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Effects of suprathermal
electrons on electron-acoustic
instabilities
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Department of Physics, College of Science, Civil Aviation University of China, Tianjin, China

We study the electron-acoustic instabilities in plasmas with two kappa-

distributed electrons and stationary ions. The instabilities are driven by the

relative drift between two electron components. The suprathermal effects

of different species on growth rates and instability thresholds are analyzed

and compared by numerical calculations. The present study reveals that the

suprathermal electrons with slow most probable speed play more important

roles than the suprathermal ones with fast most probable speed. The former

significantly reduces the instabilities and raises the instability thresholds. The

parameters used in this study are inspired from the observations in Earth’s

magnetopause.
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1 Introduction

The suprathermal electrons are ubiquitous in non-equilibrium space plasmas.
Many observations indicate that these non-thermal electrons could be modeled very
well by the kappa distribution in various plasma systems, such as solar winds
(Pierrard et al., 2016; Lazar et al., 2017), discrete auroral arcs (Ogasawara et al., 2017),
the planetary magnetosphere (Dialynas et al., 2009; Hapgood et al., 2011), and cometary
plasmas (Broiles et al., 2016; Myllys et al., 2019). The three-dimensional kappa velocity
distribution is usually written as (Pierrard et al., 2016; Lazar et al., 2017),

fκ (v) =
1

(κπθ2)3/2
Γ (κ+ 1)

Γ(κ− 1
2
)
(1+ v2

κθ2
)
−κ−1
, (1)

where θ is the most probable speed (MPS) related to the kinetic temperature by,

θ =
√κ−

3
2

κ
2kBT
m
, (2)

according to the definition kBT = ∫
1
3
mv2fκdv. The kappa distribution (1) converges

to the Maxwellian one when the parameter κ goes to infinity. Thus, a finite
kappa index measures the distance divergent from the Maxwellian equilibrium.
Although the kappa distribution has been widely used in the literature, the formation
mechanism is still under discussion (Yoon, 2014; Livadiotis, 2019b; Guo, 2020; 2021b).
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Thesuprathermal particles play an important role in affecting
the physical properties of plasmas, such as the Debye length
(Hatami et al., 2018; Livadiotis, 2019a), the transport coefficients
(Wang and Du, 2018; Guo and Du, 2019; Husidic et al., 2021),
and collision frequencies (Wang et al., 2021). A number of
waves in kappa-distributed plasmas behave very differently
from those in thermal equilibrium. The dust ion-acoustic waves
were studied in unmagnetized plasmas with kappa-distributed
particles (Baluku and Hellberg, 2015; Lazar et al., 2018). These
works found that the dispersion and Landau damping of
dust ion-acoustic waves are critically changed in the presence
of suprathermal electrons and ions. Arshad et al. (2015)
investigated the Landau damping of Langmuir twisted waves
in kappa-distributed plasmas. They found that the damping of
Langmuir waves in the planar electric field is stronger than those
in the twisted electric field.

Among these waves, the electron-acoustic wave (EAW)
and its corresponding instability explain several phenomena in
space plasmas, such as the formation of broadband electrostatic
noises (Pottelette et al., 1999; Singh et al., 2001) and electron
heating in solar flaring loops (Chen et al., 2020). Gary and
Tokar (1985) first studied the behaviors of EAW and its
instabilities (Gary, 1987) in Maxwellian plasmas with hot and
cool electrons. Mace et al. (1999) investigated the suprathermal
effects on EAWs by assuming the kappa-distributed hot
electrons, which found that the suprathermalization would
reduce the Landau damping. Danehkar et al. (2011) studied
the electron-acoustic solitary waves with suprathermal hot
electrons and found that the kappa index affected the shape
of solitons. Baluku et al. (2011) developed these works by
modeling both hot and cool electrons with kappa distributions.
Their investigation showed that the hot-to-cool temperature
ratio and hot electron density are the two main factors
determining the damping rate. However, in contrast to the
above studies, our recent work (Guo, 2021a) implied that the
decisive factor of the damping rate is not the temperature
difference but the sufficient gap of MPSs between two kappa-
distributed electrons. It showed that the weakly damped
EAWs could propagate in plasmas with two kappa-distributed
electrons having the same temperature but different kappa
indices.

