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For over a decade, the SpacePy project has contributed open-source solutions

for the production and analysis of heliophysics data and simulation results. Here

we introduce SpacePy’s functionality for the scientific user and present relevant

design principles. We examine recent advances and the future of SpacePy in the

broader scientific Python ecosystem, concluding with some of the work that

has used SpacePy.
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1 Introduction

The roots of the SpacePy project (Morley et al., 2022) date back to 2009, although the

first public presentation of SpacePy was to the 9th Python in Science conference in 2010

(Morley et al., 2011). The mission statement of the open source library, given in both the

conference proceedings and on the original web page, was “to promote accurate and open

research standards by providing an open environment for code development. In the space

physics community there has long been a significant reliance on proprietary languages

that restrict free transfer of data and reproducibility of results. By providing a

comprehensive library of widely-used analysis and visualization tools in a free,

modern and intuitive language, we hope that this reliance will be diminished for non-

commercial users”(Morley et al., 2011).

Now, 12 years after the presentation of SpacePy and eleven after its initial open source

release, we present a summary of the present state of the library, a retrospective view of

SpacePy’s development, and a look to the future of SpacePy and its place in the

heliophysics scientific software ecosystem (e.g., Burrell et al., 2018). For scientists in

the field, we introduce the research-enabling functionality of SpacePy and the scientific

Python ecosystem, including examples of previous studies. For research software

engineers (e.g., Crouch et al., 2013), we discuss how SpacePy is designed to

interoperate with the greater technical and social ecosystem of heliophysics software.

The domain of SpacePy is space physics broadly speaking, i.e., heliospheric and

magnetospheric physics, including magnetosphere-ionosphere coupling. Strict solar

physics and isolated ionospheric physics are outside of the usual scope, although

SpacePy functionality may be useful in those fields.
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2 Design goals

SpacePy is designed as a library; that is, its primary access is

via the public application programming interface (API), rather

than a user-facing application. Target users are scientists and

engineers writing custom code for specialized analysis and

visualization of data or model results, producing archival-

quality data sets, or creating a more user-facing interactive

application. The developers consider SpacePy a success when

it is used to provide functionality to higher-level codes and uses

lower-level libraries to provide the “building blocks” of such

functionality.

As with other scientific libraries, the reliability and fidelity of

results is essential. A thorough testing suite ensures

reproducibility of results, and a test-first approach to fixing

bugs prevents regressions. Absolute accuracy of results up to

the numerical precision of the computer is considered less

important than documenting the expected precision, the

regimes in which results are reliable, and the source of the

algorithm, including citation of the literature where

appropriate (e.g., in empirical models).

SpacePy development is user-driven: functionality is

developed to meet a specific scientific or mission operations

goal. Developers are scientists in the field. This ensures

applicability of the implementation; the distinction between

SpacePy and project-specific code is the conversion to

maintained, tested, and widely applicable functionality.

On the computational side, the API aims to be carefully

designed, “Pythonic” in nature (Alexandru et al., 2018) and in

accordance with software engineering good practices such as

abstraction. One illustration of the success of this approach is the

pycdf interface (Section 3.1.1). Although independently

developed, the resulting interface is very similar to the h5py

HDF5 library (Collette, 2013); the SpacePy datamodel was

developed along similar lines at the same time. This

minimizes the cognitive load required to access similar data

from differing container formats, allowing the user to focus on

problem solving rather than interface peculiarities.

SpacePy has been available to the general public under an

open source license since 2011. The SpacePy license is essentially

that of Python itself, with the only change being replacing

references to Python with SpacePy, and to the Python

Software Foundation with Triad National Security, LLC, as

the initial licensor. This license, often called “the PSF license”,

is a BSD-style permissive license approved by the Open Source

Initiative, the Free Software Foundation, and the Debian Free

Software Guidelines. Before arrangements were made for this

public release, SpacePy was briefly provided under a restrictive

non-commercial license upon request (Morley et al., 2011).

