
The Space Physics Environment
Data Analysis System in Python

Eric W. Grimes1*, Bryan Harter2, Nick Hatzigeorgiu3,
Alexander Drozdov1, James W. Lewis3, Vassilis Angelopoulos1,
Xin Cao2, Xiangning Chu2, Tomo Hori4, Shoya Matsuda5,
Chae-Woo Jun4, Satoko Nakamura4, Masahiro Kitahara4,
Tomonori Segawa4, Yoshizumi Miyoshi4 and Olivier Le Contel6

1Department of Earth, Planetary and Space Sciences, University of California Los Angeles, Los Angeles,
CA, United States, 2Laboratory for Atmospheric and Space Physics, University of Colorado Boulder,
Boulder, CO, United States, 3Space Sciences Laboratory, University of California Berkeley, Berkeley,
CA, United States, 4Institute for Space-Earth Environmental Research, Nagoya University, Nagoya,
Japan, 5Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan,
6Laboratoire de Physique des Plasmas (LPP), UMR7648 CNRS/Ecole Polytechnique/UPMC/Université
Paris-Sud/Observatoire de Paris, Palaiseau, France

In this article, we describe the free, open-source Python-based Space Physics

Environment Data Analysis System (PySPEDAS), a platform for multi-mission,

multi-instrument retrieval, analysis, and visualization of Heliophysics data.

PySPEDAS currently contains load routines for data from 23 space missions,

as well as a variety of data from ground-based observatories. The load routines

are built from a common set of general routines that provide access to datasets

in different ways (e.g., downloading and caching CDF files or accessing data

hosted on web services), making the process of adding additional datasets

simple. In addition to load routines, PySPEDAS contains numerous analysis tools

for working with the dataset once it is loaded. We describe how these load

routines and analysis tools are built by utilizing other free, open-source Python

projects (e.g., PyTplot, cdflib, hapiclient, etc.) to make tools for space and solar

physicists that are extremely powerful, yet easy-to-use. After discussing the

code in detail, we show numerous examples of code using PySPEDAS, and

discuss limitations and future plans.

KEYWORDS

heliophysics, space physics, magnetospherc physics, data analysis, data visualization,
python

1 Introduction

Dynamically typed, interpreted languages, such as Interactive Data Language (IDL)

and Matlab, have exploded in usage for day-to-day data analysis due their ease of use,

curated libraries of scientific routines, simplified debugging, and interactive plotting.

There is a need for tools tailored toward the Heliophysics community; for example, to

provide access to the scientific data from multiple missions in a generic and easy-to-use

way, as well as general analysis tools to work with these data. Releasing generic analysis

tools has numerous benefits, such as limiting duplication of effort and reducing potential

OPEN ACCESS

EDITED BY

Sophie A. Murray,
Dublin Institute for Advanced Studies
(DIAS), Ireland

REVIEWED BY

Arnaud Masson,
European Space Astronomy Centre
(ESAC), Spain
Daniel Da Silva,
Goddard Space Flight Center (NASA),
United States

*CORRESPONDENCE

Eric W. Grimes,
egrimes@igpp.ucla.edu

SPECIALTY SECTION

This article was submitted to Space
Physics,
a section of the journal
Frontiers in Astronomy and Space
Sciences

RECEIVED 16 August 2022
ACCEPTED 16 September 2022
PUBLISHED 06 October 2022

CITATION

Grimes EW, Harter B, Hatzigeorgiu N,
Drozdov A, Lewis JW, Angelopoulos V,
Cao X, Chu X, Hori T, Matsuda S,
Jun C-W, Nakamura S, Kitahara M,
Segawa T, Miyoshi Y and Le Contel O
(2022), The Space Physics Environment
Data Analysis System in Python.
Front. Astron. Space Sci. 9:1020815.
doi: 10.3389/fspas.2022.1020815

COPYRIGHT

© 2022 Grimes, Harter, Hatzigeorgiu,
Drozdov, Lewis, Angelopoulos, Cao,
Chu, Hori, Matsuda, Jun, Nakamura,
Kitahara, Segawa, Miyoshi and Le
Contel. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Astronomy and Space Sciences frontiersin.org01

TYPE Technology and Code
PUBLISHED 06 October 2022
DOI 10.3389/fspas.2022.1020815

https://www.frontiersin.org/articles/10.3389/fspas.2022.1020815/full
https://www.frontiersin.org/articles/10.3389/fspas.2022.1020815/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2022.1020815&domain=pdf&date_stamp=2022-10-06
mailto:egrimes@igpp.ucla.edu
https://doi.org/10.3389/fspas.2022.1020815
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://www.frontiersin.org/journals/astronomy-and-space-sciences#editorial-board
https://doi.org/10.3389/fspas.2022.1020815


errors made by researchers. In IDL, this need led to the

development of the SolarSoft (SSW)1 package for solar

physicists and the Space Physics Environment Data Analysis

System [SPEDAS; Angelopoulos et al., 2019)2 package for space

physicists. The SPEDAS package supports loading, plotting,

analysis, and integration of data from several space-based and

ground-based observatories, providing a comprehensive

environment for space physics data analysis and visualization.

While powerful, IDL has numerous limitations, including the

high cost of licensing, limited support, difficulty in bridging

among different programming languages, as well as conflicts

with other libraries caused by the single namespace limitation.