In this work, we study the suprathermal effects on the
electron-acoustic instabilities (EAIs) driven by the relative drift
between two kappa electrons. The most interesting findings
are the suprathermal effects for different species appear very
distinct. The paper is organized as follows. In section 2,
we introduce the theoretical model of EAW propagating in
plasmas with two kappa-distributed electrons. In section 3, we
analyze the suprathermal effects of each electron component
and study the thresholds of relative drifts to excite unstable
EAWs. At last, we make conclusions and discussions in
section 4.

2 Model

We consider a collisionless and electrostatic plasma
consisting of two electron components and one ion component.
The ions are assumed to be spatially uniform and static to
provide a neutral charge background. The two electron species
are modeled by the three-dimensional kappa distributions
(Summers andThorne, 1991; Mace and Hellberg, 1995),

f (v) = ∑
σ=s,f

nσ
(κσπθ

2
σ)

3/2

Γ(κσ + 1)

Γ(κσ −
1
2
)
[1+
(v− uσ)

2

κσθ
2
σ
]
−κσ−1

, (3)

where, for σ species, the number density is denoted by nσ , the
kappa index by κσ , the MPS by θσ , and the drift speed by uσ .
The kappa index κσ has to be larger than 3/2 to maintain the
convergence of the second moment of the kappa distribution (3)
(Livadiotis and McComas, 2010).

The subscripts σ = s, f distinguish between two different
electron components, which we call slow- and fast-MPS
electrons, respectively, with the assumption θs < θf . These
terminologies may be different from the other works studying
EAWs. In the literature, these two electrons are called cool and
hot electrons due to their different temperatures. However, our
previous work (Guo, 2021a) showed that the weakly damped
EAWs could propagate even if the two electrons have the same
temperatures in kappa-distributed plasmas.The reason is that, in
terms of Eq. 2, the MPSs of different species could be different
if the temperatures are the same and the kappa indices are not.
Moreover, the difference between the MPSs is the main factor
determining the EAW damping rate rather than the temperature
difference in kappa-distributed plasmas (Guo, 2021a). Hence, it
is not appropriate to differentiate between the two electrons by
their temperatures. The two populations are renamed slow- and
fast-MPS electrons due to their different MPSs. We must stress
that the words “slow” and “fast” do not denote the bulk speed of
electrons in the present paper.

The kinetic temperature can be derived,

kBTσ =
κσ

κσ −
3
2

mθ2σ
2
. (4)

it is worth noting that the parameters κσ , θσ , and Tσ are
related by Eq. 4, resulting in that only two of them are
independent variables. The kappa index must be independent
of other parameters, so either Tσ or θσ depends on κ. These
two choices could be both valid but for different physical
processes (Hellberg et al., 2009; Yoon, 2014; Livadiotis, 2015;
Lazar et al., 2016). Lazar et al. (2016) suggested that θσ should
be a κ-independent parameter if the kappa distribution is
formed due to some particle acceleration processes. Their work
reveals that such a choice is suitable for studying the effects
of suprathermal particles. Hence, we treat the MPS θσ as
a κ-independent parameter. The suprathermalization in this
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work means that the electron distribution changes from the
Maxwellian distribution to the kappa one. In this process, the
kappa index reduces from infinity (Maxwellian) to a finite value.
Meanwhile, we assume that the MPS θσ does not change.

As we know, the EAI would be triggered due to a non-zero
relative drift between the two electron components. Gary (1987)
pointed out two different types of drifts describing two different
systems. The first case is that both the slow- and fast-MPS
electrons have non-zero drift speeds relative to the stationary
ions. In this case, another electron-ion acoustic instability,
besides EAI, would be excited because of the relative motion
between drifting slow-MPS electrons and static ions.The second
case is that the fast-MPS electrons drift with respect to the slow-
MPS electrons and ions, but there is no drift between slow-MPS
electrons and ions. In this case, only EAI would be triggered,
leading to an unstable wave parallel to the drifting velocity of
fast-MPS electrons. The latter system is studied in this work
to focus on the suprathermal effects on EAIs. Furthermore, we
choose the slow-MPS electrons as the reference frame, so the
ions are immobile, the slow-MPS electrons has no drift (us = 0),
and the fast-MPS electrons drift with a non-zero speed (uf ≠ 0).
We emphasize that such a plasma system has a non-zero current
carried by the drifting species.