The SpacePy install and update process supports a range of

deployment and update strategies. Although the most common

means of installation is automatic management via pip, manual

download and installation from source remain options for those

users who wish to install into a shared location on a multi-user

system, do not have full Internet access on their deployed system,

or have other particular needs. Similarly, SpacePy supports a

wide range of versions of its dependencies and changes these

requirements at specific version numbers only (where the

subminor version is 0, e.g., 0.2.0, 0.3.0). API changes are also

made at predetermined version numbers, with deprecation

warnings providing a graceful migration path. The

documentation clearly states versions of API changes, even for

versions in the past, to support users updating their code. The

SpacePy team recognizes that users have a range of needs, may

have limited control of their operating environment, and need to

interoperate with other packages which may have stricter

requirements; thus SpacePy is designed to be as flexible as

practicable on these issues.

SpacePy takes a balanced approach to using other packages as

dependencies: maximizing the use of mature, robust

dependencies decreases the maintenance load of SpacePy

itself, as well as enhancing interoperability, but may place

additional burden on users (even those who do not use the

functionality for which a dependency is required). The approach

is to bring in a dependency where it provides significant (rather

than incidental) functionality, ideally supporting multiple

components of SpacePy. The specifics are left intentionally

vague. More importantly, the functionality provided by each

dependency is explicitly documented, and SpacePy will install

without most dependencies. Section 6 describes the future

direction of dependency handling.

Over the past few years (Section 4), compliance with Python

in Heliophysics Community (PyHC) standards (Annex et al.,

2018) has been a major design consideration.

3 Capability and architecture

All capabilities described in this section are available in the

current release, SpacePy 0.4.0, available at https://pypi.org/

project/spacepy/. Capabilities are also summarized in the

SpacePy documentation at https://spacepy.github.io/

capabilities.html. A graphical overview of key namespaces

(i.e., modules) in SpacePy is shown in Figure 1.

3.1 Datamodel

On of the core capabilities of SpacePy is its data model

representation, which was introduced shortly after Morley et al.

(2011). SpacePy uses a description, based on that used by HDF5,

which uses three key concepts: groups, datasets, and attributes.

Groups are analogous to file system directories, and can contain

both groups and datasets. Datasets are n-dimensional arrays of

data. Attributes are metadata that is carried with either a group or

a dataset. SpacePy’s spacepy.datamodel.SpaceData class
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implements the group by subclassing dict, while the

spacepy.datamodel.dmarray implements the dataset as a

subclass of numpy.ndarray. Each of these classes carries

metadata in a Python dictionary accessed via the attrs

attribute. The structure of the object can be displayed using

the spacepy.datamodel.SpaceData.tree method.

FIGURE 1
Core capabilities organized by namespace in the SpacePy package.
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The datamodel thus provides a file-format agnostic

representation of data that preserves metadata. The data

model objects can be constructed and used without requiring

either input or output, however, read and write support is

provided. Supported file formats include:

• NASA CDF: NASA’s Common Data Format.

• HDF5: Hierarchical Data Format 5.

• NetCDF: Unidata’s Network Common Data Form.

• JSON-headed ASCII.

Spacepy’s datamodel readers are currently all greedy by

default, in that they load files all-at-once. While this is

convenient for many users, for very large data files or for

systems with read/write speed limitations this can be sub-

optimal.

The datamodel is normally agnostic to the interpretation of

metadata, so it can be used for a wide range of metadata

standards. This may be a simple human-readable informal

representation. Additional functions are provided for the case

where metadata are ISTP/SPDF compliant.

3.1.1 NASA’s common data format
SpacePy has provided first class support for NASA CDF,

including full read and write, since September 2010 through the

spacepy.pycdf module. pycdf provides a pythonic interface to the

NASA CDF library, and requires that the user obtain that library

from NASA. This approach is taken to reduce duplication of

functionality and maintain a clear separation of responsibility:

NASA develops and maintains CDF, while SpacePy develops and

maintains the Python interface. pycdf reads files “on demand”,

with the ability to read a single variable or even fraction thereof.

spacepy.datamodel.fromCDF provides an at-once read into the

spacePy datamodel.