The single namespace limitation requires that all IDL functions

have unique names, making it nearly impossible to use SPEDAS

and other large packages (e.g., SolarSoft) in the same

environment without naming conflicts.

Due to these limitations and the increasing popularity of the

Python programming language (Burrell et al., 2018), we began

the development of an implementation of the IDL SPEDAS

package in the Python programming language. The tools in

PySPEDAS allow users to access scientific quality data

products from numerous space missions and ground

observatories with only a few lines of code. PySPEDAS

provides a variety of generic analysis tools, from simple

operations, such as interpolating magnetic field data, to more

complex operations, such as calculating and plotting 2D slices of

3D velocity distribution data from particle instruments.

Development of PySPEDAS is occurring on GitHub at:

https://github.com/spedas/pyspedas

Development of PySPEDAS is occurring in the open to

encourage contributions from mission teams as well as the

general Heliophysics community.

PySPEDAS releases are distributed using the Python Package

Index (PyPI) and can be installed with:

pip install pyspedas

PySPEDAS conforms to the Python in Heliophysics

Community standards3. PySPEDAS is platform independent,

supporting the Windows, macOS, and Linux operating systems,

and is released under a permissive free software license (MIT).

Each function in PySPEDAS is documented in the docstring of

that function. The HTML documentation is built automatically

from these docstrings using the Sphinx documentation generator4.

The HTML documentation can be found online at:

https://pyspedas.readthedocs.io/

PySPEDAS examples are available as Jupyter notebooks in

general and mission-specific repositories at the SPEDAS GitHub

organization5. Tutorials are regularly held at scientific meetings,

and webinars are regularly held online and are made available on

the SPEDAS YouTube channel6.

TABLE 1 Tplot data model.

x Array containing time values

y Array containing data values

dy Array containing error values

v Array containing Y-axis locations for the values specified in “y” above (spectrograms)

v1, v2, v3 Additional dependencies

TABLE 2 Standard load routine keywords.

Trange Two-element array containing time range

Suffix Suffix to append to the tplot variables

get_support_data Flag to load the “support_data” variables from the CDF files

varformat String specifying variable format (to limit the variables loaded)

varnames List of variable names to load

downloadonly Flag to download the data files without loading into tplot variables

notplot Flag to load the data into dictionaries instead of creating tplot variables

no_update Flag to load the local data but not request the remote data

time_clip Clip the variables down to the exact time range specified in the trange keyword

1 http://www.lmsal.com/solarsoft

2 http://www.spedas.org/

3 https://heliopython.org/docs/

4 https://www.sphinx-doc.org

5 https://github.com/spedas

6 https://www.youtube.com/channel/UCZVyhCNPI3II7Mu086KsoLA

Frontiers in Astronomy and Space Sciences frontiersin.org02

Grimes et al. 10.3389/fspas.2022.1020815

https://github.com/spedas/pyspedas
https://pyspedas.readthedocs.io/
http://www.lmsal.com/solarsoft
http://www.spedas.org/
https://heliopython.org/docs/
https://www.sphinx-doc.org
https://github.com/spedas
https://www.youtube.com/channel/UCZVyhCNPI3II7Mu086KsoLA
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1020815


PySPEDAS is tested using standard Python-based unit tests that

are automatically ran when code is merged with the master branch.

These tests typically exist in the tests directory of eachmodule.While

these tests exercise the functionality, they do not typically check the

validity of the results. To validate the results, unit tests are

implemented in IDL SPEDAS which compare the data products

from PySPEDAS to the data products in IDL SPEDAS. These

validation tests are released in IDL SPEDAS, as well as in a

separate repository at the SPEDAS GitHub organization.

In the next section, we give an overview of the “tplot”model,

describe the load routine design, and finally describe several

analysis tools currently available.

2 Materials and methods

Internally, PySPEDAS uses the tplot data model to store,

manipulate and visualize time series data; in Python, this model is

implemented by the PyTplot7 project. The tplot data model is an

extremely powerful model for working with time series data, with

heritage from IDL, that allows users to reference complex data

sets, along with their metadata, using simple string identifiers.

2.1 Tplot model

Because of its importance, here we repeat the principles of the

tplot data model. In the tplot data model, time series data are

stored, alongside metadata, in global objects called tplot variables.

The tplot data model is shown in Table 1. The time values are

stored as Unix times (number of seconds since 00:00:00 UTC on

1 January 1970, excluding leap seconds) in the x component of

the variable. These values should be monotonically increasing.

The data values are stored in the y component, error bars are

stored in the optional dy component, and additional

dependencies (e.g., energy and angular ranges) are stored in

the optional v, v1, v2, and v3 components of the variable.

PyTplot provides importers for a variety of file formats,

including CDF files, netCDF files, STS files, as well as IDL sav

files. These importers use other open-source libraries (e.g.,

cdflib8, netCDF49, scipy10, astropy11, etc.) to load the data and

time values into numpy arrays, then convert the time values to a

common epoch (Unix time), and then store the tplot variables

containing the time values, data, and metadata, using the name of

the variable as a reference.

A suite of PyTplot routines provides an environment for

working with tplot variables, e.g., creating variables

(pytplot.store_data), plotting those variables (pytplot.tplot),

returning the data in numpy arrays or xarray objects

(pytplot.get_data), setting figure options

(pytplot.tplot_options), setting panel options (pytplot.options),

as well as doing basic calculations such as data cropping

(pytplot.crop) and data averaging (pytplot.avg_res_data). A

list of the tplot variables in the current session can be found

using the pytplot.tplot_names function, and the metadata for a

variable can be accessed by setting the metadata option when

calling (pytplot.get_data). A full list of the routines and their

functionality can be found in the PyTplot documentation.