To analyze the suprathermal effects of slow- and fast-MPS
electrons, we compare the EAIs in the following three models.
The first model is a contrast model in which the plasma
consists of Maxwellian cool and hot electrons that are called
the slow- and fast-MPS ones in the present study. We denote it
as the Maxwellian-Maxwellian (MM) model hereafter. In MM
plasmas, the two electrons can be differentiated by either the
MPSs or the temperatures because the MPS (2) is directly
determined by the temperature in the limit of κ→ ∞. So,
the slow- and fast-MPS electrons are just alternative names for
the cool and hot ones in this case. The second Maxwellian-
kappa (MK) model is constituted by slow-MPS Maxwellian
electrons and fast-MPS kappa-distributed ones. Similarly, the
third model, suprathermalizing only slow-MPS electrons, is
denoted as the kappa-Maxwellian (KM) model. As we proved
in the previous studies (Guo, 2021a), the gap between the MPSs
is the definitive factor for the EAW damping. One could infer a
similar conclusion for the growth rate in EAI studies. Therefore,
we have to compare the three models with the same θs and θf .
Under this condition, the suprathermalization would increase
the temperature because a smaller kappa index results in a higher
temperature in Eq. 4 if θσ is fixed. We have to stress that the
temperatures for two electrons are unnecessary to be the same
in this work.

Some observations and simulations supported the existence
of the plasmas studied in the present work, i.e., the system
consisting of drifting fast-MPS electrons, non-drifting slow-
MPS electrons, and immobile ions. Ergun et al. (2016) studied
the electrostatic waves observed at the Earth’s magnetopause,

including the ion-acoustic, the electron-acoustic, and the
beam mode. These waves were successfully explained by their
simulations of the fast-MPS (hot) magnetosheath plasmas
flowing into the slow-MPS (cool) magnetosphere ones.

The KM model is rare in the literature, but the plasma
system described by such a model probably exists in space.
The suprathermal electrons were observed in the Earth’s
magnetosheath (Kasaba et al., 2000) and magnetosphere
(Hapgood et al., 2011; Eyelade et al., 2021), which could
be modeled by the kappa distribution. However, it does
not mean that the electrons in the magnetosphere and
magnetosheath can only be kappa-distributed; those electrons
can also be Maxwellian. Thereby, it is entirely possible that
the magnetosphere electrons are kappa-distributed and the
magnetosheath electrons are Maxwellian. In the magnetopause,
the fast-MPS (hot) Maxwellian electrons in the magnetosheath
might flow into the slow-MPS (cool) kappa-distributed electrons
in the magnetosphere, which is just the system described by the
KMmodel.

3 Numerical analysis

The linear dispersion relation of EAIs could be inferred from
those of stable EAWs (Mace and Hellberg, 1995; Guo, 2021a),

1+ ∑
σ=s,f

2ω2
σ

k2θ2σ
[1− 1

2κσ
+ ξσZ(κσ;ξσ)] = 0, (5)

with the replacement ξσ = (ω− k ⋅ uσ)/(kθσ). In the above
equation, for σ component, ωσ = √nσe2/(mε0) is the plasma
frequency, k is the wave vector, and Z(κσ ; ξσ) is the modified
plasma dispersion function given by (Mace and Hellberg, 1995),

Z(κσ;ξσ) =
Γ(κσ)

√πκσΓ(κσ −
1
2
)
∫
+∞

−∞

(1+ s
2

κσ
)
−κσ−1

s− ξσ
ds, (6)

which can be re-written in the form of the hypergeometric
function for numerical purposes (Mace and Hellberg, 1995),

Z(κσ;ξσ) = i
(κσ +

1
2
)(κσ −

1
2
)

κ3/2σ (κσ + 1)
 2

× F1[1,2κσ + 2;κσ + 2;
1
2
(1−

ξσ
i√κσ
)]. (7)

The analytical growth rate is not derived here.
Baluku et al. (2011) indicated that the analytical damping rate
of EAWs in kappa-distributed plasmas is highly complex, so it
has little practical value. We could infer that the growth rate of
EAIs also has a complicated expression which provides limited
information.

