwe estimated to beM/X-class flares
using the ML method described in Section 4. We discuss these
events in Section 4.3. We also looked at M/X-class flare events
that were identified in the GOES catalog, but not detected as flare
events by the above described peak-finding algorithm. Through
this process, we found 18 events that did contain peaks in the
AIA light curves, so we manually identified their timing and
magnitude data, and added them to the catalog. We also checked
flare timings for M/X-class flares and eliminated flare duplicates
when there are multiple peaks detected within a flaring event.
This resulted in corrections to 18% of flare entries, the majority
of which were edits to the flare end times. This indicates that
there is opportunity to improve the automatic detection of flare
end times, however, as the end times are less relevant for flare
prediction, we leave this to future investigation.

After running the peak finding algorithm on the AIA
SHARPS and verifying M/X flares, we are able to cross correlate
using AIA data alone 2389 out of 3496 flares associated with
a GOES label (68%): 276 out of 968 B-flares (29%), 1861 out
of 2269 C-flares (82%), 236 out of 243 M-flares (97%) and 16
out of 16 X-flares (100%). Several example AIA light curves
during flares are shown in Figure 1, depicting the peaks and
start times as found by our peak-finding algorithm as well as the
associated GOES flaring time window. We can see that the shape
and character of the flares vary greatly.

The histograms in Figure 2 compares the start and peak
times for the M- and X-class flares studied. Figure 2A shows
that different AIA wavelengths start to exhibit flaring at
slightly different times relative to the GOES flare start time,
although the majority of flares differ in start time by less than
10 min while Figure 2C shows that most flares peak within
15 min. A summary of the timing comparison is given inTable 2.
Interestingly, Figure 2B shows that all the wavelengths have a
similar rise time of 8 min from start to peak. In Figure 3, we
compare the magnitude of the peaks in AIA with the X-ray
magnitudes observed by GOES. Although all channels show
some correlation, AIA 131 and 94 are the most tightly correlated
with GOES X-ray magnitudes.

4 Estimating flare magnitudes with
AIA data using ML-based regression

The results of the previous section show that we can
identify flares of various magnitudes solely from the AIA
SHARP summed-pixel time series. These identifications
have the advantage over GOES flare identifications of being
automatically associated with a particular SHARP active region,

thus eliminating the potential for error in location assignment
that characterizes the GOES process. We note that SHARP active
region designations do not always match the official NOAA AR
designations: there are cases where one SHARP region includes
two or more NOAA AR designations. The mapping between
SHARP numbers and NOAA AR numbers is available from the
SDO Joint Science Operations Center (JSOC)5. In addition to
defining the timing and location of flaring events based on AIA
data, we show that we can also correlate these events to historical
X-ray magnitudes using a machine-learning regression model,
thus leading us to a full AIA-based flare catalog.

4.1 ML architecture and data input

Experiments were conducted using an extremely
randomized trees (ERT) model with input features extracted
from AIA images and SHARP meta-data. An ERT is a type
of ensemble method, where the base estimators are decision
trees and the final output is computed by averaging the results
of all the individual estimators (Geurts et al., 2006). Ensemble
methods are often used to reduce variance or bias that can result
from a single estimator. ERTs and other tree-based ensemble
methods such as random forests (Breiman, 2001), although
relatively simple machine learning models, have been shown
to be broadly applicable to both classification and regression
problems [see (Boulesteix et al., 2012; Criminisi et al., 2012;
Biau and Scornet, 2016) and references within]. Decision
trees themselves are fundamental ML models that are often
used to introduce the ideas of ML-based classification, as in
(Murphy, 2022). Each decision tree is built starting with a base
node and splitting the data based on a feature or set of features;
this process continues iteratively until a maximum depth or
minimum impurity is achieved. The splitting criteria at each
node is chosen to minimize some loss metric – here we find the
minimum absolute error (MAE) to perform the best. In an ERT,
the full data set is used to construct each tree, many candidate
splitting thresholds for each feature are randomly generated at
each node, and the best split is chosen from these. We use the
sklearn implementation in Python of an ERT regressor.

The ERT model operates on features obtained from AIA
SHARPs and HMI SHARP metadata. All 6 AIA wavelengths
are used. For each AIA wavelength (94, 131, 304, 171, 193, and
1600 Å), we consider the following features: the peak summed-
pixel value over the flare in DN/s (λ_magnitude), the difference
between that peak and the summed-pixel value at the flare
start time in DN/s (λ_rel_magnitude), the maximum number
of saturated pixels in the AIA cutout over the duration of

5 http://jsoc.stanford.edu/doc/data/hmi/harpnum_to_noaa/
all_harps_with_noaa_ars.txt.
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TABLE 3 AIA andHMI SHARP based features for the ERTmodel. For AIA based features with channel λ, we consider all 6 wavelengths
(λ = 94 Å, 131 Å, 171 Å,304 Å, 193 Å, 1600 Å).