3.1.2 Hierarchical data format 5 and derivatives
Several other formats and packages derive from HDF5 and

can, unless non-standard features are added, be read directly with

spacepy.datamodel.fromHDF5. For example, since MATLAB®

release R2006b, mat files can be (and are most likely to be)

stored as HDF5 files. Also, NetCDF4 provides an alternative API

to build and read data files using the HDF5 library. NetCDF4 files

can thus be read using spacepy.datamodel.fromHDF5. Note that

NetCDF3 is not compatible with HDF5, even though

NetCDF4 provides access to legacy NetCDF3 files.

spacepy.datamodel.fromNC3 provides NetCDF-to-datamodel

reader functionality by building on the scipy.io.netcdf reader.

To write the contents of a spacepy.datamodel.SpaceData to

an HDF5 file, simply call the appropriate write method:

3.1.3 Javascript object notation-headed ASCII
This is a text-based data format that uses a header, written in

JavaScript Object Notation (JSON) and intended to be both

human- and machine-readable, to describe the file layout and

to store metadata. While not in broad use, this provides specific

support for the magnetic ephemeris (“magephem”) files for the

Van Allen Probes Energetic particle, Composition, and Thermal

plasma (RBSP-ECT) Suite, as well as the energetic particle data

from the Global Positioning System (Morley et al., 2017). This

format is also supported by Autoplot (Faden et al., 2010).

3.2 Time systems

Handling time and coordinate systems is fundamental to

much of space physics. While these capabilities were present in

the original release of SpacePy, there have been significant

advances over the years.

SpacePy supports multiple time systems: Coordinated

Universal Time (both as native Python datetime objects, and

expressed as ISO8601 time strings); International Atomic Time

(TAI), in seconds since 1958-01-01T00:00:00UTC; Global

Positioning System (GPS) time, in seconds since 1980-01-

06T00:00:00UTC; Julian Day and Modified Julian Day

(expressed on the UTC scale); Unix time; Rata Die time, in

days since 0001-01-01T00:00:00UTC; and CDF time

(corresponding to the legacy CDF_EPOCH types in NASA’s

CDF library). Figure 2 shows relationships between these time

systems; internal processing is primarily in TAI.

3.2.1 Handling leap seconds
Some time systems ignore leap seconds (e.g., Unix time).

Similarly, many standard library time packages do not handle

leap seconds, including Python’s datetime module (even as used

for UTC). On the other hand, there is a need in heliophysics to

represent leap seconds and to convert between continuous time

representations and those that ignore leap seconds. These

conversions are well-defined from the introduction of leap

seconds to UTC in 1972 to the present. For systems that

cannot represent leap seconds, the leap second moment is

considered not to exist. For example, from 23:59:59 on 31/12/

2008 to 00:00:00 on 01/01/2009 is 2 s, but only represents a 1-s

increment in Unix time. SpacePy uses an user-updatable leap

second table referenced to the latest US Naval Observatory data.
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3.3 Coordinates

Since its first release SpacePy has provided a pythonic

interface to the IRBEM library (Boscher et al., 2022). This

includes access to magnetic field models, field line tracing,

and coordinate transformations. In release 0.3 SpacePy

introduced a new backend for handling coordinate system

transformations, while simultaneously preserving the familiar

spacepy.coordinates.Coords interface. This new backend

maintained existing functionality, requiring no changes to

existing code, while removing the need for Fortran support

(for the IRBEM library) to perform coordinate

transformations. Both backends are available to the user.

Coordinate systems supported by this module broadly fall

into two categories: those that can be defined strictly using

astronomical parameters only, and those that require a

representation of Earth’s geomagnetic field. SpacePy uses

transformations that build from the IAU 1976/FK5 system for

astrophysical reduction (Lederle, 1980; Fricke, 1982; Seago and

Vallado, 2000). Taking the origin of our coordinate systems as

FIGURE 2
Workflow for supported input and output types in SpacePy.time.