The plotting features provided by PyTplot are extensive,

supporting multiple possible backends (including Bokeh, Qt,

and matplotlib), each supporting stacked time series plots

containing any combination of line and spectrogram panels.

In addition to the standard features supported by the Bokeh and

Qt backends, the current backend used by PySPEDAS

(matplotlib) supports error bars, annotations, highlighting

TABLE 3 Projects supported as of July 2022.

Advanced Composition Explorer (ACE)

Arase (ERG)

Cluster

Colorado Student Space Weather Experiment (CSSWE)

Deep Space Climate Observatory (DSCOVR)

Equator-S

Fast Auroral Snapshot Explorer (FAST)

Geotail

Geostationary Operational Environmental Satellite (GOES)

Imager for Magnetopause-to-Aurora Global Exploration (IMAGE)

Kyoto Dst Index

Mars Atmosphere and Volatile Evolution (MAVEN)

Magnetic Induction Coil Array (MICA)

Magnetospheric Multiscale (MMS)

OMNIWeb

Polar Orbiting Environmental Satellites (POES)

Polar

Parker Solar Probe (PSP)

Solar Orbiter (SOLO)

Solar Terrestrial Relations Observatory (STEREO)

Spherical Elementary Currents (SECS)/Equivalent Ionospheric Currents (EICS)

Swarm

Time History of Events and Macroscale Interactions during Substorms (THEMIS)

Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS)

Ulysses

Van Allen Probes (RBSP)

Wind

7 https://github.com/MAVENSDC/PyTplot

8 https://github.com/MAVENSDC/cdflib

9 https://github.com/Unidata/netcdf4-python

10 https://scipy.org/

11 https://www.astropy.org/

Frontiers in Astronomy and Space Sciences frontiersin.org03

Grimes et al. 10.3389/fspas.2022.1020815

https://github.com/MAVENSDC/PyTplot
https://github.com/MAVENSDC/cdflib
https://github.com/Unidata/netcdf4-python
https://scipy.org/
https://www.astropy.org/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1020815


time intervals, automatic spectrogram interpolation, overplotting

lines on top of spectrograms, creating figures in Jupyter

notebooks, as well as saving publication quality figures.

2.2 Load routines

The instrument load routines in PySPEDAS follow the form:

pyspedas.mission.instrument ()

And implement a common set of keywords for access to the

data (as shown in Table 2). Some missions [e.g., Magnetospheric

Multiscale (MMS; Burch et al., 2016)] implement additional

keywords to provide additional options when loading the

data. Each mission implements at least one core load routine,

with instrument-specific wrappers implemented as separate

functions. The core load routines typically download the data

files, load the data files into PyTplot variables, perform common

post-processing (e.g., time clipping of the data), then return a list

of the variables that were loaded. The instrument-specific

functions can then call these core routines to load the data.

This model, adapted from IDL SPEDAS, allows for instrument-

level pre- and post-processing in the wrapper routines, while

most instrument-independent loading is done in a common core

routine shared by the instruments. Multiple core routines can be

developed for access to different data servers (e.g., one for a

mission’s official data server and one for the NASA archive).

PySPEDAS contains several support routines for

downloading data files from remote repositories, including:

pyspedas.dailynames: generates a list of file names from a

time range using the strftime format

pyspedas.download: general download routine that uses the

open-source requests12 library internally, supports

authentication, allows parsing and searching HTML directory

index pages generated by Apache, and provides local caching and

file version numbers.

pyspedas.hapi.hapi.hapi: supports loading data from

Heliophysics Data Application Programmer’s Interface (HAPI)
13 servers; uses hapiclient14 package to load the parameters into

numpy arrays, then creates tplot variables.

By default, the data files are stored in a subdirectory of the

current working directory; this directory can be changed using the

SPEDAS_DATA_DIR environment variable, as well as mission-

specific environment variables (e.g., MMS_DATA_DIR for MMS,

THM_DATA_DIR for THEMIS). The mission-specific

environment variables override the global SPEDAS data

directory set in SPEDAS_DATA_DIR. The local data

directories can also be changed in the Python interpreter by

setting the ‘local_data_dir’ key in the mission’s CONFIG

dictionary; e.g., pyspedas.themis.config.CONFIG

[‘local_data_dir’] = ‘/path/to/data/’ for THEMIS.

TABLE 4 The particle data structure.