Acronym Description Units

λ_magnitude Peak intensity of AIA channel λ DN/s
λ_rel_magnitude Difference between peak and start intensity of AIA channel λ DN/s
λ_est_size Maximum number of saturated pixels for AIA channel λ pixels
λ_duration Time from AIA channel λ start to end seconds
Nx width of the AIA SHARP cutout pixels
Ny height of the AIA SHARP cutout pixels

LAT_FWT Latitude of the flux-weighted center of active pixels degrees
LON_FWT Longitude of the flux-weighted center of active pixels degrees
AREA_ACR Line-of-sight field active pixel area micro-hemispheres
USFLUX Total unsigned flux Mx
MEANGAM Mean inclination angle, gamma degrees
MEANGBT Mean value of the total field gradient G/Mm
MEANGBZ Mean value of the vertical field gradient G/Mm
MEANGBH Mean value of the horizontal field gradient G/Mm
MEANJZD Mean vertical current density mA/m2

TOTUSJZ Total unsigned vertical current A
MEANALP Total twist parameter, alpha 1/Mm
MEANJZH Mean current helicity G2/m
TOTUSJH Total unsigned current helicity G2/m
ABSNJZH Absolute value of the net current helicity G2/m
SAVNCPP Sum of the absolute value of the net currents per polarity A
MEANPOT Mean photospheric excess magnetic energy density ergs/cm3

TOTPOT Total photospheric magnetic energy density ergs/cm3

MEANSHR Mean shear angle (measured using Btotal) degrees
SHRGT45 Percentage of pixels with a mean shear angle greater than 45° percent
R_VALUE Sum of flux near polarity inversion line G
NACR The number of strong LOS magnetic field pixels in the patch N/A
SIZE_ACR Projected area of active pixels on image micro-hemispheres
SIZE Projected area of patch on image micro-hemispheres

TABLE 4 Comparison of results for different input features wheremetrics are given in terms of the average over the 10 random seeds ± the standard
deviation. Thesemetrics are evaluated in log of X-raymagnitude.

Metric AIA SHARPS AIA and HMI SHARPS HMI SHARPS

RMSE 0.148 ± 0.005 0.145 ± 0.005 0.396 ± 0.007
MAE 0.104 ± 0.003 0.103 ± 0.003 0.294 ± 0.004
R2 0.886 ± 0.009 0.890 ± 0.009 0.185 ± 0.027
Relative L2 Error (M/X only) 0.035 ± 0.004 0.034 ± 0.004 0.169 ± 0.006

the flare (λ_est_size), and the duration of the flare in seconds
(λ_duration). Also included is the size of the AIA cutouts, Nx
and Ny. The full set of input features is given in Table 3. The
HMI SHARP parameters are available in the SDO/HMI dataset
metadata and are a standard set of physics-based features chosen
for their flare predictive abilities (Bobra et al., 2014). All input
features are normalized to have zero mean and unit variance
based on the training data. The output of the model is the GOES
X-ray flare magnitude, normalized by taking the log and scaling
between 0 and 1. The model is trained on the input features and
corresponding output labels, and then can be used to estimate
outputs based on new input data that were not included in the
training set.

There are several hyperparameters that can be adjusted for
ERT models. We perform hyperparameter tuning using 5-fold

cross validation to determine the number of decision trees and
the minimum impurity decrease, or Gini impurity index, which
is a threshold for when to stop splitting the decision trees. The
data is split into 80% training and 20% testing for 10 different
random seeds. A 5-fold cross validation is performed on the
training data of each of these 10 seeds and the final parameters are
chosen based on the best results across experiments. The tuned
model has 100 decision trees and a Gini impurity index of 4e-5.

4.2 Results

The data was split by flare category so that the same
proportion of C, M and X flares were in the training and test
set. Only flares found by the peak finding algorithm and by the
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FIGURE 4
Predicted vs. true flare magnitudes using AIA SHARPS features for both training and test data, (A) AIA SHARPs features only, (B) AIA and HMI
SHARPs features. The closest seed to the mean result in Table 4 is depicted, which is a different split for each feature set.

FIGURE 5
Feature importance rankings for the experiment with both AIA
and HMI SHARPs features (right). The results from each random
seed are shown in faint colors, while the dark colored dots depict
the average importance. Only the top 20 features are shown.

manual verification process described in Section 3 that have an
associated GOES flare were included in both the training and test
data, in order to have a true flare magnitude label associated with
the data.