Thereby, the dispersion relation (5) is solved numerically
throughout this paper.The hypergeometric function is calculated
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by mpmath, a Python library for floating-point arithmetic with
arbitrary precision. The codes of this study could be found at:
https://github.com/rguo1988/EAI-in-kappa-plasmas.

3.1 Wave frequency and growth rate

The unstable wave propagates in the direction parallel to the
drift speed uf , so we can only consider this parallel direction,
reducing the system to a one-dimensional plasma. By integrating
Eq. 3, the one-dimensional kappa distribution is,

f1D (v) = ∑
σ=s,f

nσ

√κσπθ2σ

Γ(κσ)

Γ(κσ −
1
2
)
[1+
(v− uσ)

2

κσθ
2
σ
]
−κσ
, (8)

which is plotted in Figure 1 for all three models. The
distributions are illustrated in a global velocity range on the
left panel while magnified in a low velocity region on the right
panel. We set κs = ∞ and κf = 2 for MK model, while κs = 2
and κf = ∞ for KMmodel throughout this paper. In this figure,
the MPSs are set as θs = 0.1 and θf = 1 for all three models. The
drift of fast-MPS species are uf /θs = 10. The number densities
are ns/n0 = nf /n0 = 0.5, where n0 = ns + nf is the total electron
density.The above parameters are inspired from the observations
of space plasmas (Ergun et al., 2016; Eyelade et al., 2021). In
comparison with the MM model, the suprathermalization of
fast-MPS electrons (MK model) changes the distribution in
medium and high speed regions but does not change that in the
low speed region, as shown by the blue dotted-dashed lines in
Figure 1. However, the suprathermal slow-MPS electrons play a
different role. The KM and MM distributions overlap with each
other in the medium speed region but diverge in low and high
speed regions, as shown by the red dashed lines in Figure 1.

The real frequency, growth rate, and wave speed of EAIs
are illustrated in Figure 2. In this figure, the parameters of the
three models are set as the same as those in Figure 1. The
normalized wavenumber kθs/ωs is used rather than kλκσ where
λκσ is the Debye length in kappa-distributed plasmas given by
(Livadiotis, 2019a),

λκσ = √
κσ −

3
2

κσ −
1
2

√
ε0kBTσ

nσe
2 = √

κσ
2κσ − 1

θσ
ωσ
. (9)

The reason is that the Debye length (9) is κ-dependent,
leading to different λκσ in three models. One does not
expect the dimensionless wavenumber changes due to the
suprathermalizations of different species in comparisons.
Therefore, we use kθs/ωs as the normalized wavenumber,
unchanged for varied kappa indices.

Figure 2 implies that the suprathermal effects of each species
are distinct. In the upper panel, we find the suprathermal slow-
MPS electrons (KM model) affect the wave frequency to a
small extent at long wavelengths but to a large extent at short

wavelengths, as shown by the red dashed line. However, the
suprathermalization of fast-MPS electrons (MK model) only
slightly alters the wave frequency in the long-wave region but
has almost no effects in the short-wave area, as shown by the
blue dotted-dashed line. These suprathermal effects on the wave
frequency are very similar to those of stable EAWs without
drifting components, which has been already studied in previous
works (Baluku et al., 2011; Guo, 2021a).