Project_name Mission name

Spacecraft Spacecraft name

Data_name General description of the data

Units_name Units name

Units_procedure Name of procedure for unit conversions

Species Species name

Charge Particle charge (+1 for ions, −1 for electrons)

Mass Particle mass [in units of eV/(km/s)2]

start_time Start of the accumulation interval (unix time)

end_time End of the accumulation interval (unix time)

n_energy Number of energy bins

n_theta Number of theta bins

n_phi Number of phi bins

bins numpy.ndarray of shape: [n_energy, n_phi, n_theta]; containing 1 (active bin) or 0 (inactive bin)

data numpy.ndarray of shape: [n_energy, n_phi, n_theta]; containing the data values

theta numpy.ndarray of shape: [n_energy, n_phi, n_theta]; containing the theta (elevation) values; values should be from [−90, +90]

phi numpy.ndarray of shape: [n_energy, n_phi, n_theta]; containing the phi (azimuth) values; values should be from [0, 360)

Energy numpy.ndarray of shape: [n_energy, n_phi, n_theta]; containing the energy values (eV units)

dtheta numpy.ndarray of shape: [n_energy, n_phi, n_theta]; containing the widths of the theta bins

dphi numpy.ndarray of shape: [n_energy, n_phi, n_theta]; containing the widths of the phi bins

denergy numpy.ndarray of shape: [n_energy, n_phi, n_theta]; containing the widths of the energy bins

12 https://requests.readthedocs.io/

13 https://hapi-server.github.io/

14 https://github.com/hapi-server/client-python

Frontiers in Astronomy and Space Sciences frontiersin.org04

Grimes et al. 10.3389/fspas.2022.1020815

https://requests.readthedocs.io/
https://hapi-server.github.io/
https://github.com/hapi-server/client-python
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1020815


Once the data files are saved locally, the core load routines

typically use importers inside PyTplot, described in (Section 2.1),

to save the parameters as tplot variables. The wrapper routines

then take these loaded variables and do any instrument-specific

post-processing (e.g., creating additional data products, applying

calibrations and corrections, setting plot metadata, etc.).

Table 3 shows a list of the current projects supported by

PySPEDAS as of July 2022.

2.3 Analysis tools

2.3.1 Coordinate transformations
Coordinate transformations are implemented in the

pyspedas.cotrans module. The cotrans function, located in the

pyspedas.cotrans module, accepts any tplot variable containing

vector data in Cartesian coordinates and supports transformations

to and from several coordinate systems (Hapgood 1992):

Geocentric Equatorial Inertial (GEI), Geocentric Solar Ecliptic

(GSE), Geocentric Solar Magnetospheric (GSM), Solar Magnetic

(SM), Geographic (GEO), Geomagnetic (MAG) and Geocentric

Equatorial Inertial for epoch J2000.0 (J2000).

Internally, these transformations are direct translations of the

IDL SPEDAS coordinate transformation routines, which were

originally based on the ROCOTLIB15 library. In addition to the

calculations to perform the various transformations, the

pyspedas.cotrans module utilizes the tplot metadata where

possible; i.e., if the input coordinate system is stored in the

variable’s metadata, the user does not need to specify it manually.

The output variable’s metadata are updated to the new coordinate

system (including in any plot annotations), minimizing the amount

of user effort to produce transformed data with proper annotations.

FIGURE 1
Magnetic field data from Solar Orbiter, Parker Solar Probe, Magnetic Multiscale Mission, THEMIS, and Arase missions for 2 h on 20 April 2020.

15 http://cdpp.irap.omp.eu/index.php/services/scientific-librairies/
rocotlib

Frontiers in Astronomy and Space Sciences frontiersin.org05

Grimes et al. 10.3389/fspas.2022.1020815

http://cdpp.irap.omp.eu/index.php/services/scientific-librairies/rocotlib
http://cdpp.irap.omp.eu/index.php/services/scientific-librairies/rocotlib
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1020815


The pyspedas.cotrans module also provides tools for

transforming vector data into various field-aligned coordinate

systems (for which the Z axis corresponds to the direction of a

given field vector, X and Y axes defining the plane perpendicular

to it); pyspedas.cotrans.fac_matrix_make generates field-aligned

coordinate transformation matrices, and pyspedas.cotrans.tvector_

rotate rotates vector data using these matrices.

In addition to tplot variables, the pyspedas.cotrans module

supports data and time inputs as simple numpy arrays. If numpy

arrays are provided instead of tplot variables, the

pyspedas.cotrans module will create a tplot variable internally

prior to performing the transformation.

2.3.2 Magnetic field models
Routines for working with magnetic field models are

implemented in the pyspedas.geopack module. Functions are

available for generating the Tsyganenko 89, 96, and 2001 models,

as well as the Tsyganenko-Sitnov 2004 model at arbitrary points in

space (as a function of time) (Tsyganenko, 2013). Internally, these

functions extract the input position data from tplot variables, then

use the pure-Python implementation of the Geopack library16 to

generate the various field models at each point, then store the results

in tplot variables.

The Tsyganenko 96, 2001, and Tsyganenko-Sitnov 2005models

require additional solar wind input. The pyspedas.geopack module

contains routines (get_tsy_params, get_w_params) for generating

the required input parameters to this model using the OMNI solar

wind data loaded using the pyspedas.omni.data function.

2.3.3 Curlometer technique
The curlometer technique is implemented in the

pyspedas.analysis.lingradest routine. This function takes

position and magnetic field data obtained at four spacecraft

(e.g., MMS or Cluster) and applies the linear gradient/curl

estimator technique (Dunlop et al., 2021) to calculate the

magnetic field gradients, divergence, curl, and field line

curvature. This routine is a direct translation of the IDL

SPEDAS version originally developed for Cluster (Runov

et al., 2003) and most recently used by MMS.

The core lingradest function is called by an MMS-specific

wrapper mms_lingradest in the pyspedas.mms.fgm module; this

wrapper interpolates the spacecraft position and magnetic field

data to the first spacecraft timestamps, then calls the lingradest

function to perform the calculations and saves the output in tplot

variables.