FIGURE 3
Relationships between coordinate systems as implemented in SpacePy.ctrans.
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the center of the Earth instead of the solar barycenter gives us an

Earth-centered inertial (ECI) system as our starting point. The

relationships between the supported coordinate systems are

described below, and graphically summarized in Figure 3. In

contrast with many other space or heliophysics packages we do

not follow the approach given by Russell (1971) or Hapgood

(1992) of using first order approximations to the reduction

theory. SpacePy uses the full third order relationships in its

implementation.

3.3.1 Earth-centered inertial systems
Our fundamental reference system is ECI 2000, sometimes

simply referred to as the J2000 frame, though we avoid this to

prevent confusion with the J2000 epoch (01 January 2000, 11:58:

55.816 UTC) This system can be considered equivalent to the

Geocentric Celestial Reference Frame, to within tens of

milliarcseconds. The z-axis is perpendicular to the mean

celestial equator at the J2000 epoch. The x-axis is aligned with

the mean equinox at the J2000 epoch. The y-axis completes and

lies in the celestial equatorial plane.

Correcting the orientations of the equator and equinox for

precession yields the mean equinox and mean equator of date,

and updating the definition gives us ECIMOD (ECI Mean Of

Date). Finally, we account for the nutation (the short-period

perturbations on the precession) to obtain the true equator and

true equinox of date. Using these corrected axes to define our ECI

system gives ECITOD (ECI True Of Date).

3.3.2 Terrestrial systems: Geographic, geodetic,
and geomagnetic

SpacePy implements an Earth-Centered Earth-Fixed

coordinate system using the name GEO (Geocentric

Geographic). The coordinates of a point fixed on (or relative

to) the surface of the Earth do not change as the Earth rotates.

The x-axis lies in the Earth’s equatorial plane (zero latitude) and

intersects the Prime Meridian (zero longitude; Greenwich,

United Kingdom). The z-axis points to True North (which is

roughly aligned with the instantaneous rotation axis).

While all of the coordinate systems thus far are generally

defined as Cartesian systems, geodetic (GDZ) coordinates cannot

be properly represented as Cartesian. GDZ is defined in terms of

altitude above a reference ellipsoid, the geodetic latitude, and

geodetic longitude. Geodetic longitude is identical to geographic

longitude, while both the altitude and latitude depend on the

ellipsoid used. SpacePy’s default is the WGS84 reference ellipsoid

and the GEO-GDZ conversion uses Heikkinen’s exact algorithm

(see Zhu, 1994).

Finally, geomagnetic coordinates can be considered a

magnetic analog of GEO. The z-axis is aligned with the

centered dipole axis of date (defined using the first

3 coefficients of the IGRF/DGRF). The y-axis is perpendicular

to both the dipole axis and True North and the x-axis completes

the system.

3.3.3 Magnetospheric systems
Magnetospheric coordinate systems are non-inertial and

Earth-centered. We begin with GSE (Geocentric Solar

Ecliptic). The x-axis points from the center of Earth to the

Solar System barycenter, while the y-axis is defined to lie in

the mean ecliptic plane of date (pointing in the anti-orbit

direction) and the z-axis is perpendicular to the mean ecliptic

plane.

To move to GSM (Geocentric Solar Magnetospheric) we

require that the centered dipole axis lies in the x-z plane. The

y-axis is thus perpendicular to both the Sun-Earth line and the

centered dipole axis. GSM is therefore a rotation about the x-axis

from the GSE system. Finally, we move to SM (Solar Magnetic)

where the z-axis is aligned with the centered dipole axis of date

(positive northward), and the y-axis is perpendicular to both the

Sun-Earth line and the dipole axis. As with GSE and GSM, y is

positive in the anti-orbit direction. The x-axis therefore is not

aligned with the Sun-Earth line and SM is a rotation about the

y-axis from the GSM system.

We note that these definitions differ slightly from those used

by, e.g., Hapgood (1992) as the mean ecliptic (correcting for

precession) is used instead of the true ecliptic (correcting for

precession and nutation), with the Earth-Sun vector also defined

in ECIMOD. However, they have been adopted for consistency

with recent flagship missions following the implementations

used for Van Allen Probes and Magnetospheric Multiscale

(e.g., Morley, 2015).