In the middle panel of Figure 2, the EAIs would be declined
by the suprathermalization of both slow- and fast-MPS electrons.
The suprathermal slow-MPS electrons (KMmodel) suppress the
instabilities more than the fast-MPS ones (MK model) in large
wavenumbers, but the conclusion is quite the contrary in small
wavenumbers. This effect can be attributed to the derivatives
of distributions at the wave speed. As we know, the growth
rate of an unstable wave has a positive correlation with the
derivative of distributions at the wave speed. From the lower
panel of Figure 2, one finds the range of unstable EAW speed
is roughly 2.5 ≤ ωr/(kθs) ≤ 9. In such a velocity region, the
suprathermalization of slow-MPS electrons would flatten the
total distribution and lesson the velocity range with a positive
slope, as shown by the red dashed line in the right panel of
Figure 1. On the contrary, one finds that the suprathermalization
of fast-MPS electrons modifies the slope of the total distribution
moderately and hardly alters the positive slope region. It could be
presentedmore clearly by the derivatives of electron distributions
(8),

df1D
dv
= − ∑

σ=s,f

nσ

√κσπθ2σ

Γ(κσ)

Γ(κσ −
1
2
)
[1+
(v− uσ)

2

κσθ
2
σ
]
−κσ−1

×
2(v− uσ)

θ2σ
, (10)

which are drawn for all three models in Figure 3 with the same
parameters used in Figure 1. Figure 3 illustrates that both the
KM andMKmodels lead to decreased derivatives by comparison
with the MM model. The reduction of the positive derivatives
implies that the EAWs in KM and MK models have a smaller
growth rate than the MMmodel. In addition, the KMmodel has
a smaller derivative than theMK one for a slow EAWbut a larger
derivative for a fast EAW. Consequently, the slow EAWs aremore
stable in the KMmodel than theMKmodel, while the fast EAWs
have the opposite conclusion, as shown in the middle and lower
panel of Figure 2.

3.2 EAI threshold

The EAI is excited by the relative drift between two electron
species. We plot the EAW growth rate with different drift
speeds uf /θs = 10,7 and 4 in Figure 4. The kappa indices of
the three models, the MPSs, and the number densities are the
same as those in Figure 1. It shows that the maximum γ/ωpe
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FIGURE 1
The one-dimensional velocity distribution for MM, MK, and KM models. The parameters κs =∞ and κf = 2 are set in MK model, while κs = 2 and
κf =∞ in KM model. For all three models, the MPSs are set as θs = 0.1 and θf = 1. The drift of fast-MPS species are uf/θs = 10. The number densities
are ns/n0 = nf/n0 = 0.5, where n0 = ns + nf is the total electron density.

FIGURE 2
The wave frequency (upper panel), growth rate (middle panel),
and wave speed (lower panel) of EAIs in the three models. The
parameters are set as the same as those in Figure 1. The real
frequency ωr and growth rate γ are both scaled by the total

plasma frequency ωpe = √ω2
s +ω2

f .

decreases during the diminution of the drifting speed uf /θs. The
suprathermalization of slow-MPS electrons (red dashed line)
accelerates this process dramatically, but the suprathermal fast-
MPS electrons (blue dotted-dashed line) affect barely. It suggests
the suprathermal slow-MPS electron would raise the instability
threshold significantly. Figures 5, 6 are plotted to illustrate the
threshold of drift speeds for different slow-MPS component
fractions ns/n0 and the MPS ratios θf /θs. Figure 5 indicates
that the suprathermalization of slow-MPS electrons (KMmodel)
narrows the parameter space of the instabilities obviously, as
we expected. Furthermore, it is also not surprising that the
EAI in the KM model is harder to trigger with an increasing
fraction of slow-MPS electrons because it is the suprathermal

FIGURE 3
The derivatives of velocity distributions for three models in the
range of unstable EAW speeds. The parameters are set as the
same as those in Figure 1.

slow-MPS electrons that enhance the EAI threshold. However,
in the case of the MK model, the suprathermalization slightly
changes the unstable region. Therefore, the suprathermal fast-
MPS electrons only have a little influence. Figure 6 shows
similar results that the instability separatrix is shifted upwards
by suprathermalizing slow-MPS electrons (KM model) but is
nearly unchanged by suprathermalizing fast-MPS ones (MK
model). The suprathermalization of slow-MPS electrons raises
the instability threshold rapidly when the gap between the MPSs
enlarges. It could be explained as follows. When θf /θs increases,
the EAW speed appears in the tail of the slow-MPS electron
distribution, wheremore particles are suprathermalized and thus
raise the instability threshold.