2.3.4 Dynamic power spectrum
The dynamic power spectrum of a tplot variable can be

calculated using the pyspedas.tdpwrspc function. This function

extracts the data from the input tplot variables, and then a

Hanning window is applied to the input data (its power is

FIGURE 2
Electron energy spectra observed by the (A) Fly’s Eye Energetic Particle Sensor (FEEPS) and (B) Fast Plasma Investigation (FPI) instruments on
16 October 2015.

16 https://github.com/tsssss/geopack

Frontiers in Astronomy and Space Sciences frontiersin.org06

Grimes et al. 10.3389/fspas.2022.1020815

https://github.com/tsssss/geopack
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1020815


divided out of the returned spectrum). A straight line is

subtracted from the data to reduce spurious power due to the

sawtooth behavior of a background. The output, the mean

squared amplitude of the signal at each specific frequency, is

then stored in separate tplot variables for each component.

Keyword options are available for controlling the number of

points to use for the Hanning window, the number of points to

shift for each spectrum, and the output frequency bin size.

Options are also available for disabling the Hanning window

and straight line subtraction.

2.3.5 Wave polarization tools
The pyspedas.twavpol function allows for performing wave

polarization analysis of three orthogonal component time series

data in tplot variables. This function extracts the data from the

input tplot variable, which usually has beenmoved into a magnetic

FIGURE 3
From top to bottom, (A) FGM data observed by MMS-2 in GSE coordinates (from the CDF files), (B) MMS-2 FGM data in GSE coordinates
transformed from GSM coordinates, (C) Arase MGF data in GSE coordinates (from the CDF files), and (D) Arase MGF data in GSE coordinates
transformed from GSM coordinates.

Frontiers in Astronomy and Space Sciences frontiersin.org07

Grimes et al. 10.3389/fspas.2022.1020815

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1020815


field-aligned coordinate system such that wave angle and ellipticity

refer to themagnetic field direction. It then passes the input data to

a core wavpol routine (Samson and Olson, 1980), which calculates

the degree of polarization, wave normal angle, ellipticity, and

helicity, then saves the output in tplot variables. The wave

polarization tools in PySPEDAS are direct translations of the

IDL SPEDAS routines for performing the same calculations.

2.3.6 Particle tools
General (mission independent) particle tools are implemented

in the pyspedas.particles module, with mission-specific particle tools

implemented in the particles submodule of a mission’s module (e.g.,

MMS particle tools are implemented in pyspedas.mms.particles).

Tools exist for taking particle data structures and calculating the

energy, theta, phi, pitch angle, and gyrophase spectrograms, as well

as plasma moments of velocity distribution functions. In addition,

tools exist for calculating and plotting 2D slices of the velocity

distribution functions.

The PySPEDAS particle data structure, which is based on the

IDL data structure, is shown in Table 4. The units_name attribute

of the particle data structure must be counts, rate, eflux, flux, df,

df_cm, df_km, e2flux, or e3flux. For the theta and phi values, the

PySPEDAS particle tools use presumed particle trajectories (not

look direction of the instrument).

The user-facing functions for doing particle calculations can

be found in the particles submodule of the mission’s module, e.g.,

FIGURE 4
From top to bottom, (A) Arase MGF data (GSM coordinates), (B) T89model field at the Arase position (GSM coordinates), (C) THEMIS-d FGS data
(GSM coordinates), and (D) T89 model field at the THEMIS-d position (GSM coordinates).

Frontiers in Astronomy and Space Sciences frontiersin.org08

Grimes et al. 10.3389/fspas.2022.1020815

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1020815


spectrograms and moments for MMS can be calculated using the

mms_part_getspec function found in the pyspedas.mms.particles

module. This function loads particle distribution function data

(as well as any required support data), re-forms the data into the

standard PySPEDAS particle data structure described above, then

uses various generic functions to perform the calculations, and

stores the output as tplot variables. Options exist for changing the

species, limiting the energy and angular ranges, changing the

output units, disabling internal and external electron

photoelectron corrections [for the Fast Plasma Instrument

(FPI; Pollock et al., 2016)], and more.

Slices of MMS distribution function data can be plotted using the

mms_part_slice2d function, also found in the pyspedas.mms.particles

module. Just as above, this function loads the data and any required

support data, creates the PySPEDAS particle data structures, then uses

generic tools to calculate and plot the slice. Options exist for rotating

the slice into a variety of coordinate systems, limiting the energy

range, changing the interpolation type, smoothing, and more.

FIGURE 5
From top to bottom, (A) the current density from the curlometer technique, (B)MMS-1 FGM data (C)MMS-2 FGM data (D)MMS-3 FGM data (E)
MMS-4 FGM data (all GSE coordinates).

Frontiers in Astronomy and Space Sciences frontiersin.org09

Grimes et al. 10.3389/fspas.2022.1020815

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1020815


2.3.7 Spherical elementary currents/equivalent
ionospheric currents plots

The pyspedas.secs module allows for downloading and

plotting vector and contour maps of Spherical Elementary

Currents and Equivalent Ionospheric Currents data

(Weygand et al., 2011). The data are downloaded from the

Virtual Magnetospheric Observatory17 using

pyspedas.secs.data, and the data are plotted using the

make_plots function in the pyspedas.secs.makeplots

module. Internally, this function uses matplotlib to create

the figures.