3.4 Pybats

The Pybats module of Spacepy provides tools for handling

output from the Space Weather Modeling Framework (Tóth

et al., 2005, 2012; Gombosi et al., 2021). The SWMF is a

framework that executes, synchronizes, and couples together

many physics-based domain models of the complex

heliosphere system, from solar corona to planetary

atmospheres (e.g., Powell et al., 1999; Welling et al., 2015;

Mukhopadhyay et al., 2020; Sachdeva et al., 2021). It is widely

used in heliophysics, including long-standing availability at

NASA’s Community Coordinated Modeling Center (CCMC)

and real-time operational use at NOAA’s Space Weather

Prediction Center (SWPC) since 2016. Its wide adoption has

necessitated a tool box for reading and handling its complex and

heterogeneous output—a need met by the Pybats module.

The fundamental goal of Pybats is to allow users to access

SWMF model output within Python environments. It achieves

this by subclassing spacepy.datamodel.SpaceData to include file

read methods called upon instantiation. This allows for easy

exploration of values and attributes as outlined above. In the base

spacepy.pybats module, classes are provided for data formats

defined at the SWMF control level or common across many

SWMF sub-models. Sub-modules provide model-specific
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functionality and customization of base classes. For example, the

BATS-R-US global MHD model (Powell et al., 1999; De Zeeuw

et al., 2000; Groth et al., 2000) produces basic ASCII log files that

follow a standard SWMF-defined format and are readable via

spacepy.pybats.LogFile objects. However, the

spacepy.pybats.bats submodule provides model-specific classes

and capabilities. When opening BATS-R-US log files, the

spacepy.pybats.bats.BatsLog subclass includes additional

methods for visualizing values inherent to the BATS-R-US

output data, such as Dst index. Conversely, the output files

from the Ridley Ionosphere Model [RIM, Ridley et al. (2001)]

are proprietary formats, so the base classes for handling RIM

output are located in the spacepy.pybats.rim sub-module.

The most fundamental file type handled by Pybats is the

SWMF IDL format, which has suffix .out. These files are of a

format proprietary to the SWMF, may be either ASCII or binary,

and can hold 1, 2, or 3D data sets. These files can be concatenated

together to hold multiple epochs of simulation of data in a single

file (a .outs file), allowing users to reduce the total number of files

produced by a single simulation. SWMF IDL files are used by

many different models, including BATS-R-US, PWOM,

DGCPM, and others. The base class spacepy.pybats.IdlFile

automatically detects file format (ASCII versus binary) upon

instantiation, reads the file into a spacepy.datamodel.SpaceData-

like object, and provides tools to navigate the different frames, or

single-epoch sets, stored within the file.

An animation of SWMF output using SpacePy is available

in the Supplemental Material and at https://www.youtube.

com/watch?v=8bgkgQITFO8. This animation shows the

magnetospheric response as the interplanetary magnetic

field switches from a purely northward to purely

southward direction. The simulation was performed using

the SWMF, coupling the BATS-R-US global MHD model

with the Rice Convection Model and the RIM. For this

simulation, the physics-based Adaptive Mesh Refinement

(AMR) capability of BATS-R-US was used to automatically

increase spatial resolution to a minimum of 1/8 Earth Radii

(RE). The grid was refined in any block where the current

density surpassed 10−5 μA/m2 and coarsened if the current

dropped below 5 × 10−7 μA/m2. Visualization of the model

output was performed entirely with SpacePy’s pybats module

and submodules. Current density contours in the equatorial

plane were plotted using the spacepy.pybats.Bats2d.add_

contour method. The colored squares show the BATS-R-

US block tree structure; the color of each square shows the

grid resolution of the block with brighter colors indicating the

regions of finest grid spacing. The spacepy.pybats.Bats2d.

add_grid_plot method was used to add the grid

information to screen. The animation demonstrates how

BATS-R-US AMR can be used to simulate fine structure

within the magnetosphere, including Kelvin-Helmholtz

instabilities, flux transfer events, and fast flow channels in

the tail.