It is worth noting that most results from the earlier work
(Gary, 1987) were based on the zero-current system (Figures 4–8
inGary’s paper). It is different from the plasma systemconsidered
in the present study (see Gary, 1987, 1993). Nevertheless,
Figure 2 in Gary’s work (Gary, 1987) was calculated in the same

Frontiers in Astronomy and Space Sciences 05 frontiersin.org

https://doi.org/10.3389/fspas.2022.1030557
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Guo 10.3389/fspas.2022.1030557

FIGURE 4
EAW growth rate for varied drift speeds. The kappa indice of
three models, the MPSs, and the number densities are the same
as those in Figure 1. The legend is as same as Figure 2.

FIGURE 5
EAI threshold of the relative drift uf/θs for different fractions of
slow-MPS electrons ns/n0 in three models. The MPS ratio
θf/θs = 10 is fixed in this figure.

FIGURE 6
EAI threshold of the relative drift uf/θs for different MPS ratios
θf/θs in three models. The fraction of slow-MPS electrons
ns/n0 = 0.5 is fixed in this figure.

system as the present study. In that figure, Gary showed that
the approximate instability threshold is v0/vc ≈ 5, where v0
is the drifting speed of hot electrons and vc = √Tc/m is the
thermal speed of cool species. This threshold is calculated with

the parameters nc/n0 = nh/n0 = 0.5 and Th/Tc = 100, where
nc (nh) is the number density and Tc (Th) is the temperature
for cool (hot) electrons. In our notations, Gary’s threshold is
rewritten as uf /θs ≈ 3.5 for ns/n0 = nf /n0 = 0.5 and θf /θs = 10,
which is consistent with our results of the MM model in
Figure 5.

The results of two suprathermal electrons, i.e., the kappa-
kappa model, could be estimated qualitatively from those of the
KM and MK models. On the one hand, the dispersion relation
(5) implies that the suprathermal effects of both components
could be regarded as a sum of the suprathermal effects of each
species. On the other hand, the suprathermal electrons with
slowMPS significantly change the instability threshold, while the
suprathermal fast-MPS ones affect the threshold only to a small
extent. Therefore, the results of the KKmodel must be very close
to those of the KMmodel, just like the results of theMK andMM
models shown in Figures 5, 6.

4 Summary and discussion

In this work, we investigate EAIs in plasmas with two kappa-
distributed electrons and static ions. The two electrons are
called the slow- and fast-MPS ones in terms of the different
MPSs. We assume the slow-MPS electrons and immobile ions
have no drift, and the instabilities are triggered by the drifting
fast-MPS electrons. To analyze the suprathermal effects of
different species, we study three models in which the two
electrons follow MM, MK, and KM distributions, respectively.
By comparing the growth rates in three models, we find
both the suprathermalizations of slow- and fast-MPS electrons
reduce the instabilities. The results are illustrated in Figure 2.
Further, the slow-MPS suprathermal electrons suppress the
unstable wave more strongly than the fast-MPS ones in large
wavenumbers but play the opposite role in small wavenumbers.
Besides, the suprathermalizations also affect the threshold
of the drifting speed exciting the instabilities, as shown in
Figures 5, 6. It implies that the suprathermalizations of slow-
MPS electrons significantly raise the instability threshold while
the suprathermal fast-MPS electrons affect the threshold only to
a small extent.

The present investigation may be used to study the
behaviors of real space plasmas. For instance, we consider the
processes that the cool (slow-MPS) magnetosphere plasmas
mix with the hot (fast-MPS) magnetosheath plasmas, which
could occur in magnetopause (Ergun et al., 2016). In terms of
the observation data (Ergun et al., 2016), the typical parameters
for such processes are ns∼ 1 cm−3, nf∼ 10 cm−3, Ts∼1 eV,
and Tf∼100 eV. This parameter set leads to ns/n0∼ 0.1, and
θf /θs∼ 10 for the MM model, θf /θs∼ 5 for the MK model, and
θf /θs∼ 20 for the KM model. Therefore, the parameters used
in Section 3 are in the same order of magnitude as the actual
parameters. Although the magnetosheath and magnetosphere
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are magnetized plasmas, our work can be applied to analyze the
electrostatic waves parallel to the magnetic field.
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