3 Results

3.1 Basic example

Figure 1 shows magnetic field data measured by five

spacecraft, including Solar Orbiter, Parker Solar Probe,

FIGURE 6
From top to bottom, (A)MMS-1 surveymode SCMdata (GSE coordinates), dynamic power spectra of the (B) X component, (C) Y component, (D)
Z component.

17 http://vmo.igpp.ucla.edu/

Frontiers in Astronomy and Space Sciences frontiersin.org10

Grimes et al. 10.3389/fspas.2022.1020815

http://vmo.igpp.ucla.edu/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1020815


MMS, THEMIS, and Arase, for 2 h on 20 April 2020. Using

PySPEDAS, the data for this figure can be loaded with a total

of two imports, five function calls, one for each instrument,

and the figure can be plotted with a sixth function call, e.g.,

Figure 1 can be re-created using the following:

Each load routine call returns a list of the variable names

that were loaded, and users are encouraged to review the

mission team’s documentation for details on the loaded data

products.

The tools (load and analysis routines) shown in these

examples have additional options that can be found in the

docstrings (available in the interpreter by calling the help

function with the PySPEDAS function as an argument), as

well as in our online documentation.

In this example, as well as several of those that follow, we

made minor adjustments to some of the figure annotations prior

to saving (using pytplot.options) for consistency; the full code for

generating all figures can be found in the Supplementary

Material.

3.2 Post-processing example

Figure 2 shows fast survey electron data from the Fast Plasma

Investigation (FPI) and Fly’s Eye Energetic Particle Sensor

FIGURE 7
From top to bottom, (A)MMS-1 surveymode SCMdata (field-aligned coordinates, (B)wave power, (C) degree of polarization, (D)wave angle, (E)
ellipticity, (F) helicity.

Frontiers in Astronomy and Space Sciences frontiersin.org11

Grimes et al. 10.3389/fspas.2022.1020815

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1020815


(FEEPS; Blake et al., 2016) instruments onboard MMS-4 on

16 October 2015.

Each measurement is taken over a certain time interval,

called the accumulation interval, when data were acquired for

that measurement. The FPI measurements are stored at the

beginning of the accumulation interval, while other

instruments (e.g., FEEPS) are stored at the middle of the

accumulation interval; in order to correct this, the user must

center the FPI measurements using the center_measurement

option in the FPI load routine.

The FEEPS spin-averaged omni-directional data shown in

Figure 2 are calculated after the individual telescope data are

loaded from the CDF files. These data have numerous

corrections applied in post-processing prior to calculating

the omni-directional data products, including flat field

corrections (for ions), energy table corrections, bad and

inactive telescope removal, and sunlight contamination

removal.

Figure 2 can be re-created using the following:

3.3 Coordinate transformation example

Figure 3 shows 2 h of MMS FGM and Arase MGF

(Matsuoka et al., 2018) data on 20 April 2020. The first

FIGURE 8
From top to bottom, (A)MMS-4 DIS number density (from CDF files), (B)MMS-4 DIS number density [calculated from the distribution function
(DF) data], (C) MMS-4 DIS energy spectra (from CDF files), (D) MMS-4 DIS energy spectra (calculated from the DF data).

Frontiers in Astronomy and Space Sciences frontiersin.org12

Grimes et al. 10.3389/fspas.2022.1020815

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1020815


panel shows the MMS-2 FGM data in GSE coordinates, loaded

from the CDF file, and the second panel shows the MMS-2 data

transformed from GSM coordinates. The third and fourth

panels of Figure 3 show the Arase MGF data in GSE

coordinates, loaded from the CDF file, and the Arase MGF

data, in GSE coordinates, transformed from GSM. In both

cases, the transformed data matches the GSE data loaded

from the CDF files.

Figure 3 can be re-created using the following:

3.4 Magnetic field model example

Figure 4 shows a comparison of the measured magnetic field at

the Arase and THEMIS spacecraft and the magnetic field model

produced by the Tsyganenko 89 model at each spacecraft location on

20 April 2020. The spacecraft position and magnetic field data can be

loaded in two function calls per spacecraft, and the Arase position data

can be converted to kilometers fromEarth radii using pyspedas.tkm2re

in a single function call. The T89 model can be calculated at each

position data with another function call per spacecraft, and the results

can then be plotted with one final function call.

Figure 4 can be re-created using the following:

3.5 Curlometer example

Figure 5 shows the magnetic field in GSE coordinates

measured by all four MMS spacecraft on 20 April 2020

(bottom four panels) and the total current calculated using the

linear gradient descent curlometer technique using the field and

spacecraft position (MMS Ephemeris/Coordinates; MEC) data for

each probe (top panel). The data can be loaded in two function

FIGURE 9
2D slices showing a bi-directional beam of 0–300 eV ions
observed by MMS-1 (A) FPI DIS, rotated such that x-axis is parallel
to themagnetic field and the bulk velocity defines the x-y plane. (B)
HPCAH+, rotated such that the B x V (bulk) vector defines the
x-y plane.

Frontiers in Astronomy and Space Sciences frontiersin.org13

Grimes et al. 10.3389/fspas.2022.1020815

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1020815


calls, the curlometer calculations require only another function

call, and the results can be plotted using a final function call.