3.5 Interoperability

To maximize flexibility for the researcher and minimize

duplication of effort, SpacePy emphasizes interoperability with

other packages. SpacePy’s reliance on the widely-used NumPy

(Harris et al., 2020) array package provides a baseline of low-level

interoperability, and the datamodel (Section 3.1) was designed to

make the minimum changes necessary to the NumPy array

interface.

SpacePy’s Ticktock time object supports conversion to and

from Astropy’s (Astropy Collaboration et al., 2013; Astropy

Collaboration et al., 2018) astropy.time.Time representation;

similarly, SpacePy Coords can be converted to and from the

Astropy astropy.coordinates.SkyCoord. Both conversions are via

simple to/from methods of the SpacePy objects.

SkyCoord conversion is performed via the Earth-centered

Earth-fixed frame (GEO in SpacePy, ITRS in astropy). Time

conversion uses SpacePy’s TAI format and Astropy’s TAI scale

with GPS format, both being continuously-running counts of

seconds since a defined epoch.

Transformation of data structures to and from additional

packages is in preparation (Section 4).

3.6 Empirical models

Via the Pythonic interface to the IRBEM library (irbempy),

SpacePy supports a wide range of magnetic field models and

operations on them, including field line and drift shell tracing.

The LANL* neural net based model (Yu et al., 2012; Yu et al.,

2014) provides faster calculation of the third adiabatic invariant

and the last closed drift shell. This model has recently been

migrated from the Fortran-based ffnet library to a new

implementation based on numpy linear algebra routines, while

maintaining the neural network structure, weights, and results.

Other empirical models include plasmapause models, the

magnetopause model of Shue et al. (1997), and access to the

output of the AE9/AP9 radiation belt model (Ginet et al., 2013).

As inputs to these and other models, SpacePy provides the omni

module, simplifying access to the upstream solar wind data set of

King and Papitashvili (2005) using the interpolation techniques

of Qin et al. (2007).

4 Recent activities

In the summer of 2018, SpacePy transitioned from an open

source release model to a fully open development model. All

development is done in a “live” github repository at https://

github.com/spacepy/spacepy, issues and enhancements are

processed with full public visibility, and developer commits go

through the same review and workflow as outside contributors.

The result has been not only feature requests and issues from the

Frontiers in Astronomy and Space Sciences frontiersin.org07

Niehof et al. 10.3389/fspas.2022.1023612

https://www.youtube.com/watch?v=8bgkgQITFO8
https://www.youtube.com/watch?v=8bgkgQITFO8
https://github.com/spacepy/spacepy
https://github.com/spacepy/spacepy
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1023612


user community, but also new and improved functionality.

AstroPy coordinate support and the new LANL* processing

are two examples where the core functionality came from the

community and was integrated into SpacePy with developer

support.

The transition away from Python 2 is concluding. Although

SpacePy has fully supported Python 3 since version 0.1.5

(December 2014), Python 2 support was retained. This has

been slowly phased out over several releases, providing time

for users to update. Soon Python 2 code will be removed,

simplifying the codebase and facilitating further transitions,

such as the move away from distutils, which were not possible

while supporting Python 2. We successfully supported a dual-

version codebase with very little version-specific code for over

7 years.

An ongoing project will connect the datamodel of SpacePy

with the HAPI streaming Heliophysics data protocol (Weigel

et al., 2021) and the data structures of the SunPy library (The

SunPy Community et al., 2020). This work supports the use of

functionality in a range of libraries without forcing users into a

single data representation or a single library ecosystem. We

intend continual interoperability with other packages within

the broader scientific Python community.

Part of the datamodel conversions project is extending the

ability of SpacePy to interpret ISTP/SPDF metadata (Kovalick,

2022) regardless of its container. Ultimately this will allow the

easy manipulation of data using the ISTP metadata standard

regardless of its container (SpaceData, HDF5, or CDF). This will

not change the fundamental nature of the SpacePy datamodel,

which is agnostic to the form of metadata, only allow additional

functionality where the metadata are ISTP-compliant.