To evaluate our results we consider four metrics: the root
mean squared error (RMSE), themean absolute error (MAE), the
coefficient of determination or R2 score, and the relative L2 error.
These are computed as follows,

RMSE = √ 1
N

N

∑
i=1
(yi − ŷi)

2, (1)

MAE = 1
N

N

∑
i=1
|yi − ŷi|. (2)

R2 = 1−
∑

i
(yi − ŷi)

2

∑
i
(yi − ȳ)

2
(3)

Relative L2 Error = √
N

∑
i=1

(yi − ŷi)
2

y2i
(4)

where yi are the true values and ŷi are the predicted values.
For the relative L2 error, we compute the metric only on M
and X flares to see how well the model is performing on large
flares compared to the entire dataset. Other than the R2 score,
the best performance for these metrics is a score of 0 and
the smaller the value the better. The R2 score lies between 0
and a perfect score of 1 with larger values indicating greater
correlation.

A comparison between the ERT results is shown in Table 4,
where all metrics are evaluated in log of X-ray magnitude
of the test data. We can see that only using physics based
HMI SHARPs features is insufficient for determining flare
magnitudes, but using AIA SHARPs based features we can
estimate flare magnitudes with high accuracy. Given that the
standard deviations for the metrics given in Table 4 are so low,
we show results from a single seed, that is, closest to the mean
result in Figure 4. Figure 4A shows the experiments with AIA
SHARPs features only and Figure 4B shows both AIA and HMI
SHARPs.We notice that: 1) addingHMI SHARPs features makes
insignificant difference, and 2) there tends to be a slight under
prediction for C-class flares.
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One advantage of ERT models is their interpretability.
Figure 5 shows the feature ranking in terms of the Gini
importance (a measure of how much each feature contributes
to improving the decision tree splitting) for the top 20 inputs
to the ERT models for the experiment with the full AIA
and HMI SHARPs based features. Any additional features
are not shown because they are essentially irrelevant for the
ERT prediction. These included the vast majority of HMI
SHARPs features. Of interesting note, the location of the
cutout on the disk is irrelevant. This indicates that flaring is
isotropic over the disk and that EUV scales with X-ray flare
magnitude.

4.3 Estimating magnitudes of flares
without GOES labels

Using the trained model, we can estimate flare magnitudes
for AIA peaks which are not associated with a GOES flare. The
majority of these peaks are small, and thus not important for
predicting large flares. However, we are able to find andmanually
verify an additional 62 M flares and 2 X flares based on the
magnitudes estimated by the ERT, which do exhibit a peak in
the raw GOES X-ray data, but do not appear in the GOES flare
catalog. Most, but not all of these events appear in the HEK flare
catalog (see link in Section 1).

5 Conclusion

Prior investigations have showed limited correlation between
flare signatures in EUV and X-ray (Mahajan et al., 2010;
Le et al., 2011; Verbeeck et al., 2019). However, there have
also been efforts to automatically detect flares using extreme
ultraviolet SDO/AIA data (Martens et al., 2012; Kraaikamp and
Verbeeck, 2015). In this work, we move beyond just detecting
flares inAIA to correlatingAIA based features to theGOESX-ray
flare magnitudes using a machine learning model, thus offering
a way to define solar flares using AIA data and complement
the GOES/XRS instrument as a tool for measuring flares. Using
summed-intensity time series of AIA SHARPs cutouts in several
wavelengths, we automatically detect peaks corresponding
to flaring activity and denote start, peak and end times. We
manually verify large M/X flares to corroborate our peak-finding
results. Using features extracted from AIA images of flares, we
then correlate to the corresponding X-ray flare magnitudes. An
extremely randomized trees model trained on these features as
well as physics-based features from the corresponding SHARP
HMI image obtains 3.4% error in log magnitude on the test set
for large M/X flares. However, it is noted that HMI SHARPs
features are unnecessary. The result of this work is an AIA-based
flare catalog, which we compare to the GOES X-ray flare catalog.
Through this comparisonwe identify 20mislabelledM/Xflaresin

the GOES catalog and 64 M/X flares missing from the GOES
catalog.

Given the popularity of supervised machine learning models
for solar flare forecasting, it is critical that flare labels are accurate.
Using an AIA-based flare catalog and incorporating AIA data as
inputs, we hope to improve performance of solar flare forecasting
machine learning models. Future areas of investigation include
extending our extreme ultraviolet based catalog to SOHO/EIT
data to add another decade of flare activity.
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