Figure 5 can be re-created using the following:

3.6 Dynamic power spectrum example

The top panel of Figure 6 shows the fast survey AC magnetic

field [(0.5, 16 Hz) frequency range] measured by the Search Coil

Magnetometer (SCM) instrument onboard MMS for 3 h on

16 October 2015. The bottom three panels show the X, Y, and

Z components of the dynamic power spectra of the SCM data in

the top panel. The dynamic power spectra were calculated using a

Hanning window of 512 points and 512 points to shift for each

spectrum. The data can be loaded with a single function call, the

dynamic power spectra can be calculated using another function

call, and the results can be plotted with a final function call.

Figure 6 can be re-created using the following:

3.7 Wave polarization example

The top panel of Figure 7 shows the SCM data from Figure 6

transformed into magnetic field-aligned coordinates. The next

panels show the wave power, degree of polarization, wave normal

angle, ellipticity, and helicity calculated using the SCM data

shown in Figure 6. If one component is an order of

magnitude greater than the other two, then the polarization

results saturate and erroneously indicate high degrees of

polarization at all times and frequencies. The script to recreate

this example would take multiple pages, so it is provided as a

separate file in the Supplementary Material.

3.8 Velocity distribution function example

Figure 8 shows a comparison of the ion density and energy

spectra calculated using mms_part_getspec with those released

by the FPI team in CDFs for 2 h on 16 October 2015.

FIGURE 10
Maps showing (A) Spherical Elementary Currents and (B)
Equivalent Ionospheric Currents at 08:38 UT on 29 February 2008.
The contour map of ionospheric currents reveals a westward
electrojet event, which is likely related to magnetospheric
activities such as a substorm.

Frontiers in Astronomy and Space Sciences frontiersin.org14

Grimes et al. 10.3389/fspas.2022.1020815

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1020815


Figure 8 can be re-created using the following:

3.9 2D Slice of distribution function
example

Figure 9A shows a 2D slice of FPI ion distribution data

produced with the mms_part_slice2d. The figure shows a field-

aligned, bi-directional beam of 0–300 eV ions observed by FPI

onboard MMS-1 at 09:32:19 UT on 10 September 2017. The

energy range was limited to 0–300 eV, and the data were rotated

such that the x-axis is parallel to the magnetic field and the bulk

velocity defines the x-y plane. The slice was calculated using

“geometric” interpolation, i.e., each point on the plot is given the

value of the bin it intersects.

Figure 9B shows a 2D slice of HPCA H+ distribution data

produced with the mms_part_slice2d for the same event as above.

The energy range was limited to 0–300 eV, but in this case, the data

were rotated such that the B x V (bulk) vector defines the x-y plane,

and the slice was calculated using 2D interpolation instead of

geometric. Using the 2D interpolation method, data points within

the specified theta or z-axis range are projected onto the slice plane

and linearly interpolated onto a regular 2D grid.

This figure can be re-created using the following:

3.10 Spherical elementary currents/
equivalent ionospheric currents example

Figure 10A shows the Spherical Elementary Currents, and

Figure 10B shows the Equivalent Ionospheric Currents (left) at

08:38 UT on 29 February 2008, which can be utilized to

investigate the ionospheric currents, and the magnetosphere-

ionosphere coupling process, such as the ionospheric response to

the magnetospheric substorms.

This figure can be re-created using the following:

4 Discussion

The examples in the previous section show how powerful

PySPEDAS is for Heliophysics research; for each example, the

data can be downloaded and plotted in less than a page of code.

We plan to add support for additional projects, datasets, and

analysis tools, as well as additional post-processing to several of the

projects we currently support. As of July 2022, the tools for working

with particle distribution function data are limited to the MMS FPI

and HPCA instruments. We are planning on extending support to

the particle instruments onboard THEMIS and Arase in the near

future. We are also currently implementing tools for minimum

variance analysis calculations. In addition to these analysis tools, we

plan to add a Graphical User Interface (GUI) and a “calc” mini-

language for working with tplot variables, much like those that exist

in IDL SPEDAS [see Angelopoulos et al., 2019 for more].

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found in the article/

Supplementary Material.

Author contributions

BH contributed to the development of cdflib, PyTplot, as well

as the MAVEN plug-in. NH and AD contributed to the

development of various PySPEDAS routines. JL and VA

Frontiers in Astronomy and Space Sciences frontiersin.org15

Grimes et al. 10.3389/fspas.2022.1020815

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1020815


provided program leadership. XCa and XCh contributed the

SECS/EICS plug-in. TH, SM C-WJ, SN, MK, TS, and YM

contributed the Arase plug-in. OL is the Lead Co-I of the

MMS SCM instrument, and contributed significantly to the

original dynamic power spectra and wave polarization IDL

code and examples.

Funding

The core SPEDAS team acknowledges support from NASA

contract NNG17PZ01C (for SPEDAS community support) to

UCLA, contract NNG04EB99C (as subcontract from SwRI for

MMS SPEDAS plug-in development) to UCLA, and contract

NAS5-02099 (THEMIS support of TDAS maintenance and

SPEDAS infrastructure) to UCB, UCLA, and BU.

Acknowledgments

We would like to acknowledge the developers of the

PyTplot, numpy, cdflib, netCDF4, hapiclient, astropy,

and requests packages, aswell as ShengTian for the geopack package.

Conflict of interest

The authors declare that the research was conducted in

the absence of any commercial or financial

relationships that could be construed as a potential

conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fspas.2022.