SpacePy developers have been regularly engaging with the

PyHC, including participation in the 2022 summer School

(https://heliopython.org/summer-school).

5 Applying SpacePy

SpacePy has been used in many scientific studies as well as in

support of mission data processing; only a few examples are

provided here.

Recent uses of SpacePy in scientific publications range from

probabilistic predictions of geomagnetic storms (Chakraborty

and Morley, 2020), visualization and verification of an improved

inner magnetosphere model (Engel et al., 2019), through

calculation of L-shells on Cubesats (Gieseler et al., 2020) to

modeling of geomagnetic response to a “perfect storm” ICME

(Welling et al., 2021).

In missions, SpacePy supported the data processing for the

Radiation Belt Storm Probes Energetic particle, Composition,

and Thermal plasma suite (RBSP-ECT) (Spence et al., 2013;

Manweiler et al., 2022), including the ECT combined electron

product (Boyd et al., 2019). SpacePy supports data management

within the Magnetospheric Multiscale mission (MMS) magnetic

ephemeris processing chain (Morley, 2015). Data from the

Integrated Science Investigation of the Sun suite (McComas

et al., 2016) on Parker Solar Probe are processed with SpacePy.

Functionality used in earlier studies remains fully maintained

and available for other studies, such as superposed epoch analysis

(Morley et al., 2010; Rogers, 2022) and association of point

processes (Niehof et al., 2012).

The SpacePy team maintains a list of publications at https://

spacepy.github.io/publications.html and welcomes submissions.

The reference of record for SpacePy code is Morley et al.

(2022). SpacePy users are also encouraged to cite the present

work in studies which make use of SpacePy. Code releases are

available via the PyPI at https://pypi.org/project/spacepy/,

development is hosted at https://github.com/spacepy/spacepy/,

and documentation at https://spacepy.github.io/.

6 Future directions and challenges

It is clear that the Heliophysics community move away from

IDL is well underway, so the SpacePy goal of reducing “reliance

on proprietary languages” is at least partially accomplished,

through the efforts of many in the community. Proprietary

languages are likely to retain some importance but the place

of Python as a tool is well established. One significant question

then is what the nature of the Python in Heliophysics ecosystem

will be.

Since Python is an easy language to write, and modern

environments such as github and the Python Package Index

(PyPI) make sharing easy, Heliophysics-related Python packages

have proliferated. This has resulted in potential issues of

duplication of effort and interoperability between packages.

The PyHC project has done an excellent job of making

packages aware of each other so that they can voluntarily

evaluate existing functionality, avoid duplication, and work on

interoperability. Given diversity of workflows, facilitating this

work is more likely to be successful than any attempt to force the

community into a single approved package for each function.

Interoperability does raise the possibility of circular

dependencies, but this need not be a problem. As long as

packages do not depend on each other for installation,

modern package managers will successfully install both.

Careful interface design can then avoid circular imports; this

has been the case for the datamodel interoperability project

(which will also produce a set of recommendations for

facilitating interoperability).

As the scientific Python ecosystem grows, SpacePy’s

dependency strategy is constantly evolving. One solution may be

for some generic SpacePy functionality to migrate “up the stack”

into e.g., scipy; another (not exclusive) may be to use the optional

specifications of PEP508 (Collins, 2015) to only install dependencies

for SpacePy functionality that a user specifically requests.
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One major shift over the life of SpacePy has been the

transition from source-based distribution to binary-based (e.g.,

operating-system specific binary wheels). This places additional

demands on package developers, not only in producing these

binaries but in supporting newer build systems. The result can be

a substantial improvement in ease of installation for the end user,

and SpacePy is transitioning away from the assumption that a

user will have a working compiler, even on Unix-based systems.

Maintaining flexibility of deployment remains a priority.

Supporting this installer transition requires significant

computer engineering work which is largely separate from the

domain expertise.

To date, SpacePy development has been supported primarily

via the missions that benefit from it. Short-term independent

support has been secured to support engineers in addressing

these computer engineering based tasks more efficiently than

using physics domain experts. We hope similar support will

continue across the Python ecosystem, as it is essential to high-

quality software.
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