1020815/full#supplementary-material

References

Angelopoulos, V., Cruce, P., Drozdov, A., Grimes, E. W., Hatzigeorgiu, N., King,
D. A., et al. (2019). The space physics environment data analysis system (spedas).
Space Sci. Rev. 215, 9. doi:10.1007/s11214-018-0576-4

Blake, J. B., Mauk, B. H., Baker, D. N., Carranza, P., Clemmons, J. H., Craft, J.,
et al. (2016). The fly’s eye energetic particle spectrometer (feeps) sensors for the
magnetospheric multiscale (mms) mission. Space Sci. Rev. 199, 309–329. doi:10.
1007/s11214-015-0163-x

Burch, J. L., Moore, T. E., Torbert, R. B., and Giles, B. L. (2016). Magnetospheric
multiscale overview and science objectives. Space Sci. Rev. 199, 5–21. doi:10.1007/
s11214-015-0164-9

Burrell, A. G., Halford, A., Klenzing, J., Stoneback, R. A., Morley, S. K., Annex, A.
M., et al. (2018). Snakes on a spaceship—An overview of python in heliophysics.
J. Geophys. Res. Space Phys. 123. doi:10.1029/2018JA025877

Dunlop, M. W., Dong, X.-C., Wang, T.-Y., Eastwood, J. P. S. H., Yang, Y.-Y.,
Haaland, S., et al. (2021). Curlometer technique and applications. JGR. Space Phys.
126. doi:10.1029/2021JA029538

Hapgood, M. (1992). Space physics coordinate transformations: A user guide.
Planet. Space Sci. 40, 711–717. doi:10.1016/0032-0633(92)90012-D

Matsuoka, A., Teramoto, M., Imajo, S., Kurita, S., Miyoshi, Y., and Shinohara, I.
(2018). The mgf instrument level-2 high-resolution magnetic field data of

exploration of energization and radiation in geospace (erg) arase satellite.
doi:10.34515/DATA.ERG-06000

Pollock, C., Moore, T., Jacques, A., Burch, J., Gliese, U., Saito, Y., et al. (2016). Fast
plasma investigation for magnetospheric multiscale. Space Sci. Rev. 199, 331–406.
doi:10.1007/s11214-016-0245-4

Runov, A., Nakamura, R., Baumjohann, W., Treumann, R. A., Zhang, T. L.,
Volwerk, M., et al. (2003). Current sheet structure near magnetic
x-line observed by cluster. Geophys. Res. Lett. 30, 1579. doi:10.1029/
2002GL016730

Samson, J. C., and Olson, J. V. (1980). Some comments on the descriptions of the
polarization states of waves. Geophys. J. Int. 61, 115–129. doi:10.1111/j.1365-246X.
1980.tb04308.x

Tsyganenko, N. A. (2013). Data-based modelling of the earth’s dynamic
magnetosphere: A review. Ann. Geophys. 31, 1745–1772. doi:10.5194/angeo-31-
1745-2013

Weygand, J., Amm, O., Viljanen, A., Angelopoulos, V., Murr, D., Engebretson, M.
J., et al. (2011). Application and validation of the spherical elementary currents
systems technique for deriving ionospheric equivalent currents with the north
American and Greenland ground magnetometer arrays. J. Geophys. Res. 116. doi:10.
1029/2010JA016177

Frontiers in Astronomy and Space Sciences frontiersin.org16

Grimes et al. 10.3389/fspas.2022.1020815

https://www.frontiersin.org/articles/10.3389/fspas.2022.1020815/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fspas.2022.1020815/full#supplementary-material
https://doi.org/10.1007/s11214-018-0576-4
https://doi.org/10.1007/s11214-015-0163-x
https://doi.org/10.1007/s11214-015-0163-x
https://doi.org/10.1007/s11214-015-0164-9
https://doi.org/10.1007/s11214-015-0164-9
https://doi.org/10.1029/2018JA025877
https://doi.org/10.1029/2021JA029538
https://doi.org/10.1016/0032-0633(92)90012-D
https://doi.org/10.34515/DATA.ERG-06000
https://doi.org/10.1007/s11214-016-0245-4
https://doi.org/10.1029/2002GL016730
https://doi.org/10.1029/2002GL016730
https://doi.org/10.1111/j.1365-246X.1980.tb04308.x
https://doi.org/10.1111/j.1365-246X.1980.tb04308.x
https://doi.org/10.5194/angeo-31-1745-2013
https://doi.org/10.5194/angeo-31-1745-2013
https://doi.org/10.1029/2010JA016177
https://doi.org/10.1029/2010JA016177
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.1020815

	The Space Physics Environment Data Analysis System in Python
	1 Introduction
	2 Materials and methods
	2.1 Tplot model
	2.2 Load routines
	2.3 Analysis tools
	2.3.1 Coordinate transformations
	2.3.2 Magnetic field models
	2.3.3 Curlometer technique
	2.3.4 Dynamic power spectrum
	2.3.5 Wave polarization tools
	2.3.6 Particle tools
	2.3.7 Spherical elementary currents/equivalent ionospheric currents plots


	3 Results
	3.1 Basic example
	3.2 Post-processing example
	3.3 Coordinate transformation example
	3.4 Magnetic field model example
	3.5 Curlometer example
	3.6 Dynamic power spectrum example
	3.7 Wave polarization example
	3.8 Velocity distribution function example
	3.9 2D Slice of distribution function example
	3.10 Spherical elementary currents/equivalent ionospheric currents example

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


